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Abstract

This thesis documents our studies of different topics in black hole physics. It is split into
three parts, the first part, is devoted to classical general relativity without any extensions or
modifications. The second part then includes classical extensions, that is, without considering
the conceptual ideas and without introducing quantum effects. In the last part of the thesis we
study the semi-classical approach to gravity where we quantize the matter fields.

In the classical gravity chapter, we present a method of regularizing affine-null metric equations
coupled to a scalar field and subsequently solving them using pseudo-spectral methods. Our
code is entirely written in Python, which makes it accessible to anyone with a bit of experience
of programming. With relatively low numerical resolution and small runtime on a standard
laptop, the code allows reproducing characteristic features like mass scaling and echoing of the
Choptuik critical solution. We further show that for our initial data, the time of formation of
the critical solution is linearly related to one of its parameters.

The second part studies classical extensions to general relativity, and we present the three
projects we have done that lead to publications. The studies are all carried out in the framework
of degenerate higher order scalar tensor (DHOST) theories.
For example, we construct regular, asymptotically flat black holes using a generalized Kerr-

Schild solution generating method. The solutions depend on a mass integration constant and
admit a smooth core of chosen regularity. There are two types of solutions: those that have
an inner and outer event horizon, and, particle-like solutions that are horizonless yet regular.
Where possible, we study observational effects and compare them to the standard solutions of
general relativity.

In the quantum chapter, we analytically study the semiclassical backreaction of a conformally
coupled scalar field on an overspinning BTZ geometry. In particular, we extend the work that
has been done on this problem before, by considering so-called overspinning geometries. These
are naked singularities, where the angular momentum is greater than a factor of the mass, which
classically prevents the solution of having an event horizon. Using the renormalized quantum
stress-energy tensor for a conformally coupled scalar field on such a space-time, we obtain the
semiclassical Einstein equations, which then can be solved perturbatively. Our results show that
the quantum back-reacted solution contains an event horizon hiding all appearing singularities,
in agreement with the (weak) cosmic censorship conjecture.
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Conventions

If not stated otherwise, the speed of light, c, the Newton constant, GN , and the Boltzmann
constant kB are set to 1.

We write partial derivatives like f,µ = ∂µf = ∂f
∂xµ , or if f depends on some function, say X(y),

we write f,X = ∂f
∂X . Further, in the same way we write a ; to denote a covariant derivative, i.e.

Vν;µ = ∇µVν . In the case of a scalar field, we may even, if there is no potential for confusion,
omit the comma and just write something like φµν instead of φ;µν .

We use (−,+,+,+, · · · ) as the signature of the metric.

Riemann tensor: Rµνλρ = Γµνρ,λ − Γµνλ,ρ + ΓµσλΓσνρ − ΓµσρΓσνλ.

Einstein tensor: Gµν = Rµν − 1
2gµνR.

We use ḟ = ∂f
∂t for the time derivative and f ′ = ∂f

∂x for any other variable (if f at most depends
on t and x).

Levi-Civita tensor (totally antisymmetric): εµνρλ···, with ε0123··· = −1/
√−det g

1





Introduction and overview
From Newton to Einstein and beyond

In the field of gravity, arguably the most intriguing objects are black holes. In their vicinity grav-
itational effects are most extreme and hence they provide an outstanding theoretical playground
for the different theories of gravity. Additionally, the recent groundbreaking observational results
(namely the detection of gravitational waves [1] and the first direct image of the shadow of a
black hole [2–9]) show that black holes are not just an important part of theoretical physics
anymore, but also provide more windows to test theories of gravity now. This in turn gives
rise to many interesting theoretical studies that improve our understanding of black holes and
gravity in general.

Black holes have been theorized long before their observational discovery, though their mathe-
matical description changed throughout the years, mainly because Einstein’s theory of general
relativity (GR) drastically changed the mathematical formulation of gravity and the way we
think about it. In Newtonian physics, we treat gravity as a force between two massive objects
that is proportional to their masses, and the inverse square of their distance:

F = GN
m1m2
r2 ,

with Newton’s gravitational constant GN . In this framework, one can equate potential and
kinetic energy in the gravitational field of an object to calculate its escape velocity, the velocity
needed to escape from its surface to infinity, given by

ve =
√

2GNM
r

,

where r is the radius of its surface. However, we can turn this around and calculate, given a
certain mass, what the radius of the object would have to be so that the escape velocity is the
speed of light:

rS = 2GNM
c2 .

In other words, for a sufficiently dense object, the escape velocity on its surface is so high
that not even light can escape. Interestingly, even though general relativity treats gravity
entirely different, this very result appears there as well. In the early 1900s, Einstein realized
through a series of thought experiments that locally, there is an equivalence between gravity
and acceleration [10]. After years of working this out, he concluded that space-time must be a
smooth 4-dimensional manifold. The relation between curvature and matter is encoded in the
field equations of general relativity,

Gµν = κTµν ,
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Conventions

where the Einstein tensor, Gµν , codifies the geometry, and the energy momentum tensor captures
the dynamic of the matter interacting with the gravitational field. This was later famously
summarized by Wheeler as ”Spacetime tells matter how to move; matter tells spacetime how
to curve.“[11] A breakthrough came when the first exact solution to the field equations was
discovered by Schwarzschild [12]

ds2 = −
(

1− 2GNM
c2r

)
c2dt2 +

(
1− 2GNM

c2r

)−1
dr2 + r2dθ2 + r2 sin2 θdϕ2,

which is a spherically symmetric and static metric. One can see that the same radius as before,
rS , leads to a coordinate singularity of the metric1. It can be shown that this radius defines
the boundary to the region from which no signal can escape anymore, the event horizon of the
metric. Over the years more complex black hole solutions to the Einstein equations were found,
most prominently, the charged Reissner-Nordström [13, 14], and the rotating Kerr solution [15].
Interestingly, all these solutions can be completely characterized by their mass, charge and
angular momentum, which is the famous theorem of black holes having no hair [16–18]. This
is to say that black holes do not present any information about what they are made up of, or
what kind of matter is hiding behind the event horizon. This is inherently different from any
other physical object, and one may question whether black holes exist in nature or if they are
mere exotic solutions that have no physical meaning.

The observational evidence clearly indicates that black holes are not just a theoretical artifact
arising as solutions to the field equations, but real astrophysical objects. This begs the question
of how they form in nature. There must be a physical mechanism that is responsible for their
creation. One such mechanism is that of the gravitational collapse. In other words, if the
gravity of an object is strong enough to overcome its internal pressure, then it can collapse into
a region of such high density that it is contained within its event horizon. Interestingly, in 1993
Choptuik studied such a collapse for the case of a massless scalar field propagating in a dynamical
space-time using the Einstein-Klein-Gordon equations [19] and discovered a surprisingly simple
behavior in relation to the initial data reminiscent of critical behavior in phase transitions of
statistical physics. He realized that, for any one-parameter family of solutions (for example the
amplitude of the initial field), there is a critical threshold value for this parameter that divides
the initial data into solutions that collapse to a black hole, and those that do not. For example,
considering the parameter p, there is a value p∗ such that, if we choose p > p∗, then the initial
data collapses to a black hole, while for p < p∗ the scalar field completely disperses, resulting in
flat space as the end state. He also found that near the threshold, the masses of the resulting
black holes follow a power law with a critical exponent that is independent of the parameter
under consideration. After Choptuik discovered these critical phenomena in numerical relativity,
there have been numerous numerical and analytical studies of different matter sources, finding
similar results in spherical symmetry, and some in axial symmetry, though there is still a lot
that is not fully understood yet. For example, how universal critical phenomena are regarding
different matter types and beyond spherical symmetry. But with increasing computational
power, and a better theoretical knowledge that has been obtained over the years, there is no
doubt that our understanding of the subject will continue to improve. More details about critical
collapse can be found in section 4 of chapter I.

Another aspect, that is common among all black hole solutions in the theory of general relativity,
1 The radius was given the name Schwarzschild radius, named after Karl Schwarzschild.
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is that they possess a singularity, at least as long as the matter satisfies reasonable energy
conditions [20, 21]. This is a strong indication for a breakdown of Einstein’s theory, at least close
to these singularities, and cries out for new physics beyond GR. Fortunately, black holes have
an event horizon, which prevents that information gets out from within the horizon. Therefore,
one could argue that what happens inside the horizon is totally irrelevant, since we will never
be able to interact with the inside, and it will never influence any physics that happens outside.
While this may help us sleep at night, we cannot ignore the troublesome fact that the Einstein
equations do not ensure the appearance of an event horizon, they admit (pathological) solutions
of naked singularities. Even the simple case of the Schwarzschild metric is not safe: just choose
the integration constantM to be negative, and the horizon is gone. Near such a naked singularity
the predictability of GR is completely broken, and further, it may even be possible to violate
causality. This lead Roger Penrose to conjecture the (weak) cosmic censorship hypothesis [22],
which states that singularities must be hidden behind an event horizon. Unfortunately, there is
no formal proof, one can even fine-tune the initial data of a collapse such that the end state is a
naked singularity. This indicates that, at least in the theory of GR, it is not even possible to
construct such a proof. On the other hand, so far, there is no observational evidence that such
naked singularities exist in nature, so one may still hope that nature upholds it. This motivates
the modification of GR to either get rid of the singularities, or at least make sure they are always
hidden behind an event horizon. We will discuss possible modifications to GR in chapter II.

Another ray of hope could be the inclusion of quantum effects. After all, when matter is
compressed so densely, we cannot expect that quantum theory does not play a role. Further, it is a
well-known fact, that black holes behave like thermodynamic objects, which is another indication
that there is an underlying theory of quantum gravity (see 2 of chapter I). Unfortunately, it is
known that we cannot simply quantize general relativity and treat it as a quantum field theory.
Instead, there is the need for a new, more profound theory that includes both, gravity and
quantum theory. The most prominent candidates are probably string theory and loop quantum
gravity. With today’s technological possibilities, we are not able to reach the energies necessary
to provide experimental evidence for these theories. It is therefore impossible to know whether
we are on the right track or not. But there are still promising results coming from the studies of
semiclassical gravity, or quantum field theory in curved space-times, where we describe gravity
in the framework of a classical theory, but quantize the interacting matter fields, which will be
studied in chapter III.

We organize the thesis in the following way. There are three main chapters in which we present
different projects in black hole physics that we are/were working on. In all our projects, we
include a scalar field into the field equations, though in each chapter the sourcing field has a
different interpretation. The first chapter is purely classical, we start with a brief review of some
topics that are relevant for the later part of the thesis, but using only the framework of general
relativity. We then present an attempt to construct black hole solutions with torsion and explain
the difficulty of achieving this. In this project, the scalar field is used as some kind of Lagrange
multiplier, which results in a change of the geometry in such a way that the torsion becomes
nonzero. The chapter concludes with a work in progress about the critical collapse of a scalar
field that is done in collaboration with Thomas Mädler. The scalar field is a Klein-Gordon field,
which can be interpreted as bosonic matter. With relatively low computation power, we can
reproduce characteristic properties of the critical solutions, and even find some other surprising
features of our initial data.
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The second chapter studies classical modifications to GR. It contains a brief introduction and
followed by a review of the Degenerate Higher Order Scalar Tensor (DHOST) theory that we
have worked with in our projects. In these theories, the scalar field serves as a modification
to general relativity; instead of gravity being solely described by a tensor, the metric tensor,
gravitational interactions additionally include a scalar field. From this perspective, one can
view it as something entirely different from a regular matter field. Our studies were mainly
concerned with the construction of black hole solutions to this theory, which lead to three
publications [23–25], which we present at the end of that chapter. We were able to show that,
under certain reasonable assumptions, DHOST theories in three dimensions only allow for a
BTZ-like solution, for which we then compute its thermodynamic properties. We were further
able to find a non-singular black hole, and a particle-like solution with some fascinating features.
Moreover, we present how to construct rotating stealth black holes with a metric given by
the Myers-Perry metric with equal angular momenta. The scalar field generates a disformal
transformation leaving the metric invariant which can be generalized to certain cases.
The third chapter reviews the problems that arise when one tries to quantize gravity and

introduces semi-classical gravity, that is, classical gravity with quantized matter sources. We
present a work in progress in collaboration with Jorge Zanelli about the quantum backreaction
of a quantized scalar field conformally coupled to the Einstein equations in (2 + 1)-dimensions.
We show that in our case, the consideration of quantum effects ensures the existence of an event
horizon. At the end, we present a conclusion and an outlook to the topics covered.
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Chapter I
Classical gravity

This chapter starts with a brief review of the BTZ solution and black hole thermodynamics.
Then, after outlining the first order formalism of GR, an attempt to construct black hole
solutions with torsion is studied. The chapter concludes with a work in progress on critical
collapse that is done in collaboration with Thomas Mädler.

1 The BTZ solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Black hole thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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2.2 The Euclidean formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Gravity with torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 First order formalism of gravity . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Sourcing torsion through a scalar field . . . . . . . . . . . . . . . . . . . . 16

4 Gravitational collapse and critical phenomena . . . . . . . . . . . . . . . . . . . . 20
4.1 Einstein-scalar field equations . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Main equations as a hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Alternative regularization of the hierarchy equations . . . . . . . . . . . . 26
4.4 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.1 Extraction of physical quantities . . . . . . . . . . . . . . . . . . 28
4.4.2 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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Chapter I Classical gravity

1 The BTZ solution
In 1992, Máximo Bañados, Claudio Teitelboim, and Jorge Zanelli (BTZ) showed that (2 + 1)-
dimensional gravity admits a black hole solution when the cosmological constant is not zero[26].
The vacuum field equations with (negative) cosmological constant, Λ = −l−2, are

Rµν −
1
2gµνR = 1

l2
gµν , (1.1)

from which immediately follows that any solution has constant curvature, R = −6l−2 and hence

Rµν = − 2
l2
gµν . (1.2)

Generally, in (2 + 1) dimensional gravity, the curvature tensor can be completely written in
terms of the Ricci tensor, the Ricci scalar, and the metric, that is,

Rµνλρ = gµλRνρ + gνρRµλ − gνλRµρ − gµρRνλ −
1
2 (gµλgνρ − gµρgνλ)R. (1.3)

Consequently, the Weyl tensor vanishes, and hence the space-time is conformally flat. The
solution to the field equations in Schwarzschild-like coordinates reads

ds2 = −
(
r2

l2
−M

)
dt2 − Jdtdθ +

(
r2

l2
−M + J2

4r2

)−1

dr2 + r2dθ2, (1.4)

where M and J are integration constants that can be interpreted as the mass and angular
momentum, respectively, and its coordinate ranges are: −∞ < t < ∞, 0 < r < ∞ and
0 ≤ θ < 2π, Λ = −l−2. The solution is surprisingly similar to its (3+1)-dimensional counterpart,
the Kerr solution, to name a few:

• It is fully classified by its mass and angular momentum parameters.

• There is an event horizon, an inner horizon and an ergosphere (see below).

• It occurs as an endpoint of a gravitational collapse [27].

• Its entropy follows an area law, and it has a non-vanishing Hawking temperature (see next
section).

Though, in contrast, the BTZ metric does not have a curvature singularity at r = 0 (see below).
The roots of grr = 0 determine the horizons of the BTZ metric and are given by

r± = l


M

2


1±

√

1−
(
J

Ml

)2





1/2

(1.5)

Clearly, there can only be a horizon for

M > 0, |J | ≤Ml, (1.6)

which defines the black hole solution. For |J | = Ml, we refer to it as an extremal black hole,
where both horizons coincide. Now, for when either one of the conditions in (1.6) is violated, we
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1 The BTZ solution

do not have a black hole, but a naked singularity. We shall classify the remaining regions into
(see [28] and references therein):

M < 0, |J | ≤Ml, (1.7)

constitutes a conical singularity, while for,

− |J | ≤Ml ≤ |J | (1.8)

we call it an overspinning geometry, or overspinning naked singularity, as depicted in figure 1.1.
Note that for J = 0, we have two special cases. Namely, M = 0, the massless vacuum BTZ
geometry, and M = −1, which is the regular AdS vacuum. This becomes relevant for our study
of quantum backreactions on the BTZ space-time in the last chapter.

M

J/l

OverspinningOverspinning
geometriesgeometries

OverspinningOverspinning
geometriesgeometries

Black holesBlack holes

Conical defectsConical defects

M
= −|J |/lM

=
−|J
|/l

M
=
|J |
/l

M
= |J |/l

Figure 1.1: BTZ space-times in the J/l-M -plane, with their classification into different regions. The red
circles denote the massless BTZ geometry at the origin, and the AdS vacuum at M = −1.
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Chapter I Classical gravity

2 Black hole thermodynamics
In 1972 Hawking proved that the area of an event horizon never decreases [29]. This is a
characteristic famously shared by the entropy and, due to its importance in thermal physics,
given the catchy name second law of thermodynamics. This result was the first in a series of
discoveries relating laws of black hole physics to those of classical thermodynamics. It may
therefore be seen as the birth of black hole thermodynamics. The same year, Bekenstein
conjectured a more specific relation between the area of the event horizon and a black hole’s
entropy [30]

S = η
Ahor
~GN

, (2.1)

where η is a proportionality constant. He achieved this through considering thought experiments
of matter falling into black holes, annihilating entropy outside the black hole and hence violating
the second law of thermodynamics. He concluded that black holes must have entropy, so that
the total entropy of the system does not decrease1, and was able to conjecture the formula
(2.1). He tried to specify the proportionality constant in the year after [31] but it was eventually
fixed by Hawking to the exact value of η = 1/4[32, 33], when he showed that black holes must
emit thermal (Hawking) radiation corresponding to a black body of certain temperature that is
proportional to its surface gravity (see below). It is therefore most commonly referenced as the
Bekenstein-Hawking entropy. Already before the constant was fixed, relationships between black
hole physics and other laws of thermodynamics had been discovered, which a complete set of
laws being derived by Bardeen, Carter, and Hawking in 1973 [34]:

The four laws of thermodynamics [35]
1. The surface gravity κ (see section 2.1) is constant over the event horizon.

2. For two stationary black holes differing only by small variations in the parameters M , J ,
and Q,

δM = κ

8πδAhor + ΩHδJ + ΦHδQ, (2.2)

where ΩH is the angular velocity and ΦH is the electric potential at the horizon.

3. The area of the event horizon of a black hole never decreases,

δAhor ≥ 0. (2.3)

4. It is impossible by any procedure to reduce the surface gravity κ to zero in a finite number
of steps.

Written this way, the analogy to thermal physics is evident with κ playing the role of the
temperature, and Ahor being equivalent to the entropy. However, in statistical mechanics, the
entropy measures the number of microstates. This begs the question, what are the microstates
of a black hole? After all, the no-hair theorems suggest that classical black holes could only have
a single microstate. This is a strong indication for an underlying theory of quantum gravity
that provides an explanation to which states are counted here, and could serve as a consistency
check for such a theory.2
1 This is often referred to as Bekenstein’s generalized second law of thermodynamics.
2 The number of models that properly calculate the Bekenstein-Hawking entropy in the framework of some
quantum theory of gravity are actually vast. For more information, see [35] and references therein.
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2 Black hole thermodynamics

2.1 Hawking temperature
Initially, Bardeen, Carter, and Hawking argued that the laws of black hole thermodynamics
are just analogies to regular thermodynamics. They suggested, that the real temperature, and
real entropy of a black hole are actually distinct from the surface gravity and horizon area,
respectively [34]. Their reasoning was that heat only flows from hot to cold. But a classical
black hole only absorbs energy, it does never emit radiation, independent of the temperature of
its surrounding radiation. This would mean that the real temperature of a classical black hole is
at absolute zero. This problem was resolved when Hawking applied the tools of quantum field
theory in curved space-times to show that all black holes are black bodies emitting radiation,
now called Hawking radiation, with a temperature proportional to their surface gravity [32, 33].
To define the surface gravity, we need to introduce another concept first. Let χ be a Killing
vector field, and let us denote with Σ a null hypersurface. We say that Σ is a Killing horizon if
the norm of χ vanishes on Σ. With every Killing horizon, we can associate a surface gravity,
usually denoted by κ, through the geodesic equation,

χµ∇µχν = κχν . (2.4)

One can show that the surface gravity can be calculated via[36]

κ2 = −1
2∇

µχν∇µχν . (2.5)

Then the Hawking temperature in terms of the surface gravity is

TH = κ

2π . (2.6)

In the example of the BTZ metric, we can define

χ = ∂t + J

2r2
+
, (2.7)

which leads to
κ = r2

+ − r2
−

l2r+
. (2.8)

2.2 The Euclidean formalism
Gibbons and Hawking showed in 1977 how to obtain the thermodynamic properties of the
Schwarzschild black hole by computing the Euclidean action of a solution of Einstein’s equations
by continuing the Schwarzschild solution to imaginary time [37]. To achieve that, the time
coordinate of the analytic continuation has to be periodic with periodicity β, which can be
identified with the inverse temperature T . Then, in analogy with ordinary quantum field theory,
the Euclidean path integral for the gravitational partition function can be formally written as

Z(β) =
∫
Dge−SEuc , (2.9)

where SEuc is the Einstein-Hilbert action in Euclidean signature (with imaginary time coordinate).
We shall not be bothered by the non-renormalizability of general relativity here (see chapter
III). Gibbons and Hawking showed that one can still obtain physically meaningful results using
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Chapter I Classical gravity

the saddle point approximation. For any classical solution of the Einstein field equations, the
Einstein-Hilbert action vanishes, however, what Gibbons and Hawking realized was that, if
one were to consider a manifold with boundary, then the action must be supplemented by a
boundary term3. Without the boundary term, the action would not have true extrema [39].
The euclidean action is then related to the Gibbs free energy F through

SEuc = βF = βM−S − β
∑

i

ΦiQi, (2.10)

whereM is the mass, S the entropy, and the Φi are the thermodynamic potentials of the system
with their respective charges Qi. From this, one can obtain the thermodynamic quantities via,

S =β∂SEuc
∂β

− SEuc, (2.11a)

M =SEuc
∂β
−
∑

i

Φi

β

∂SEuc
∂Φi

, (2.11b)

Qi =− 1
β

∂SEuc
∂Φi

. (2.11c)

In general, the euclidean action can be written in the Hamiltonian formulation, that is,

SEuc = β

∫
dD−1x

√−g
[
N(x)H+N i(x)Hi

]
+ B, (2.12)

where B is a boundary term chosen such that the euclidean action, SEuc, has a well-defined
extremum. Note that, on-shell, the Hamiltonian and momentum constraints (H and Hi,
respectively) are zero, so that all the thermodynamic information of the Gibbs free energy is
contained inside the boundary term. It is instructive to demonstrate this with an example,
which we conveniently choose to be the BTZ metric (1.4). The classical action reads

S =
∫
d3x
√−g

[
R+ 2l−2

2κ

]
, (2.13)

and for this purpose, we will write the metric in the more general form

ds2 = −N2fdt2 + f−1dr2 + r2
(
dθ +N θdt

)2
, (2.14)

where in this case we have

N =1,

N θ =− J

2r2 = −r+r−
lr2 ,

f =−M + r2

l2
+ J2

4r2 = (r2 − r2
+)(r2 − r2

−)
l2r2 .

(2.15)

This allows us to write the euclidean action as

SEuc = β

∫
dr

[
N

(
f ′ − 2l−2r + p2

2r3

)
+N θp′

]
+ B, (2.16)

3 The need for such a boundary term was actually first realized by York [38] and later refined by Gibbons and
Hawking where they showed how to apply it to black hole thermodynamics.
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2 Black hole thermodynamics

where we have defined p = r3(N θ)′/N . Note that from (2.16) the Hamiltonian and momentum
constraints are given by

H =f ′ − 2l−2r + p2

2r3 , (2.17a)

Hθ =p′. (2.17b)

It is a simple matter to insert the solution (2.15) into these constraints and show that these are
indeed zero. Alternatively, one could, of course, solve them and obtain the solution functions.
Further, a variation with respect to H reveals that N indeed is constant, which we will fix to be
1 in accordance with the BTZ solution. This also highlights the fact that p is a constant, which
in this case is just the angular momentum J . We can now easily read off the boundary term by
demanding that δSEuc = 0,

δB =− β
[
δf +N θδp

]r=+∞
r=r+

=− β lim
r→∞ δf(r) + βδf(r+)− β

(
lim
r→∞N

θ(r) +N θ(r+)
)
δp.

(2.18)

The variation of the function f can be written as

δf = ∂f

∂r+
δr+ + ∂f

∂r−
δr−, (2.19)

and with Ω = N θ(r+) we obtain

B =β r
2
+ + r2

−
l2

− 4πr+ − βΩJ

=βM − 4πr+ − βΩJ.
(2.20)

Now we can use the Gibbs free energy (2.10) to read off the thermodynamic quantities

M = r2
+ + r2

−
l2

= M, J = J, S = 4πr+. (2.21)

Note that the three-dimensional gravitational constant is not the same as in four dimensions,
which amounts to a different factor in the area law of the entropy. It is easy to check that the
first law of thermodynamics is satisfied:

dM = TdS + ΩdJ . (2.22)
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Chapter I Classical gravity

3 Gravity with torsion
The connection that is used in standard general relativity is usually assumed to by symmetric, in
particular the connection that is used most commonly is the Levi-Civita connection. This in turn
means that the torsion tensor of the theory is always assumed to be zero. From the standard
viewpoint of the second order formalism, one may argue that there is no sufficient motivation in
introducing an additional tensor. Particularly, one would have to add specific matter Lagrangians
to the theory to source torsion. And for what? Classically we are only dealing with bosonic
matter, so we would not even notice the effect of a non-symmetric connection when considering
the trajectories of astronomical objects, as can be seen by the geodesic equation:

0 = ẍµ + Γµλρẋ
λẋρ. (3.1)

However, even now, one might argue that considering torsion may change the geometry and the
resulting equations of motion so fundamentally that they give rise to solutions with measurable
differences. And further, if we are interested in quantum matter, then we cannot categorically
exclude it due to the non-commutative nature of fermions.
But that is not all: in 1922 Élie Cartan proposed reformulating the theory into what is now

called the first-order formulation of gravity (using Cartan geometry). This allows for a new
interpretation of the geometry and reveals the vanishing of torsion to be an additional constraint
on the field equations. In other words, in the first-order formalism the inclusion of torsion is
actually the more natural way to treat the theory. This will be outlined below.

3.1 First order formalism of gravity
Instead of working in a coordinate basis, it is often more convenient to work in a local orthonormal
frame that is constructed via basis 1-forms (tetrad) ea(x) = eaµ(x)dxµ, with the defining property

ds2 = gµν(x)dxµdxν = ηabe
a(x)eb(x), (3.2)

and consequently

gµν(x) = ηab e
a
µ(x) ebν(x),

δab = eaµ(x)e µ
b , δµν = eaν(x)e µ

a

(3.3)

All the information of the metric is contained in the tetrad, though it is not uniquely deter-
mined. We always have the freedom of rotating or boosting the frame through a local Lorentz
transformation.
To obtain a consistent covariant derivative, we need to define the so-called spin connection,

ωab(x) = ω a
µ b(x)dxµ:

DV a
b = dV a

b + ωac ∧ V c
b + ωcb ∧ V a

c. (3.4)

Note that we still assume the metric to be invariant under parallel transport, that is

∇λgµν = 0. (3.5)

In terms of the vielbein e, the spin connection ω, and the affine connection Γ this can be written
as

∂µe
a
λ + ωaβµe

b
λ − Γρµλe

a
ρ = 0. (3.6)
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3 Gravity with torsion

With this in mind, we define the torsion two-from as:

T a = Dea = dea + ωab ∧ eb = 1
2e

a
λ

(
Γλµν − Γλνµ

)
dxµ ∧ dxν , (3.7)

which is zero if the affine connection is symmetric. With the spin connection, we can now
construct a curvature 2-form, that is,

Rab = dωab + ωac ∧ ωcb = 1
2R

a
bµνdx

µ ∧ dxν . (3.8)

Evidently its components are essentially those of the Riemann curvature tensor.
It is instructive to write the Einstein-Hilbert action in the language of the first order formalism.

But first note that from (3.3) follows that the determinant of the metric in terms of the vielbein
is √−g = det

(
eaµ

)
, (3.9)

and the determinant, M , of a matrix can be written as

εµ1µ2...µnM = εa1a2...anM
a1
µ1M

a2
µ2 . . .M

an
µn , (3.10)

with the Levi-Civita symbol ε. The Einstein-Hilbert action can then be rewritten as follows:
∫
d4x
√−gR =1

2

∫
d4x
√−g

(
Rαβαβ −R

αβ
βα

)

=1
2

∫
d4x
√−gRαβµν

(
δµαδ

ν
β − δµβδνα

)

=1
2

∫
d4x
√−gRαβµνδµναβ

=1
4

∫ (
εαβλρ

√−g)Rαβµν
(
εµνλρd4x

)

=1
4

∫
εabcde

a
αe
b
βe
c
λe
d
ρR

αβ
µνdx

µ ∧ dxν ∧ dxλ ∧ dxρ

=1
2

∫
εabcdR

ab ∧ ec ∧ ed.

(3.11)

Let us find out how the equations of motion for the Einstein-Hilbert action look like in this
language. There are two independent fields for which we can vary the action integral, e and ω.
Varying the curvature form with respect to ω, one obtains

δωR
ab = Dδωab = dδωab + ωac ∧ δωcb − ωcb ∧ δωab. (3.12)

Disregarding a boundary term the equation of motion coming from the ω-variation reads

0 = εabcde
c ∧ T d, (3.13a)

and varying with respect to e is straightforward and yields

0 = εabcde
b ∧Rcd. (3.13b)

Since the vielbein is a basis we conclude that without matter the torsion and curvature forms have
to be zero. As we know, the simplest non-trivial solution to these equations is the Schwarzschild
metric. We shall demonstrate this here. Consider the spherically symmetric ansatz

ds2 = −f(r)2dt2 + g(r)2dr2 + r2dθ2 + r2 sin2 θdϕ2, (3.14a)
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Chapter I Classical gravity

or in terms of the vielbein:

e0 = f(r)dt, e1 = g(r)dr, e2 = rdθ, e3 = r sin(θ)dϕ. (3.14b)

Inserting this into the torsion equation, 0 = dea + ω̄ab ∧ eb, one obtains the spin connection:

ω̄0
1 = f ′

g
dt, ω̄1

2 = −1
g
dθ,

ω̄2
3 = − cos(θ)dϕ, ω̄1

3 = −sin(θ)
g

dϕ

(3.15)

which in turn can be inserted in the curvature equation, 0 = dωab + ωac ∧ ωcb, yielding

0 =− gf ′ + rf ′g′ − rgf ′′ + fg′, (3.16a)
0 =2rg′ + g3 − g, (3.16b)
0 =2rf ′ + f − fg2. (3.16c)

Note that only two of these equations are independent of each other. The solution is given by

f(r)2 = g(r)−2 = 1− 2M
r
, (3.17)

the commonly known Schwarzschild solution.
In general, when there is also a matter, the action reads

I = IEH + IM

= κ

∫
εabcdR

ab ∧ ec ∧ ed + IM.
(3.18)

Then the equations of motion are given by

1
4κSab =εabcdec ∧ T d, (3.19a)

1
2κτa =εabcdeb ∧Rcd, (3.19b)

where τa is a vector-valued 3-form, the energy-momentum current of matter that is obtained
through the variation of the matter action with respect to the vielbein e. Similarly, the Sab are
3-forms and called the spin currents of matter, obtained through the variation of the matter
action with respect to the spin connection ω. Now it is easy to see that to source non-zero
torsion a matter action depending on the spin connection is needed because otherwise the spin
current would be zero, and therefore the torsion is identically zero due to (3.19a).
Note that we have 4× 4 = 16 unknown variables in the vielbein fields and 6× 4 = 24 unknowns
in the spin connection fields. The total number matches exactly the number of equations (3.19).

3.2 Sourcing torsion through a scalar field

One elegant method of sourcing torsion is by making use of the Gauß-Bonnet term. Usually, it
is a topological invariant in four dimensions and therefore not contributing to the equations of
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3 Gravity with torsion

motion. We can circumvent this fact by using a scalar field as some kind of Lagrange multiplier
so that the action reads

I =
∫
εabcd

(
κRab ∧ ec ∧ ed + Λea ∧ eb ∧ ec ∧ ed + φRab ∧Rcd

)
, (3.20)

where φ is the scalar field, Λ the cosmological constant and κ = 1/32π. This action has been
used in [40] to find cosmological solutions with non-zero torsion. Here we will be concerned with
the quest for finding black hole solutions. The independent fields are e, ω and φ, so we have the
following variations:

δωI =
∫
εabcd

(
κDδωab ∧ ec ∧ ed + 2φDδωab ∧Rcd

)

=
∫

2εabcd
(
κec ∧ T d − dφ ∧Rcd

)
∧ δωab,

(3.21a)

δeI = −
∫

2εabcd
(
κeb ∧Rcd + 2Λeb ∧ ec ∧ ed

)
∧ δea, (3.21b)

δφI =
∫
εabcdR

ab ∧Rcdδφ. (3.21c)

And therefore the equations of motion are

0 = εabcd
(
κec ∧ T d − dφ ∧Rcd

)
, (3.22a)

0 = εabcd
(
κeb ∧Rcd + 2Λeb ∧ ec ∧ ed

)
, (3.22b)

0 = εabcdR
ab ∧Rcd = d

[
εabcd

(
ωab ∧ ωcd + 2

3ω
ab ∧ ωce ∧ ωed

)]
. (3.22c)

Note that for constant φ, we come back to the torsion-free case. At this point one can already
see that the system has a flaw: Using a torsion-free flat metric without cosmological constant,
the equations of motion are trivially satisfied regardless of the choice of the scalar field. This is
worrisome, but we will still press on to study these equations further.

We have a total of 41 equations, making it a very difficult task to solve them all. It is therefore
reasonable to try out the most simple non-trivial ansatz, that of a spherically symmetric and
static metric:

ds2 = −f(r)2dt2 + g(r)2dr2 + r2dθ2 + r2 sin2 θdϕ2 (3.23a)

with the tetrad fields

e0 = f(r)dt, e1 = g(r)dr, e2 = rdθ, e3 = r sin(θ)dϕ (3.23b)

The Killing vectors of this metric ansatz can be written as

ξ1 = ∂t, ξ2 = ∂ϕ, ξ3 = sinϕ∂θ + S′K
SK

cosϕ∂ϕ, ξ4 = cosϕ∂θ −
S′K
SK

sinϕ∂ϕ,

ξ1 = ∂t, ξ2 = ∂ϕ, ξ3 = ∂θ, ξ4 = ϕ∂θ − θ ∂ϕ.

We will require that the torsion and the scalar field have the same isometries as the metric,
that is the isometries generated by ξ2, ξ3 and ξ4. To that end, we take the Lie derivative of the
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torsion form with respect to each Killing vector to determine a general form, which we found to
be

T 0 = C0e
0 ∧ e1 +D0e

2 ∧ e3, (3.24a)
T 1 = C1e

0 ∧ e1 +D1e
2 ∧ e3, (3.24b)

T 2 = D2e
0 ∧ e2 +A2e

0 ∧ e3 +D3e
1 ∧ e2 +B2e

1 ∧ e3, (3.24c)
T 3 = D2e

0 ∧ e3 −A2e
0 ∧ e2 +D3e

1 ∧ e3 −B2e
1 ∧ e2, (3.24d)

and the functions, as well as the scalar field φ, depend on r only. To make life a bit easier, let
us split everything into a torsion and torsion-free part by making use of the contorsion tensor :

κab = ωab − ω̄ab, (3.25)

where ω̄ denotes the torsion-free spin connection (3.15). This allows as to express the torsion
solely in terms of the contorsion and the vielbein as

T a = κab ∧ eb, (3.26)

and from (3.24) it follows that

κ01 = C0e
0 − C1e

1, (3.27a)

κ02 = −1
2D0e

3 −D2e
2, (3.27b)

κ03 = 1
2D0e

2 −D2e
3, (3.27c)

κ12 = −1
2D1e

3 +D3e
2, (3.27d)

κ13 = 1
2D1e

2 +D3e
3, (3.27e)

κ23 = 1
2 (2A2 −D0) e0 + 1

2 (2B2 +D1) e1. (3.27f)

Then, together with the torsionless part, the full spin connection is

ω01 =
(
f ′

fg
+ C0

)
e0 − C1e

1, (3.28a)

ω02 = −1
2D0e

3 −D2e
2, (3.28b)

ω03 = 1
2D0e

2 −D2e
3, (3.28c)

ω12 = − 1
rg
e2 − 1

2D1e
3 +D3e

2, (3.28d)

ω13 = 1
2D1e

2 − 1
Hg

e3 +D3e
3, (3.28e)

ω23 = 1
2 (2A2 −D0) e0 + 1

2 (2B2 +D1) e1 − cot θ
r

e3. (3.28f)
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3 Gravity with torsion

Inserting these into the equations of motion, one can show the equations only admit a solution
if and only if B2 = C1 = D1 = D2 = 0. Hence, the torsion further simplifies to

T 0 = C0e
0 ∧ e1 +D0e

2 ∧ e3, (3.29a)
T 1 = 0, (3.29b)
T 2 = A2e

0 ∧ e3 +D3e
1 ∧ e2, (3.29c)

T 3 = −A2e
0 ∧ e2 +D3e

1 ∧ e3. (3.29d)

Even though we have simplified the equations a lot, there are still countless possibilities, since we
have still the undetermined functions f , g, A2, C0, D0, D3, and the scalar field φ. It is possible
to show that the following functions indeed solve all the equations for a vanishing cosmological
constant, Λ = 0:

f(r) = M

r2 , (3.30a)

φ′(r) = 2r (rf ′(r)− 4f(r))
3f(r) (r2D0(r)2 + 4Λr2 + 4) , (3.30b)

r2g(r)2 = −φ′(r)
[(
r2D0(r)2 + 4

)
φ′(r) + 4r

]
, (3.30c)

D3(r) = g(r)
2φ′(r) + 1

rg(r) , (3.30d)

C0(r) = − f ′(r)
f(r)g(r) −

g(r)
2φ′(r) , (3.30e)

A2(r) = f(r)
[(
r2D0(r)2 + 2

)
φ′(r) + r

]− r2f ′(r)
r2D0(r)f(r)φ′ . (3.30f)

Note that these functions solve the system for arbitrary D0, it is unspecified. This is another
indication that the theory may be intrinsically flawed, at least when the cosmological constant
is zero. Finding a solution for non-zero Λ turns out to be a highly nontrivial task. The reason
may be that the Gauß-Bonnet term has to be zero, which is very constraining. In a future work,
it would therefore be interesting to study a slightly different Lagrangian, for example the one
given in a different context in [41]:

L = R+ α
[
φG + 4Gµν∇µφ∇νφ− 4 (∇φ)2 �φ+ 2 (∇φ)4

]
, (3.31)

where G denotes the Gauß-Bonnet term and α is a constant. In this case, the constraint gets
relaxed a little and becomes

2R+ αG = 0, (3.32)

and in [41] they have found solutions of compact objects to the equations of motion. Consequently,
(3.31) could be a promising candidate to look for non-zero torsion solutions as well.
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4 Gravitational collapse and critical phenomena
There are different models on how the formation of black holes could occur in nature. One
particularly interesting such model is the gravitational collapse. When one has some distribution
of matter, there is the possibility that regions of higher density will form causing the attraction of
more and more matter, which eventually leads to the collapse with the result of an astronomical
object.
When one considers initial data sets of an isolated system for such a relativistic collapse, then
there are three possible final states: either the initial data leads to the formation of a stable star,
collapses to a black hole, or it explodes and disperses resulting in a flat space-time. What is
remarkable is that these collapses to black holes exhibit critical behavior, analogously to critical
phenomena in statistical physics. Specifically, it has been observed numerically that, taking
any one parameter p of the initial data, there is a sharp threshold where black hole formation
occurs, and further, near the threshold the resulting black hole mass follows a universal scaling
law given by

MBH ∝ |p− p∗|γ , (4.1)

where MBH is the black hole mass and γ is the so-called critical exponent with respect to the
initial data. Interestingly, the critical exponent is independent of the particular 1-parameter
family under consideration, though it depends on the different types of collapsing matter. Further,
p∗ is the critical parameter above which the evolution leads to a collapse and consequently the
formation of a black hole.
This has been first discovered (numerically) by Choptuik4 for a scalar field in 1993 [19]. But
that is not all, in fact, Choptuik further discovered the appearance of universality and the effect
of scale-echoing. The first being that for a finite length of time in a finite region of space, the
evolution of all parameters close to the critical parameter (on both sides) approach the same
solution, that is, they are being attracted by the critical solution. Then, after some finite time,
they depart from the critical solution towards black hole formation or dispersion, depending on
which side of the critical parameter they are on. The critical solution itself is unstable because
when one changes the parameter slightly the evolution either takes the road towards dispersion
or black hole formation.
His third discovery, the scale-echoing, is a form of discrete self-similarity. That is, zooming in
towards the critical solution, the dynamical character of the solution repeats itself over and over
again with some echo period ∆, for example in the case of a scalar field [42]:

t′ =e−n∆t,

r′ =e−n∆r,

ds′2 =e−2n∆ds2,

φ∗(t′, r′) =φ∗(t, r),

(4.2)

where n = 1, 2, 3, . . . and φ∗ is the scalar field of the critical solution.
It is quite puzzling what the physical meaning of these dimensionless constants could be, and
their discovery spiked an interest in this area, leading people to further investigate it. As has
been already hinted before, these results are not just limited to scalar fields: numerous other
numerical and analytical studies have shown that these critical phenomena also appear in other
4 In 1987 D. Christodoulou posed the question to Choptuik: “Will black hole formation turn on at finite or
infinitesimal mass for a generic interpolating family at threshold?”, of which the discovery was a direct result.
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types of matter, even for axisymmetric gravitational waves in vacuum [43]! Note that the here
outlined critical phenomena, though discovered first, are coined to be of type II. The latter
discovered type I critical phenomena are stationary or time-periodic instead of self-similar or
scale-periodic [44]. These two types are named in analogy to first and second order phase
transitions in statistical mechanics, where the order parameter is discontinuous and continuous,
respectively. However, we will only deal with type II phenomena here. One can even tune the
initial data of type II collapses in such a way that the evolution results in a naked singularity,
which clearly gives rise to potential counterexamples to the cosmic censorship conjecture [22]. A
possible way to save the conjecture may be the consideration of quantum effects (see chapter
III).
Since Choptuik’s discovery, various further studies have been made and the topic of critical

phenomena in gravitational collapse grew rapidly into its own field of research. An excellent
review can be found in [44] and we will outline some important cornerstones here. In [45] a
simple algorithm is used to confirm the results of Choptuik differently. Another numerical study
of the collapse of a massless scalar field has been done in [46]. They additionally observed that
for subcritical and supercritical evolutions, that is, where the varied parameter is closely above
or below the critical value, respectively, there is a region where the scalar curvature and field
energy density can be large. In the subcritical case this would even be visible to an observer,
though they point out that their equations just describe a toy model, and hence more realistic
studies would have to be made. Then, in [47], they predicted a modification to the original
Choptuik scaling law due to the discrete self-similarity nature of the type II critical solution.
They proposed the following scaling law

log (MBH) = β log (p− p∗) + ck + Ψ [log (p− p∗)] , (4.3)

where ck is a constant that depends on the parameter family under consideration, and the
function, Ψ [log (p− p∗)], is a periodic function with universal period, which they verified in a
numerical simulation where they also determined its period to be ω̄ ≈ 4.61. Later, it was shown
in [48] that this scaling law is also satisfied by the final Bondi mass in the asymptotically flat
critical collapse, and that the oscillation period is related to the leading quasi-normal mode of a
black hole with rapidly decreasing mass. They further showed that the Bondi mass shows an
exponential decay together with an oscillatory component. These results were further confirmed
in [49], where they have utilized a new evolution algorithm in a Bondi-Sachs-like formulation.
Instead of using the areal radial coordinate that is used in the Bondi-Sachs formulation, they
introduce an affine parameter. This made a non-singular treatment of the event horizon possible,
and further, they were able to study global features that could not be investigated before, like
there is no Bondi mass gap in the transition between subcritical and supercritical evolution
(and with an asymptotically flat exterior). Very recently, new open-source codes have been
presented in [50], that allow the study of critical phenomena on consumer-grade computers.
Their codes can reproduce the original results of Choptuik with very low computational effort,
which provides a great tool to familiarize oneself with the field.

A more general model, involving a massive complex scalar field, has been studied in [51].
Additionally, to the typical behavior of a gravitational collapse, the authors find that for certain
parameter ranges, the critical solutions are unstable boson stars in the ground state.
The results of Choptuik’s critical phenomena can also be found in entirely different setups.

For example, in [52] they considered a minimally coupled scalar field in (2 + 1)-dimensional
axially symmetric, AdS space-time and found the universal scaling of the final black hole mass as
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well. The authors further show that outside the event-horizon, the solution approaches the BTZ
solution. And even in semiclassical loop quantum gravity, critical phenomena of a collapsing
scalar field were found [53].

However, there is still a lot that is unknown about critical phenomena in gravitational physics,
for example it is not clear how universal these effects are with respect to different matter types,
in particular when one goes beyond spherical symmetry. The next years/decades will clearly
provide more interesting results, and with the constant improvement in technology, there is no
doubt that the complexity of numerical simulations will constantly increase as well.
In the following, a work in progress in collaboration with Thomas Mädler is presented. We

use an affine-null formulation (see [54]) of the Einstein equations coupled to a scalar field similar
to [49]. The main difference is that our approach considers an alternative way of regularizing the
equations to compute them numerically using spectral methods. The initial data that we use
shows a particularly simple relation between a specific initial parameter and the time until the
system collapses to a black hole. Our code will be publicly available and is entirely written in
the interpreter language Python, which makes it accessible to anyone familiar with programming
in general, and, at the time of writing this thesis, is the most popular language according to the
PYPL [55] and TIOBE [56] index. With relatively low numerical resolution and small runtime
on a standard computer, we can reproduce characteristic features like mass scaling and echoing
of the Choptuik critical solution.

4.1 Einstein-scalar field equations
We use a spherically symmetric affine-null metric ansatz [49, 57, 58]

ds2 = −V (u, λ)du2 − 2dudλ+ r2(u, λ)dΩ2, (4.4)

where u = const are outgoing null cones parametrized with angular coordinates xA and λ is an
affine parameter along the null-hypersurface forming rays. Writing the field equations as

Eab := Rab − Φ,aΦ,b, (4.5)

where the scalar field is massless and has been rescaled (Φ→ (8π)−1/2Φ), and writing

dΩ2 = qABdx
AdxB, (4.6)

the Einstein scalar field equations read

Euu : 0 = −2
r
r,uu + V

2r2 (r2V,λ),λ + r,λV,u − r,uV,λ
r

− Φ2
,u (4.7a)

Euλ : 0 = 1
2r2 (r2V,λ),λ −

2r,uλ
r
− Φ,uΦ,λ (4.7b)

Eλλ : 0 = −2
r
r,λλ − Φ2

,λ (4.7c)

qABEAB : 0 = [V (r2),λ],λ − 2[1 + (r2),uλ] = [V (r2),λ − 2λ− 2(r2),u],λ (4.7d)

Further, the Klein-Gordon equation, ∇a∇aΦ = 0, yields

0 = (r2Φ,u),λ + (r2Φ,λ),u − (r2V Φ,λ),λ. (4.7e)
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This is the system of equations that we plan to solve, but first we want to point out that one
can use the twice contracted Bianchi identities to show the following[54, 59]:

(i) If the main equations (Eλλ, Euλ) are satisfied, then the component qABEAB = 0 is trivially
satisfied.

(ii) If ∇a∇aΦ = 0 holds on a null hypersurface, u = u0, then Euλ holds trivially everywhere
on u0.

(iii) Further,
0 = 1

r2 (r2Euu),λ, (4.8)

so if r 6= 0 and Euu holds for one value, then λ = λ0, Euu also holds everywhere on u0.

This implies that we do not have to deal with all equations when solving the system (as one
would hope for, given the number of equations and the number of independent functions).

Equation (4.7d) is already conveniently written as a derivative. Integrating it yields

C(u) = V (r2),λ − 2λ− 2(r2),u, (4.9)

where C(u) is a free function at λ0 depending solely on u. Solving for V gives us

V = C + 2λ+ 2(r2),u
(r2),λ

. (4.10)

Requiring local flatness at the origin, λ = 0, yields the regularity conditions

r(u, 0) = 0, r,λ(u, 0) = 1, V (u, 0) = 1. (4.11)

In fact, r(u, λ) behaves like λ around the origin, which then implies C = 0. Hence,

V = λ

rr,λ
+ 2r,u

r,λ
. (4.12)

Note that this is singular if r,λ = 0. Therefore, from r(u, λ), we automatically know V . Then
the metric is entirely determined and can be written as

ds2 = −
(

λ

rr,λ
+ 2r,u

r,λ

)
du2 − 2dλdu+ r2dΩ2. (4.13)

Given a regular solution for r = r(u0, λ) on some null hypersurface u = u0, and integrating the
hypersurface equation (4.7c) gives us a solution for the scalar field:

Φ(u0, λ) =
[
− 2

∫ λ

0

r,λ̃λ̃(u0, λ̃)
r(u0, λ̃)

dλ̃

]1/2
. (4.14)

This will be used later in section 4.4.2 to construct initial data.
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4.2 Main equations as a hierarchy
To solve the equations numerically, we want to cast them into a hierarchical system. Note that
the three independent main equations that we need to solve are (4.7c), (4.7d) and (4.7e), with
the second one being solved in the previous section already. Now we need to deal with r,u in a
sophisticated way, that is by introducing [49]

K := 2r,λΦ,u − 2r,uΦ,λ, (4.15)

with which we can write
(
r2V Φ,λ

)
,λ

=
(
rλΦ,λ

r,λ

)

,λ

− r
(
rK

r,λ

)

,λ

+
(
r2Φ,u

)
,λ

+
(
r2Φ,λ

)
,u
, (4.16)

and, using (4.7e), it follows that

r

(
rK

r,λ

)

,λ

=
(
rλΦ,λ

r,λ

)

,λ

, (4.17)

which substitutes the equation of motion (4.7e) for the scalar field Φ in terms of the new variable,
K. Further, equation (4.15) (the definition of K) immediately gives us an evolution equation
for Φ by solving it for its time derivative, that is

Φ,u = K + 2r,uΦ,λ

2r,λ
. (4.18)

What remains is now to find an appropriately formulated hypersurface equation for r,u. Therefore,
we differentiate equation (4.7c) with respect to u and express Φ,uλ in terms of the previously
defined function K, which yields

0 =
(
r,u
r,λ

)(
r,λλ
r

)
−
(
r,uλλ
r,λ

)
− rΦ,λ

2r,λ

(
K

r,λ

)

,λ

− rΦ,λ

r,λ

(
r,u
r,λ

Φλ

)

,λ

. (4.19)

Using equation (4.7c) again, one can rewrite the last term and express this equation into a more
compact form with which we finally arrive at the three hierarchical hypersurface equations for r,
K and r,u, namely:

r,λλ =− r

2Φ2
,λ, (4.20a)

(
rK

r,λ

)

,λ

=1
r

(
rλΦ,λ

r,λ

)

,λ

, (4.20b)
(
r,u
r,λ

)

,λλ

=− rΦ,λ

2r,λ

(
K

r,λ

)

,λ

, (4.20c)

and the evolution equation for the scalar field Φ

Φ,u = K

2r,λ
+ r,uΦ,λ

r,λ
(4.21)

where V can be determined at any stage from (4.12), provided r is known.
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The strategy can now be summarized as follows:
We start with initial data for Φ(u0, λ) at the first hypersurface. This enables us to compute
r(u0, λ) through the first of the three equations. Then, using the second we can determine K,
and with the last one we find r,u. At last, we use the evolution equation to evolve Φ to the next
hypersurface, where we can repeat the previous steps. This way we can evolve the whole system
and solve the Einstein equations numerically. Note that only the physical scalar field has to be
specified at the initial time u = 0.

However, it is known that the equations that contain a division by r,λ are, in fact, not regular
everywhere, which is related to the formation of an apparent horizon (cf. [49]). To see this,
consider the null vectors of the metric (4.4)

ka∂a = ∂λ, na∂a = ∂u −
1
2V ∂λ, (4.22)

which are outgoing (k), and ingoing (n), respectively. Then their expansion rates are given by

Θ+ =∇aka = 2r,λ
r
,

Θ− =∇ana = −2λ
r2 .

(4.23)

If r,λ = 0 for some λA > 0, then the outgoing null expansion Θ+ vanishes, while the ingoing null
expansion Θ− is negative everywhere. This means that the corresponding 2-surface at λA(u)
is trapped, and an apparent horizon has formed. Thus, possible singular terms 1/r,λ at finite
values of λA in the metric and in the field equations are related to the formation of an apparent
horizon, which fortunately are non-physical singularities and can therefore be regularized. This
will be done in the next section, but first we shall discuss some properties of the system.

Asymptotics
Asymptotic flatness is required for the initial data, so to be consistent it needs to have an
asymptotic expansion like

Φ =
Φ[1](u)
λ

+
Φ[2](u)
λ2 +O(1/λ3). (4.24)

And with the r-hypersurface equation (4.20a) it follows that

r = H(u)λ+ 2MB(u) +O(1/λ), (4.25)

where H = lim
λ→∞

r,λ is a function of integration that depends solely on u, and MB is the Bondi
mass (see below). If H = 1, the asymptotic observer in the limit λ→∞ is an inertial observer,
whose associated frame is called Bondi frame. The time coordinate in a Bondi frame, the Bondi
time, is related to the time u at the origin via

lim
λ→∞

uB,u = 1
H
. (4.26)
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Hence, for H < 1, the clocks of a Bondi observer go slower than those of a freely falling one
along the central geodesic tracing the origin. Conversely, if, for some finite time, uE we have
that

lim
u→uE

H = 0, (4.27)

then the change of Bondi time with respect to the time at the origin becomes infinite, and thus
an observer in a Bondi frame does not receive further information from one at the origin (infinite
redshift of a distant observer). This means that an event horizon together with a physical
singularity has formed, and the origin λ = 0 is hidden behind this horizon.

Bondi mass
In spherical symmetry there exists an invariant definition of mass provided by the Misner-Sharp
mass given by

m = r

2
(
1− gabr,ar,b

)
= 1

2 (r − λr,λ) . (4.28)

The Misner-Sharp mass is related to the Bondi mass MB via

MB = lim
λ→∞

m. (4.29)

From equation (4.25), we can determine the Bondi mass of the system through

MB(u) = −1
2 lim
λ→∞

λ2
(
r

λ

)
, (4.30)

and by inserting equations (4.24) and (4.25) into equation (4.7a), we find the Bondi mass loss
of the system to be

MB,u(u) = −1
2H(u)3

(
Φ′[1](u)

)2
(4.31)

4.3 Alternative regularization of the hierarchy equations
As has been mentioned before, the equations of the system (4.20) and (4.21) that have an
r,λ appearing in the denominator may contain singularities. To remedy this, we propose an
alternative method (to [49]) of regularizing the equations:

r̂ = 1/r,λ , κ = rK

r,λ
, ρ = r,u/r,λ. (4.32)

Then the hierarchical system becomes

r,λλ =− r

2Φ2
,λ, (4.33a)

r̂,λ =1
2rr̂

2Φ2
,λ, (4.33b)

κ,λ =1
r

(rr̂λΦ,λ),λ , (4.33c)

ρ,λλ =− 1
2rr̂Φ,λ

(
κ

r

)

,λ
, (4.33d)

Φ,u = κ

2r + ρΦ,λ, (4.33e)
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where we require the regularity conditions on the physical fields: r(u, 0) = 0, r,λ(u, 0) =
1, Φ(u, 0) = f(u) = finite. These in turn imply

r̂(u, 0) = 1 , κ(u, 0) = 0 , ρ(u, 0) = 0. (4.34)

Then, expanding the scalar field around the vertex λ = 0

Φ(u, λ) =
N−1∑

n=0

Φ[n](u)λn

n! +O(λN ), (4.35)

and using the hierarchical equations together with the definitions of the functions we can
approximate them for small λ as well:

r(u, λ) =λ− 1
12Φ2

[1]λ
3 +O(λ4), (4.36a)

r̂(u, λ) =1 + 1
4Φ2

[1]λ
2 + 1

3Φ[1]Φ[2]λ
3 +O(λ4), (4.36b)

κ(u, λ) =2Φ[1]λ+ 3
2Φ[2]λ

2 + 1
3

(5
6Φ3

[1] + 2Φ[3]

)
λ3 +O(λ4), (4.36c)

ρ(u, λ) =− 1
8Φ[1]Φ[2]λ

3 +O(λ4), (4.36d)

and

Φ,u = Φ[1] + 3
4Φ[2]λ+ 1

9
(
2Φ3

[1] + 3Φ[3]
)
λ2 + 1

48
(
16Φ2

[1]Φ[2] + 5Φ[4]
)
λ3 +O(λ4). (4.36e)

Now we are ready to map the regularized equations on the numerical grid.

4.4 Numerical implementation

To map the limit λ→∞ to the (finite) numerical grid, we replace the affine parameter λ by a
so-called grid function, that is, λ = λ(x) with x ∈ [−1, 1]. while requiring the properties,

λ(−1) = 0, dλ

dx

∣∣∣
x=0
6= 0, lim

x→1
λ(x) =∞, lim

x→1
(x− 1)λ(x) ∈ R. (4.37)

Note that the last requirement essentially means that λ(x) has a pole of order one at x = 1. It
should be clear that the grid function is not unique, and therefore we fix it to be

λ(x) = A
x+ 1
1− x , λ′(x) = 2A

(1− x)2 ,

where A is an arbitrary grid parameter to be specified later for convenience.
Now is the time to do one last change of variables which is basically a conformal rescaling on

the grid:
R = r(1− x) , ρ̃ = ρ(1− x) (4.38)
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Using the notation dλ
dx := λ′ and f,λ = f,x/λ

′, we are now in the position to express the system
(4.33) in a very convenient way in terms of the derivatives along the grid variable x:

0 =R,xx + 1
2Φ2

,xR, (4.39a)

0 =
(1
r̂

)

,x
+

RΦ2
,x

2(1− x)λ′ , (4.39b)

0 =κ,x −
1− x
R

[
Rr̂

λ

(1− x)λ′Φ,x

]

,x

, (4.39c)

0 =ρ̃,xx −
1
2Rr̂Φ,x

[(1− x)κ
R

]

,x
, (4.39d)

0 =Φ,u −
1
2

(1− x)κ
R

− ρ̃

(1− x)λ′Φ,x. (4.39e)

It is straightforward to show that these equations are now manifestly regular at x = 1. The
coordinate singularity at the origin, x = −1, is treated by using l’Hospital’s rule at x = −1 and
imposing the boundary conditions.

This is a good point to briefly mention a few things about the numerical method. The spatial
grid is given by N Gauß-Lobatto points,

xi = − cos
(

iπ

N − 1

)
i ∈ {0, ...N − 1},

where we can specify N as a parameter in our code suitable to our needs.
And the temporal grid is then given by

u = n∆u , ∆u = 1
N2 , n = 0, ..., Nu − 1

where Nu depends on the desired end time ufin:

Nu = ufin
∆u = ufinN

2.

Further, we approximate the involved fields f ∈ {Φ, R, r̂, κ, ρ̃} using a spectral base of Chebyshev
polynomials of first kind, Tn(x) = cos[n arccos(x)]:

f(un, xi) =
N∑

k=0
fk(un)Tn(xi)

Following [60], we then use pseudospectral methods with either a viscosity filtering [61] or an
exponential filtering, and the time integration is done with a third or fourth order (depending
on whether one wants faster results, or a smaller error) Runge Kutta method (see e.g., [62])
During the evolution, we monitor the trivial equation (Euλ) to ensure consistency of the numerical
integration scheme. To achieve the necessary numerical resolution, we designed an adaptive
mesh refinement of the Gauß-Lobatto grid, to increase the numerical resolution during the runs.

4.4.1 Extraction of physical quantities

The central geodesic is being traces out by λ = 0 (or x = −1 in terms of the grid coordinate), and
therefore its time corresponds to proper time. Consequently, Φ|x=−1(u, x) gives the evolution of
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the scalar field at the origin with respect to proper time.

As for the determination of the fields at future null infinity, that is x = 1, we first need to
transform equations (4.25) and (4.24) onto the grid:

Φ =
Φ[1]
2A (1− x) +

(Φ[1]
4A +

Φ[2]
4A2

)
(1− x)2 +O

[
(1− x)3

]
, (4.40a)

R =HA(1 + x) + 2MB(1− x) +O
[
(1− x)2

]
. (4.40b)

Note that we are working with R defined in (4.38). From this, we immediately find

H = R

2A

∣∣∣∣
x=1

, (4.41a)

and to obtain Φ[1], Φ[2], and MB, we need to take derivatives of Φ and R and evaluate them at
x = 1:

Φ[1] =− 2AΦ,x|x=1, (4.41b)
Φ[2] =2A2 (Φ,xx|x=1 + Φ,x|x=1) , (4.41c)

MB =1
2 (HA−R,x|x=1) . (4.41d)

Note that these quantities will be given in terms of the code time ux=1 at null infinity and not
the Bondi time. The Bondi time axis is found by integration of

duB
du

= 1
H
, (4.42)

using the initial condition uB = 0.

4.4.2 Initial data

Following [57] we can construct initial data with help of the system (4.33). Suppose [63],

r(u = 0, λ) = λ− b2λ3

(a+ λ)2 (4.43)

which fulfills the flatness regularity conditions for r at the origin. The hypersurface equation
(4.20a) then implies

Φ,λ(0, λ) = ab
√

12
(a+ λ)[(a+ λ)2 − b2λ2]1/2

(4.44)

so that the scalar field initial data on the initial null hypersurface is

Φ(0, λ) =
√

12 arcsin
(

bλ

a+ λ

)
−
√

12 arcsin b (4.45)

For this data, we can integrate the hypersurface equations (4.33) and find exact expressions of
the fields R, r̂, κ, ρ and also Φ,u on the initial null hypersurface u = 0. Having such explicit
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solutions of the fields on the first hypersurface will allow us to easily compare the quality of the
integrator of the hypersurface equations. The full expressions for these fields are,

r̂(0, λ) = (a+ λ)3

(a+ λ)3 − 3ab2λ2 − b2λ3 , (4.46a)

κ(0, λ) =
√

12bλ√
(a+ λ)2 − b2λ2

(1− b2)λ3 + (4− 3b2)aλ2 + 5a2λ+ 2a3

[(a+ λ)3 − (3a+ λ)b2λ2] , (4.46b)

ρ(0, λ) =− b2λ2(3a+ λ)2

4a [(a+ λ)3 − (3a+ λ)b2λ2] −
9b
8aλ log

[
λ (1− b) + a

λ (1 + b) + a

]
. (4.46c)

And the derivative Φ,u(0, λ) is then an algebraic consequence of (4.45) and of the previous
equations:

Φ,u =
√

3b
4(a+ λ)

√
(a+ λ)2 − b2λ2

[
8a3 + 20a2λ+ 2a

(
8− 3b2

)
λ2 − 2

(
b2 − 2

)
λ3

(a+ λ− bλ)(a+ λ+ bλ)

−9bλ log
(
a+ λ− bλ
a+ λ+ bλ

)] (4.46d)
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4.5 Numerical results
We will now present the results that we obtained from our numerical calculations. The figures
that are shown in this section can be found as well in appendix 2 as bigger versions. Note that, at
the time of writing this text, we are in the process of finalizing the work, so this is just a concise
presentation of the upcoming results which we are currently analyzing more quantitatively. We
concluded the last section with the integration of our initial data on the initial hypersurface, see
equations (4.46). This is very convenient since it allows us to directly compare our solver of the
hypersurface equations with their analytical solutions. For this convergence test, we therefore
run an evolution for a = 0.2 and b = 0.9, corresponding to a subcritical solution, and with
various numbers of grid points N . Figure 4.1 shows this comparison for the three functions
R, κ, and Φ,u. We always plot the maximal difference between the numerical and analytical
solutions by taking

max
x
|fnum(0, x)− fana(0, x)|, (4.47)

with x running over the whole grid.

Figure 4.1: Convergence test of our hypersurface equation solver for the three functions R, κ, and Φ,u.
For several numbers of grid points N , we compute the absolute value of the difference between the
analytical and numerical solution at each point, and take the maximum over the x.
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To identify the black hole formation, we need to monitor the limit H(u)→ 0 as u→ uE which,
as we showed previously (see text around equation (4.27)), signifies the emergence of an event
horizon. Scanning through the parameter b, we find that the critical value b∗ = 0.947193359375
defines the threshold of black hole formation. To confirm Choptuik’s scaling law, we compare
the logarithm of the Bondi mass, with η = log(b− b∗), as shown in figure 4.2.

Figure 4.2: Universal scaling law for the Bondi mass of the final state, where the critical parameter is
given by b∗ ≈ 0.9472, and the universal scaling exponent is γ ≈ 0.374.

The fit yields
log (MB) = γη + c = 0.374η + 0.121, (4.48)

from which we can directly read of the universal scaling exponent, γ.
Another interesting feature of our initial data is revealed through the evolution of a supercritical

solution for various parameter values a. For each evolution, we monitor the time of collapse and
compare it with a, see figure 4.3. Surprisingly, for our initial data, the relation between a and
uc is linear. This allows us to manually decrease the computation time further by choosing a
small value for a. Note that we cannot set a = 0, since this would make the scalar field constant
along the hypersurface, as can be seen from equations (4.45) and (4.44).

Figure 4.3: The collapse time uc is plotted for different values of the parameter a, which shows a linear
relation between the time of a collapse and a.
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Plotting the Bondi mass of a supercritical solution against u and ξ = − log(uc − u), we see its
exponential decay, MB ≈ e−ξ, together with its oscillatory component. Figure 4.4 shows these
to plots next to one another. In Figure 4.4b we additionally plotted the function MB(0)e−ξ so
that it becomes clear how well this law is satisfied.

(a) Monotonously decreasing part of the Bondi mass.
(b) Bondi mass in semilogarithmic plot to emphasize its
oscillatory decay.

Figure 4.4: Bondi mass decay with its oscillations. For every mesh refinement, the curve changes its color.

For this supercritical solution, we also see the self-similarity through the echoing of the scalar
field, which is shown in figure 4.5. The oscillations of the scalar field close to the collapse are
better visible in the semilogarithmic plot of figure 4.5b.

(a) Scalar field at origin. (b) Scalar field at origin in semilogarithmic plot.

Figure 4.5: Scalar field at the origin. For every mesh refinement, the curve changes its color. The echoing
period is ∆ ≈ 3.48, which is close to the high-precision result of ∆ ≈ 3.44 in [64, 65].

The last feature we want to mention, is the universality of the critical solution. As can be seen
in figures 4.6 and 4.7, the solutions of the slightly subcritical and slightly supercritical evolution
are non-distinguishable until almost up to the collapse time, where the supercritical solution
becomes a black hole, and the subcritical one ends up dispersing into flat space shortly after.
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Figure 4.6: A subcritical and a supercritical solution are shown. Until close to the collapse time, they are
indistinguishable (the critical solution is acting as an attractor).

Figure 4.7: A subcritical and a supercritical solution are shown close to the collapse time. The universality
of the critical solution is evident.

This concludes the documentation of our work so far, but it should be clear that the
characteristic features of critical phenomena in gravitational collapse are clearly visible in our
numerical data. The next step is now to analyze this more quantitatively, determining for
example the oscillation periods of the Bondi mass decay, etc.
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Chapter II
Classical extensions/modifications to
general relativity

In this chapter, possible extensions/modifications to general relativity are studied. After a brief
introduction and a description of the alternative theories that are relevant to our work, the
results of our studies are shown.
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Chapter II Classical extensions/modifications to general relativity

1 Modifying Einstein’s theory of relativity
Undeniably, Einstein’s general theory of relativity (GR) is one of the greatest achievements in
physics of the 20th century. It is probably the most accurate description of gravitation that we
know today, and, since its publication in 1915 [10], has been the origin of numerous predictions
in the fields of Astrophysics, Cosmology, and even inside our own solar system. To this day, the
theory has enjoyed a vast number of experimental confirmation with remarkable precision, the
most recent such being the first direct detection of gravitational waves in 2015[1], and the direct
observation of the shadow of a black hole resulting in the first image ever made of a black hole
in 2019[2–9].

Historically, various alternatives to GR have been developed, but with increasing experimental
accuracy, and consequently the increasing success of GR, many of these theories could be ruled
out experimentally. It is therefore reasonable to look at theories that incorporate GR as a
special case, employing the correspondence principle. One may wonder, with all the existing
experimental evidence supporting GR, why even bother looking at modifications/extensions of
the theory? Apart from academic curiosity, there is another fairly simple answer to this question:
There are known problems with the theory. For example, in the field of cosmology, GR alone
cannot describe the effects nowadays coined as inflation, dark matter and dark energy. This
alone motivates studying extensions that could explain the cosmological observations without
these additional constructs. Another, more catastrophic issue is the fact that GR has been
shown to not be quantizable. Consequently, one has to think about modifications to either GR,
or quantum theory, or both.
Since the field of alternative theories to GR is vast, we will understand what possible

modifications are allowed without changing too many underlying principles of GR and then
study more or less simple extensions to see their effects compared to Einstein’s theory. Our
starting point will be Lovelock gravity, which is based on a theorem by David Lovelock, about
the generalization of Einstein gravity. Next, the generalization of this by Gregory Horndeski will
be outlined, followed by an introduction to the so-called degenerate higher-order scalar-tensor
theories (DHOST). Our work in DHOST resulted in three publications that are attached at the
end of this chapter.

2 Lovelock gravity
Naively, one would expect to imagine additional terms to wildly modify the Einstein-Hilbert
Lagrangian with, in such a way that it is still contained as a special case. This would quickly
become a Sisyphean task, as of this approach considers a huge number of possibilities, while
not providing any rule on how to select which of those are physically reasonable. It is therefore
advantageous to impose a set of rules and then study what is the most general theory that we
can get without breaking those. This has been done in 1971 by David Lovelock [66], and we
shall outline it here:
The idea is to find a generalization of Einstein’s field equations,

Gµν = κTµν . (2.1)
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2 Lovelock gravity

Since the right-hand side is given by matter, the problem educes to finding a more general
Tensor, A, such that

Aµν = κTµν . (2.2)
We know that the Stress-Energy tensor is symmetric and divergence free. Further, we want to
reproduce Newtonian gravity in the appropriate limit (remember that in Newtonian gravity the
equations of motion are of second order). This motivates the following conditions:

(a) Aµν is symmetric:
Aµν = Aνµ (2.3)

(b) Aµν is a function of the metric and its first two derivatives:

Aµν = Aµν (gµν ; gµν,λ; gµν,λρ) (2.4)

(c) Aµν is divergence free:
Aµν;λ = 0 (2.5)

Note that there is no constraint on the dimension of the underlying space-time.

Theorem 2.1 (Lovelock, 1971 [66]).
The only tensor Aµν satisfying the conditions (a), (b) and (c) is

Aµν =
[D/2]∑

p=1
apδ

µα1...α2p
νβ1...β2p

R β1β2
α1α2 · · ·R β2p−1β2p

α2p−1α2p + aδµν . (2.6)

Further, the associated Lagrangian can be written as

L =
√−g

[D/2]∑

p=1
2apδµα1...α2p

νβ1...β2p
R β1β2
α1α2 · · ·R β2p−1β2p

α2p−1α2p + 2aδµν , (2.7)

where a and ap are arbitrary constants.

In particular, in four dimensions, Aµν reduces to a linear combination of the metric and
the Einstein tensor, or in other words: the only possible theory in four dimensions is the
Einstein-Hilbert action with cosmological constant.
Before continuing, it is instructive to mention that the Lovelock Lagrangian can be most

conveniently written using the first order formalism introduced in chapter I (cf. [67], [68]):

L =
[D/2]∑

p=0
apL

(D,p), (2.8)

where, again, the ap are arbitrary constants, and L(D,p) is given by

L(D,p) = εa1...aDR
a1a2 ∧ · · · ∧Ra2p−1a2p ∧ ea2p+1 ∧ · · · ∧ eaD , (2.9)

with Rab being the curvature two-form, and ea the vielbein (cf. section 3 in chapter I), and
a sum over repeated indices is understood. In this form, one can easily see the reduction in
four dimensions by noting that Rab ∧ Rcd is nothing but the Gauß-Bonnet term, which is a
topological invariant in four dimensions and does not affect the equations of motion.
Now, with this result in mind, to modify GR there are essentially three options:
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Chapter II Classical extensions/modifications to general relativity

• work in dimensions different from four,

• consider higher than second order derivatives in the metric,

• use more fields than just the metric tensor.

At this point, it is worth mentioning an interesting work in pure Lovelock theory, [69]. However,
in the following sections we will look at more general theories, consisting of the metric tensor
and a scalar field.

3 Horndeski gravity
Having discussed the theorem of Lovelock, it is now time to extend the theory by a scalar field.
The extension of his theorem has been done by his student, Gregory Horndeski, in 1974[70] and
states that the most general Lagrangian, constructed out of the metric tensor and a scalar field,
leading to second order field equations can be written as a linear combination of the following
Lagrangians [71–73]:

LH
2 =G2(φ,X), LH

3 = G3(φ,X)�φ,
LH

4 =G4(φ,X)R− 2G4,X(φ,X)
(
�φ2 − φµνφµν

)
,

LH
5 =G5(φ,X)Gµνφµν + 1

3G5,X(φ,X)
(
�φ3 − 3�φφµνφµν + 2φµνφµσφνσ

)
,

(3.1)

with φµ = ∇µφ, φµν = ∇ν∇µφ, X = φµφµ, and where the Gi are arbitrary functions of φ and
X. Additionally, we denoted with , X a partial derivative with respect to the function X.
Clearly G2 can be associated with the cosmological constant, and G4 = 1 casts LH

4 into the
Einstein-Hilbert action.
An interesting side note is that in [74] a Horndeski theory has been used as an effective

model for dark energy, in which the LH
2 has been constrained by the ATLAS experiment [75].

Further, due to the direct measurement of the speed of gravitational waves, LH
4 and LH

5 have
been strongly constrained [76–80].

3.1 Going beyond Horndeski: avoiding the Ostrogradski instability
We will now address why higher order equations have not been considered. Remember that the
second order nature was always a condition. This is because until recently, it was believed that
Lagrangians leading to higher order equations of motion are subject to so called Ostrogradski
instabilities [81] (or for a review see [82]): Ghost-like additional degrees of freedom that cause
the Hamiltonian of the theory to be unbounded from below. To avoid this catastrophe, people
were firmly holding on to the condition of second order equations of motion, hence the particular
formulation of the Horndeski theory. It is instructive to elucidate this using a simple toy model
given in [83], so we will repeat it here.
Consider the following Lagrangian of a scalar field:

L = a

2 φ̈
2 − V (φ), (3.2)

where a is an arbitrary constant, and we do not need to specify the potential. The important
part is the second order derivative. The equations of motion are of fourth order and hence
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4 Degenerate Higher-Order Scalar-Tensor theories

require four initial conditions, which means that there are two dynamical degrees of freedom.
Now introduce an auxiliary field to cast the Lagrangian into

L =aψφ̈− a

2ψ
2 − V (φ)

=− aψ̇φ̇− a

2ψ
2 − V (φ) + a

d
dt
(
ψφ̇
) (3.3)

On-shell this is equivalent to the first Lagrangian, since the field equation for ψ yields ψ = φ̈,
and inserting this into our new Lagrangian results in the first.
Now we can define new variables, q = (φ+ ψ)/

√
2 and Q = (φ− ψ)/

√
2, and so the Lagrangian

reads
L = −a2 q̇

2 + a

2 Q̇
2 − U(q,Q), (3.4)

where all terms in q and Q have been absorbed within the potential. Now it is evident that the
Lagrangian contains two dynamical degrees of freedom, however, they have a relative minus sign.
So independent of the sign of a, there is one ghost-like degree of freedom, which in turn gives rise
to the instability. Clearly the only way out of this is to set a = 0, though this would render the
theory meaningless. However, there is a generalization given in [71–73]: In fact, having a more
general Lagrangian leading to higher order field equations, one can follow a similar procedure as
has been done in this toy model using such auxiliary fields. Instead of the constant a of the toy
model above, one gets a Hessian matrix defined by

M ≡
(

∂2L

∂va∂vb

)
, (3.5)

where va ≡ (Q̇i), the vector of velocities. Then it can be shown that the ghost-like degrees
of freedom disappear if the matrix, M , is degenerate, or in other words detM = 0. The
corresponding Lagrangian is called degenerate as well, and, since it is without Ostrogradski
instabilities, it allows for higher order extensions to the Horndeski theories.

4 Degenerate Higher-Order Scalar-Tensor theories
In the previous section, we discussed how one can construct higher order extensions to Horndeski
gravity, namely by fixing the Lagrangian to be degenerate. These scalar-tensor theories yielding
higher than second derivative equations of motion are then free of Ostrogradski instabilities
[71–73, 84, 85] and have been dubbed Degenerate Higher Order Scalar Tensor (DHOST) or
Extended Scalar Tensor (EST) theories [71–73, 84–87], and are widely studied in the literature
(see for example [88–96] for compact objects in these theories and [83] for a review).

We will now give an overview of the specific theories considered in our studies. These are by
far not the most general cases that one can work with, though they already fairly extend GR, as
we will see shortly. The more general cases can be found in the aforementioned literature and
the references therein. We restrict ourselves to a class of shift symmetric and parity preserving
(quadratic1) DHOST theories that contain up to second order covariant derivatives of the scalar
field (in the Lagrangian), whose action in four dimensions is given by

S[g, φ] =
∫
d4x
√−g

[
Z(X) +G(X)R+A1(X)φµνφµν +A2(X)(�φ)2

+A3(X)�φφµφµνφν +A4(X)φµφµνφνρφρ +A5(X) (φµφµνφν)2
]
,

(4.1)

1 Second derivatives of the scalar field appear quadratically.
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Chapter II Classical extensions/modifications to general relativity

where the coupling functions Z,G,A1, A3, A4 and A5 are unspecified functions of X. However,
the coupling functions A4 and A5 are chosen to satisfy

A4 = 1
8(G−XA1)2

{
4G

[
3(−A1 + 2GX)2 − 2A3G

]
−A3X

2(16A1GX +A3G)

+4X
[
−3A2A3G+ 16A2

1GX − 16A1G
2
X − 4A3

1 + 2A3GGX
]}
,

(4.2a)

A5 = 1
8(G−XA1)2 (2A1 −XA3 − 4GX) (A1(2A1 + 3XA3 − 4GX)− 4A3G) . (4.2b)

These are the degeneracy conditions necessary to ensure the absence of Ostrogradski ghosts
[71–73, 84, 85]. Note that these conditions look different in other dimensions than four.
It is instructive to see this in the simple case of spherical symmetry. For this purpose, set

A1(X) = −A2(X) 6= −G/X (see section 4.2.1 of this chapter) and use a static2 ansatz of the
form

ds2 = −h(r)dt2 + dr2

f(r) + r2dΩ2, φ(t, r) = qt+ ψ(r), (4.3)

while leaving A4 and A5 unconstrained. Dealing with the equations, it proved convenient to
define the frequently reoccurring combinations

Z1 =G+XA2, (4.4a)
Z2 =2A2 +XA3 + 4GX , (4.4b)
Z3 =A3 +A4 +XA5. (4.4c)

We denote the respective equations of motion with Eµν = 0. Then it turns out that E01 ∝ qJ r,
the r-component of the Noether current, and so the three independent equations of motion are
E00, E11 and J r, which are of the general form:

E00 =C0X(h, f,X)X ′′ + q2C0h(h, f,X)h′′ + C0f (h, h′, X,X ′)f ′ + ∆E00(h, h′, f,X,X ′), (4.5a)
E11 =C1X(h, f,X)X ′′ + C1h(h, f,X)h′′ + C1f (h, h′, X,X ′)f ′ + ∆E11(h, h′, f,X,X ′), (4.5b)
J r =CJX(h, f,X)X ′′ + CJh(h, f,X)h′′ + CJf (h, h′, X,X ′)f ′ + ∆J r(h, h′, f,X,X ′), (4.5c)

where the coefficients also depend on q. In fact, some coefficients are proportional to each other,
so it is possible to eliminate certain terms. It actually turns out that combining E11 and J r
allows to express the metric function f in terms of h and its derivative as

h

f
= 1

4X (2G+ r2Z)
{
hX

[
8Z1 + rX ′

(
4Z2 + rZ3X

′)]+ 4rq2X ′
(Z2 − 4Z ′1

)

+rXX ′
(
16q2A′2 + rZ2h

′ + rq2A5X
′
)

+ 8rXZ1h
′ + 8q2A2

(
X + rX ′

)}
.

(4.6)

Using this, one equation can be eliminated to cast the system into the form

E00 =D0X(h, h′, X,X ′)X ′′ +D0h(h, h′, X,X ′)h′′ + ∆Ē00(h, h′, X,X ′), (4.7a)
J r =DJX(h, h′, X,X ′)X ′′ +DJh(h, h′, X,X ′)h′′ + ∆J̄ r(h, h′, X,X ′). (4.7b)

Remember the role the Hessian matrix (3.5) played, viz

detM = DJhD0X −DJXD0h
!= 0, (4.8)

2 In [23] we consider a rotating ansatz (in three dimensions), see section 5 of this chapter.
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4 Degenerate Higher-Order Scalar-Tensor theories

leads to
0 = 3Z2

2 − 8Z1Z3, (4.9)

and

0 = q2
{

8XA5Z2
1 −Z2 [A2 (8Z1 −XZ2) + 4Z1 (Z2 + 4XA2X − 4Z1X)]

}
. (4.10)

Writing these out in terms of the original coupling functions gives exactly the DHOST degeneracy
conditions (4.2a) and (4.2b).
Interestingly, one can easily do the same analysis in different dimensions and conclude that

equation (4.9) in dimension d > 2 reads

KdZ2
2 −Z1Z3 = 0, (4.11)

with
Kd = 1

4

(
1 + 1

d− 2

)
. (4.12)

It would be interesting to see how (4.10) looks like in arbitrary dimensions, however the equations
in higher dimensions become very involved when q is non-zero.

4.1 Kerr-Schild invariance
The DHOST theories we will be working with enjoy several interesting features, one of which is
the way it behaves under a so-called Kerr-Schild transformation. These transformations provide
a way to construct many of the vacuum black hole solutions that are known by transforming a
seed metric corresponding to the asymptotic metric of the space-time. This Kerr-Schild ansatz
is a geometrical way of introducing the mass parameter into a solution, while all the other
parameters (like angular momentum) must be non-trivially encoded in the seed metric. Note
that in general, having a matter source may prevent one from using the ansatz, since that these
source terms are usually incompatible with the Kerr-Schild transformation.

However, in our case we are applying the Kerr-Schild transformation to scalar tensor theories
enjoying a shift symmetry and with a kinetic term, X = ∂µφ∂

µφ, that is invariant under the
Kerr-Schild transformation. The Kerr-Schild ansatz is defined as

gµν = g(0)
µν − µa(x) lµlν (4.13)

where g(0)
µν is the seed metric, µ the mass parameter, a(x) a function to be determined, and l is

a null and geodesic vector field with respect to both metrics, i.e.,

0 = gµν lµlν = g(0)µν lµlν , 0 = lµ∇µlν = lµ∇(0)
µ lν . (4.14)

Having defined the general case, we shall look at the static case now. In spherical symmetry,
the seed metric, and the null and geodesic vector field are given by

ds2
0 = −h0(r)dt2 + dr2

f0(r) + r2dΩ2, l = dt− dr√
f0(r)h0(r)

. (4.15)

The Kerr-Schild metric then becomes

ds2 = −(h0(r) + µa(r))dt2 + h0(r) dr2

f0(r) (h0(r) + µa(r)) + r2dΩ2, (4.16)
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where the time coordinate has been redefined:

dt→ dt+ µa(r) dr√
f0(r)h0(r) (h0(r) + µa(r))

. (4.17)

And from this one can read off the net effect of a Kerr-Schild transformation on the metric
functions, namely

h0(r)→ h(r) = h0(r) + µa(r), f0(r)→ f(r) = f0(r) (h0(r) + µa(r))
h0(r) . (4.18)

We will now apply this to the DHOST theory (4.1) of the previous chapter using (4.3) as seed
metric ansatz. Remember, that we additionally require the invariance of the kinetic term:

X(0) = g(0)µνφ(0)
µ φ(0)

ν = gµνφµφν = X. (4.19)

One may expect this to be fairly restrictive, so we will now look which conditions need to be
satisfied in order for the action (4.1) to be (quasi-)invariant under a Kerr-Schild transformation
(4.18), (4.19). At the level of the action (after two partial integrations) its variation under the
Kerr-Schild transformation (4.18) yields

S[g(0), φ]− S[g, φ] = µ

4

∫
dr

√
f(r)
h(r)

[
a(r)P (r,X) + a′(r)Q(r,X)

]
. (4.20)

So we require the mass function a(r) to satisfy the following first-order differential equation

a′(r)Q(r,X) + a(r)P (r,X) = 0, (4.21)

where we have defined

Q(r,X) =r
(
8Z1 + rZ2X

′) , (4.22a)
P (r,X) =8Z1 + rX ′

(
4Z2 + rZ3X

′) . (4.22b)

The solution is given by
a(r) = e

−
∫
P (r,X)
Q(r,X)dr, (4.23)

and the integration constant can be absorbed in the mass parameter, µ. One can easily see from
equation (4.23) that the standard GR mass term is obtained for

Q(r,X) = rP (r,X), (4.24)

which is the case if X ′ = 0 or for

r [XA5 +A4 +A3]X ′ + 3 [XA3 + 2A2 + 4GX ] = 0. (4.25)

Or in other words, solutions with X = cst have to have a standard GR mass term! Further, note
that setting A2(X) = −A1(X) was a necessary condition for the action to be (quasi-)invariant
under a Kerr-Schild transformation [97].

As a last remark, we want to point out that in [97] it was shown how the Kerr-Schild solution
generating method can be extended to DHOST theories to construct generic and regular (non-
singular) black hole solutions. In [24] we have constructed another regular solution (with very
interesting properties), which we have studied in our paper (see section 6 of this chapter). This
can even be reversed to construct actions from known solutions of other theories (see Appendix
1).
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4.2 Disformal transformation
We will now briefly address the question of how the different DHOST theories are related to one
another. This has been studied extensively in [98] where they have found that all quadratic
DHOST theories are actually stable under the action of the so-called disformal transformations
of the metric defined in [99]. These can be written as

ḡµν = C(X,φ)gµν +D(X,φ)φµφν , (4.26)

where C and D are arbitrary functions of X and φ. Then, an action S̄[ḡ, φ] induces a new
action, S[g, φ], by inserting the transformation:

S[gµν , φ] = S̄[ḡµν = Cgµν +Dφµφν , φ]. (4.27)

It was then shown in [98] that applying a disformal transformation to a DHOST theory yields
again a DHOST theory. Further, they found that one can define different classes of theories,
which are stable under certain subclasses of disformal transformations (specified by certain
constraints on C and D). This classification of DHOST theories will be outlined next. In our
work, we have applied the disformal transformation on a rotating stealth black hole solution.
The results were published in [25] (see 7 of this chapter).

4.2.1 Classification of DHOST theories

Now we shall briefly outline the different classes of DHOST theories given in [98, 100]. Note
that classes II and III do not concern us much, so we will just state them here for completeness.

(I) The DHOST theories of class I are defined by the relation A1 = −A2. These can be
further divided into subclasses, through

A1 =−A2 6=
G

X
, (Ia)

A1 =−A2 = G

X
. (Ib)

It is evident that GR is included in Ia. Therefore, this subclass is very appealing from
a physical perspective. Particularly, theories where cg, the speed of gravitational waves
equals the speed of light, cg = c, we must impose that [100]

A2 = 0, (4.28)

and these particular theories are only stable under conformal transformations[100] (D = 0
in (4.26)). The degeneracy conditions (4.2a), (4.2b) simplify to

A4 = −A3 + 1
8G(4GX +A3X)(12GX −A3X), A5 = A3

2G(4GX +A3X). (4.29)

Inserting this into (4.22a) and (4.22b) one finds the relation

P (r,X) = Q(r,X)
8Gr

[
8G+ 3r (4GX +A3X)X ′

]
, (4.30)

and hence we get
− P (r,X)
Q(r,X) = −1

r
− 3

2
X ′

X
R, (4.31)
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where we have defined
R(X) = X

4G(4GX +A3X). (4.32)

Now, the solution for a(r) (equation (4.23)), is given by

a(r) = 1
r
e−

3
2

∫
R(X)
X

dX . (4.33)

This implies that the Coulombian form of the mass term will be valid for DHOST theories
with cg = c only if X = constant or R = 0, which is a simplification of equation (4.25).

(II) Theories that are neither in I, nor in III

(III) Theories with G(X) = 0.

Note that the classes II and III can be further divided in subclasses as well, though to properly
describe them one would have to consider the general form of DHOST with its degeneracy
conditions. These are thoroughly described in [98, 100].
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Teitelboim-Zanelli (BTZ)-like metric with an effective cosmological constant fixed in terms of the coupling
functions. As a direct consequence the thermodynamics of the solution is shown to be identical to a BTZ-like
one with an effective cosmological constant, despite the presence of a scalar field. Finally, the expression of
the semiclassical entropy of this solution is also confirmed through a generalized Cardy-like formula
involving the mass of the scalar soliton obtained from the black hole by means of a double Wick rotation.
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I. INTRODUCTION

Since the discovery of the Bañados-Teitelboim-Zanelli
(BTZ) black hole solution [1], the study of three-dimen-
sional gravity has received considerable attention to such an
extent that it is now considered an interesting laboratory to
explore the many facets of the lower-dimensional physics at
the classical level but also at the quantum level. By three-
dimensional gravity we are referring not only to Einstein’s
standard action but to all of its possible variations, including,
for example, its higher-order massive theories, such as the
topologicallymassivegravity [2], or the newmassive gravity
[3]. The three-dimensional gravity models, with or without
matter source, are likewise of importance due to the variety
of their solutions, and particularly their asymptotic AdS
black hole solutions whose near horizon geometry can be

relevant to test some conceptual aspects of the AdS/CFT
correspondence [4,5]. In this aspect, the BTZ solution is of
particular interest because its in-depth study over the past
three decades has considerably enhanced our knowledge on
the statistical interpretation of the black hole entropy, see
e.g., [6–8]. It is further fascinating that BTZ-like metrics
arise as solutions of radically different three-dimensional
gravity models. To illustrate this statement, we could
mention for example the emergence of BTZ-like solutions
in the context ofmassive gravity [9], in higher-order theories
[10], but also in the presence of matter source, such as a
scalar (dilatonic) field, see e.g., [11,12]. In the present work,
we will confirm this trend by showing that the equations of
motion of a general class of scalar tensor theories, enjoying a
shift symmetry of the scalar field, and involving up to
second-order derivatives of the scalar field, can be fully
integrated and solved by a BTZ-like metric.
The interests of studying scalar tensor theories is mainly

due to the fact that it constitutes one of the simplest
modified gravity theories by extending general relativity
with one or more scalar degrees of freedom. The dedication
to scalar theories is not new and its origin may be attributed
a posteriori to the seminal work of Horndeski [13], who
presented the most general scalar tensor theory in four
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dimensions with second order equations of motion. The
requirement not to have more than two derivatives in the
equations of motion is connected to the Ostrogradski
theorem which states that (under certain assumptions)
higher-order derivative theories have a Hamiltonian that is
unbounded from below. This is related to the appearance of
an extra (ghost) degree of freedom with negative energy.
Thus the absence of higher time derivatives in the equations
of motion guarantees the absence of the Ostrogradski ghost.
Nevertheless, it has been shown recently that some particular
higher-order theories of a single scalar field extension of
general relativity can propagate healthy degrees of freedom
and are mechanically stable. The most general such
Lagrangian depending quadratically on second-order deriv-
atives of a scalar fieldwas constructed in [14,15], anddubbed
degenerate higher order scalar tensor (DHOST) theory. This
terminology indicates that the absence of Ostrogradski
ghosts is mainly due to the degeneracy property of its
Lagrangian. There even exists a subclass of DHOST theories
where gravitational waves propagate at the speed of light,
being in perfect agreement with the observed results [16].
While these attractive properties of scalar tensor theories
occur in four dimensions, we nevertheless like to explore the
implications of such models in three dimensions. This is
precisely the aim of the present work.
Here, we will consider a general scalar tensor theory in

three dimensions with a field content given by the metric g
and a scalar field denoted by ϕ. The main assumption
concerning the action is its invariance under the constant
translation of the scalar field, i.e., ϕ → ϕþ const which
implies the existence of a conserved Noether charge. It is
known that this hypothesis considerably simplifies the
integration of the equations of motion. The action will
contain up to second-order covariant derivatives of the
scalar field and is parity invariant, that is invariant under the
discrete transformation ϕ → −ϕ. The action is parame-
trized in terms of six coupling functions that depend only
on the kinetic term X ¼ gμν∂μϕ∂νϕ of the scalar field.
Recently it has been shown that such scalar tensor theories
are invariant under a Kerr-Schild symmetry, and this
symmetry turns out to be extremely useful for generating
black hole solutions from simple seed configurations [17].
Here we will adopt a different strategy by deriving the most
general stationary solution by brute force, as it was done for
the special case of Horndeski theory in three dimensions
[17]. Interestingly enough, we will show that the integra-
tion of the equations of motion forces the scalar field to
have a constant kinetic term while at the same time the
metric functions turn out to be a BTZ-like spacetime with
an effective cosmological constant expressed in terms of
the coupling functions appearing in the action. We would
like to emphasize that the constant value of the kinetic
scalar field term results from an algebraic equation that X
must satisfy, and consequently it does not correspond
to any hair. Although the metric solution is given by a

BTZ-like metric, it is legitimate to wonder whether the
presence of the scalar field could affect the thermodynamic
properties of the solution. In order to answer this question,
the thermodynamics of the solution is carefully analyzed
within the Euclidean method [18,19], and it is shown that
the expressions of the mass, entropy and angular momen-
tum are identical to those of a BTZ-like solution with an
effective cosmological constant. In addition, since it has
been pointed out that the Wald formula for the entropy [20]
applied to general scalar tensor theories may be problem-
atic [21], we have found it sensible to compute the entropy
of the solution by means of a generalized Cardy formula. In
this formulation the ground state is identified with a soliton
whose mass is proportional to the lowest eigenvalues of the
shifted Virasoro operators, see [22–26]. In order to achieve
this task, we have constructed the static scalar soliton from
the black hole through a double Wick rotation and
computed its mass. Finally, the application of the gener-
alized Cardy formula is shown to properly reproduce the
semiclassical expression of the entropy.
The plan of the paper is organized as follows. In the next

section we will present the action and derive the most
general solution for a stationary ansatz for the metric
together with a radial scalar field. We will show that the
metric solution is nothing other than a BTZ-like metric
while the kinetic term of the scalar field is constant. In
Sec. III we will construct the regularized Euclidean action
which allows us to identify the mass, the angular momen-
tum and the entropy. Further, the expression of the entropy
will be confirmed through a computation involving the
generalized Cardy formula and the mass of the static scalar
soliton. The mass of the soliton will be computed using the
quasilocal formalism [27]. Finally, in Sec. IV we present
our conclusions and discussions.

II. SCALAR FIELD MODEL AND THE
DERIVATION OF ITS SOLUTION

In three dimensions, we are considering a scalar tensor
theory whose dynamical fields are represented by a metric,
g, and a scalar field, ϕ. The action reads

S ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
L

¼
Z

d3x
ffiffiffiffiffiffi
−g

p ½ZðXÞ þGðXÞRþ A3ðXÞ□ϕϕμϕμνϕ
ν

þ A2ðXÞðð□ϕÞ2 − ϕμνϕ
μνÞ þ A4ðXÞϕμϕμνϕ

νρϕρ

þ A5ðXÞðϕμϕμνϕ
νÞ2�; ð1Þ

where for simplicity we have defined X ¼ ∂μϕ∂μϕ and
ϕμν ¼ ∇μ∇νϕ. Here, the six coupling functions Z,G and Ai

for i ¼ 2;…5 are a priori arbitrary functions of the kinetic
term X, and contain up to second-order covariant deriva-
tives of the scalar field. It is easy to see that the action is
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invariant under the shift symmetry ϕ → ϕþ const, as well
as under the discrete transformation ϕ → −ϕ. The field
equations of the action (1) are reported in the Appendix.
More general, scalar tensor theories can be considered

with coupling functions that additionally depend on the
scalar field, Z¼Zðϕ;XÞ, G ¼ Gðϕ; XÞ and Ai ¼ Aiðϕ; XÞ.
It is interesting to note that for Lagrangians breaking the
shift symmetry ϕ → ϕþ const, and of the form

L ¼ ZðϕÞ þ GðϕÞR;

there exist black hole solutions which drastically differ
from the BTZ solution, see for example [28] and references
therein. In contrast, as we will show below, for the shift
symmetric action (1), the spectrum of black hole solutions
is restricted to BTZ-like solutions.
We now look for black hole solutions of the action (1)

with a stationary metric and a purely radial scalar field. The
most general such ansatz can be parametrized as follows:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þH2ðrÞ½dθ − kðrÞdt�2;

ϕ ¼ ϕðrÞ: ð2Þ

After some tedious computations one can show that the
field equations associated to the action (see the Appendix)
will become fully integrable for the ansatz (2) by fixing the
coupling function A5 in terms of the others through the
following relation:

A5 ¼
ð2A2 þ XA3 þ 4GXÞ2

2XðGþ XA2Þ
−
A3 þ A4

X
; ð3Þ

where GX ¼ dG
dX. This relation is quite similar to the four-

dimensional DHOST conditions which ensure the absence
of Ostrogradski ghosts [14,15]. Further, the emergence of
the condition (3) is not surprising, since in the literature
concerning scalar tensor theories of the type (1), most of the
solutions are found for special relations between the
coupling functions Z, G and the Ai’s, see e.g., [29–36].
In what follows, we will consider the action (1) with the

coupling function A5 given by the relation (3), and for later
convenience, we also define the following expressions:

Z1 ¼ Gþ XA2; ð4aÞ

Z2 ¼ 2A2 þ XA3 þ 4GX: ð4bÞ

We are now in the position to present the general
derivation of the spinning solution. As a first step, we
consider the following combination of the metric equations:

Etθ þ kEθθ ¼ 0;

which yields a first integral given by

ðZ1H3k0Þ0 ¼ 0: ð5Þ

Further, the combination

2

ffiffiffiffiffiffiffiffi
f3X

q
Err − Jr ¼ 0;

where Jr is the radial component of the conserved current
(see the Appendix), permits to express the derivative of the
metric function f as

f0 ¼ −
4fH0Z1Z2X0 þ fHZ2

2X
02 þ 4H3k02Z2

1 − 8HZZ1

8H0Z2
1 þ 2HZ1Z2X0 :

ð6Þ

Inserting this into the two combinations

Z2

f
ðEtt þ kEtθÞ ¼ 0; ð7aÞ

Z1ffiffiffiffiffiffi
fX

p EJ þ
Z2

H2
Etθ ¼ 0; ð7bÞ

one obtains after some manipulations the following
equation:

kZ2ðZ1H3k0Þ0 þ 4H½ðZ1ZÞX − ZZ2� ¼ 0: ð8Þ

By Eq. (5) the first term vanishes, leaving

ðZ1ZÞX − ZZ2 ¼ 0: ð9Þ

It is easy to see that, for Z ¼ 0, Eq. (9) is completely
degenerate and gives no information about the kinetic term.
Consequently in what follows we impose Z to be nonzero.
Then the kinetic term X must satisfy this algebraic equation
which in turn implies thatX has to be constant.Moreover,we
would like to stress that its constant value is not an
integration constant but must be rather understood as
follows: Given a scalar tensor theory (1)–(3) with specific
coupling functionsZ,G and theAi’s, the constant value ofX
will be determined by the algebraic relation (9). This
restriction on the kinetic term of the scalar field significantly
simplifies the equations, in particular the combination

2

f
ðEtt þ 2kEtθ þ kEθθÞ þ 2fErr þ

ffiffiffiffi
X
f

s
Jr ¼ 0 ð10Þ

implies

H00 ¼ 0: ð11Þ

Finally, after some redefinitions of the coordinates, the
metric solution can be casted in a standard BTZ-like form as
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ds2¼−NðrÞ2FðrÞdt2þ dr2

FðrÞþr2ðdθþNθðrÞdtÞ2; ð12aÞ

N¼1; F¼
�

Z
2Z1

r2−Mþ J2

4r2

�
; Nθ¼ J

2r2
: ð12bÞ

This metric is nothing but a BTZ-like solution with an
effective cosmological cosmological constant given by
Λeff ¼ −Z=2Z1. Various comments can be made concern-
ing the emergence of a BTZ-like metric solution together
with a scalar field with constant kinetic term. First of all, it is
remarkable that the equations of motion of the general class
of scalar tensor theories, givenby the action (1) togetherwith
the condition (3), are fully integrable and yield a BTZ-like
solution. It is also remarkable that, although the model is
defined in terms of the coupling functions Z, G and A2, A3

andA4, the resulting solution is shown to be parametrized in
terms of Z and through the combinations Z1 and Z2, as
defined in Eq. (4). This would also imply that scalar tensor
theories of the form (1)–(3)with different coupling functions
Z, G and Ai’s can have the same effective cosmological
constant Λeff , and hence they can be solved by the same
BTZ-like metric. Moreover, it is easy to see that the action
(1)–(3) enjoys a Kerr-Schild symmetry as defined in [17]
whose implementation on the stationary ansatz (2) can be
summarized as

fðrÞ→ fðrÞ−aðrÞ; HðrÞ→HðrÞ; kðrÞ→ kðrÞ; ð13Þ

with a constant mass term i.e., aðrÞ ¼ M which is a direct
consequence of the kinetic term X being constant. This can
be put in analogy with the four-dimensional static case
where solutions of the action (1) with constant kinetic term
were shown to have the standard Coulomb mass term
aðrÞ ¼ M

r , see Ref. [17].
In summary,we have shown that for a stationary ansatz (2)

the integration of the field equations of (1)–(3) forcesX to be
constant together with a BTZ-like metric (12a) and (12b).
In the following section, we analyze its thermodynamics.

III. THERMODYNAMICS OF THE
SPINNING SOLUTION

The thermodynamics of the solution will now be
determined by means of the Euclidean method [18,19],
where the Euclidean continuation of the metric is obtained
by setting t ¼ −iτ in the ansatz (12a). In order for the
resulting metric to be real, one can introduce a complex
constant of integration for the Euclidean momentum as
JEucl ¼ −iJ, where J will be identified with the physical
angular momentum. In order to avoid a conical singularity,
the Euclidean time τ has to be made periodic with period
β ¼ 1=T, where T is the temperature that in our case is
given by

T ¼ F0ðrÞ
4π

����
r¼rh

¼ 1

4π

�
2rh
L2

−
J2

2r3h

�
; ð14Þ

and where for simplicity we have defined the square of the
effective AdS radius

L2 ¼ 2Z1ðXÞ
ZðXÞ :

Recall that the kinetic term X is a constant determined by
the algebraic relation defined by Eq. (9). After some
computations, the Euclidean action is shown to be given by

IE ¼ 2πβ

Z þ∞

rh

dr

�
N

�
F0
�
1

4
rðFðϕ0Þ2Þ0Z2 þ Z1

�

þ 1

2
Fð4ðFðϕ0Þ2Þ0Z1X þ rZ2ðFðϕ0Þ2Þ00Þ

þ 1

4
FrððFðϕ0Þ2Þ0Þ2

�
2Z2X −

Z2
2

2Z1

�
− Zr

þ 1

2

p2

Z1r3

�
þ Nθp0

	
þ BE;

where rh is the radius of the event horizon and

pðrÞ ¼ r3ðNθÞ0Z1

N
:

The Euclidean action IE is defined up to a boundary term
BE which is fixed such that said action has an extremum,
which is δIE ¼ 0. In the present case, the variation of this
boundary term can be conveniently expressed as

δBE ¼ −2πβ
���

δIE
δF0

�
−
�
δIE
δF00

�0�
δF

þ
�
δIE
δF00

�
δF0 þ

�
δIE
δϕ00

�
δϕ0 þ

�
δIE
δϕ000

�
δϕ00

−
�
δIE
δϕ000

�0
δϕ0 þ

��
δIE
δϕ0

�
−
�
δIE
δϕ00

�0

þ
�
δIE
δϕ000

�00
þ 2Fϕ0

�
δIE
δX

��
δϕþ Nθδp

�
r¼þ∞

r¼rh

:

At infinity, most of these terms cancel each other out,
yielding

δBEjþ∞ ¼ 2πβZ1δM ⇒ BEjþ∞ ¼ 2πβZ1M;

while that at the horizon

δBEjrh ¼ 8Z1π
2δrh − 2πβΩδðZ1JÞ ⇒

BEjrh ¼ 8Z1π
2rh − 2πβΩZ1J:

In this expression, Ω represents the chemical potential,
defined by
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Ω ¼ lim
r→þ∞

NθðrÞ − NθðrhÞ ¼ −
J
2r2h

:

With all of the above, the boundary term BE is simply
expressed as

BE ¼ BEjþ∞ − BEjrh
¼ 2πβZ1M − 8Z1π

2rh þ 2πβΩZ1J: ð15Þ

Finally, the thermodynamic quantities can be read off from
the Gibbs free energy F:

IE ¼ βF ¼ βM − S − βΩJ ; ð16Þ

where M is the mass, S the entropy and, as before, Ω is
the chemical potential associated with the angular momen-
tum J , see [18]. Finally, comparing (15) with (16), the
thermodynamic parameters turn out to be given by

S ¼ 8Z1π
2rh; ð17aÞ

M ¼ 2πZ1M ¼ 2πZ1

�
r2h
L2

þ J2

4r2h

�
; ð17bÞ

J ¼ −2πZ1J; Ω ¼ −
J
2r2h

; ð17cÞ

and one can easily see that the first law holds, namely
dM ¼ TdS þΩdJ . These thermodynamic quantities (17)
are identical to those of a BTZ-like solution with an
effective AdS radius given by L. It is clear that in order
to deal with positive mass (entropy) solutions, we have to
impose that Z1 > 0 and Z > 0. It is natural to compare the
scalar tensor solutions with the standard BTZ solution
which would correspond to setting ϕ ¼ 0. In the static case,
the difference between the free energies, ΔF, of the BTZ
solution and the scalar solution reads

ΔF ¼ FBTZ − F ¼ 16π3T2

�
Z2

1ðXÞ
ZðXÞ −

Z2
1ð0Þ

Zð0Þ
�
: ð18Þ

Hence, defining PðXÞ ¼ Z2
1
ðXÞ

ZðXÞ , we conclude that for

PðXÞ < Pð0Þ [respectively for PðXÞ > Pð0Þ], the BTZ
solution (respectively the scalar tensor solution) is thermo-
dynamically favored.
We now proceed by rederiving the expression of the

semiclassical entropy (17a) by means of a generalized
Cardy formula. In this formulation, the entropy of the black
hole solution can be microscopically computed provided
the theory admits a regular scalar soliton which would be
identified as the ground state of the theory, see [22,24]. In
our case, the regular soliton will be obtained from the static
black hole solution (12) with J ¼ 0 through a double Wick

rotation t → iθ and θ → it together with an identification
for the location of the event horizon rh ¼ L given by

ds2 ¼ −
r2

L2
dt2 þ

�
r2

L2
− 1

�−1
dr2 þ

�
r2

L2
− 1

�
dθ2;

and the line element of the regular static scalar solution
after a redefinition of the radial coordinate reads

ds2 ¼ − cosh2ðρÞdt2 þ L2dρ2 þ sinh2ðρÞdθ2: ð19Þ

As done for example in Refs. [25,26], the mass of the
soliton (19) will be computed within the quasilocal
formalism defined in [27]. In order to be as self-contained
as possible, we will elaborate the steps of the computations.
To begin with, the variation of the action (1)–(3) can be
schematically represented as

δS ¼ ffiffiffiffiffiffi
−g

p ½εμνδgμν þ εðϕÞδϕ� þ ∂μΘμðδg; δϕÞ; ð20Þ

where εμν and εðϕÞ correspond to the equations of motions
with respect to the metric gμν and the scalar field ϕ (see the
Appendix), while Θμ is a surface term whose expression is
given by

Θμ ¼ ffiffiffiffiffiffi
−g

p �
2ðPμðαβÞγ∇γδgαβ − δgαβ∇γPμðαβÞγÞ

þ δL
δðϕμÞ

δϕ −∇ν

�
δL

δðϕμνÞ
�
δϕþ δL

δðϕμνÞ
δðϕνÞ

−
1

2

δL
δðϕμσÞ

ϕσδgσρ −
1

2

δL
δðϕσμÞ

ϕσδgσρ

þ 1

2

δL
δðϕσρÞ

ϕμδgσρ

�
;

with Pμνλρ ¼ δL=δRμνλρ, and L is the Lagrangian.
Considering now the variation induced by a diffeomor-
phism generated by a Killing vector ξμ whose action on the
metric and the scalar field read

δξgμν ¼ 2∇ðμξνÞ; δξϕ ¼ ξσð∇σϕÞ;
δξð∇νϕÞ ¼ ξσϕσν þ ð∇νξ

σÞϕσ;

we construct a Noether current given by

Lξμ þ 2εμνξν − Θμðδξg; δξϕÞ ¼ ∇νKμν;

which is derived from the potential Kμν,

Kμν ¼ ffiffiffiffiffiffi
−g

p �
2Pμνρσ∇ρξσ − 4ξσ∇ρPμνρσ þ δL

δϕμσ
ϕνξσ

−
δL
δϕνσ

ϕμξσ

�
:
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As shown in [27], for each Killing field a corresponding
conserved quantity can be constructed as

QðξÞ ¼
Z
B
dxμν

�
δKμνðξÞ − 2ξ½μ

Z
1

0

dsΘν�
�
: ð21Þ

Here, δKμνðξÞ ¼ Kμν
s¼1ðξÞ − Kμν

s¼0ðξÞ is the difference of the
Noether potential interpolating between the solutions along
the path parametrized by s ∈ ½0; 1�, and dxμν represents the
integration over the two-dimensional boundary B. For the
Killing field, ξ ¼ ∂t, one obtains that

δKrt ¼ −
2G
L

Z
1

0

dsΘr ¼ −
Z1

L
þ 2G

L
;

yielding a mass for the static soliton (19) given by

Msol ¼ −2πZ1; ð22Þ

which is negative by virtue of the fact that Z1 > 0 in order
to ensure a positive mass and entropy of the black hole
solutions. As is the case for the BTZ solution, there is a
phase transition between the black hole and the soliton at
the critical temperature

Tc ¼
ffiffiffi
2

p

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ZðXÞ
Z1ðXÞ

s
:

We are now in position to provide a microscopic
computation of the black hole entropy. As stressed in
[22], the Cardy formula is more conveniently expressed in
terms of the vacuum charge rather than the central charge:

SC ¼ 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ̃þ

0 Δ̃
þ

q
þ 4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Δ̃−

0 Δ̃−
q

; ð23Þ

where (Δ̃�
0 ) Δ̃� are the (lowest) eigenvalues of the shifted

Virasoro operators. The eigenvalues are related to the mass
and angular momentum as [6]

M ¼ 1

L
ðΔ̃þ þ Δ̃−Þ; J ¼ Δ̃þ − Δ̃−:

On the other hand, since the scalar soliton is identified with
the ground state of the theory, its mass (22) is proportional
to the lowest eigenvalue

Δ̃�
0 ¼ L

2
Msol:

Finally, the Cardy formula (23) can be conveniently
rewritten in terms of M, J as

SC¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−LMsolðLMþJ Þ

p
þ2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−LMsolðLM−J Þ

p
;

and it can be verified that this correctly reproduces the
semiclassical entropy (17), this is, SC ¼ S.
It is known from the pioneer work of Brown and

Henneaux [5] that the asymptotic symmetries of the
three-dimensional BTZ-like solution (12) consist in two
copies of the Virasoro algebra with equal left and right
moving central charges given by

cþ ¼ c− ¼ 3LðXÞ
2GN

; ð24Þ

where GN is the Newton constant. Hence, according to the
AdS/CFT correspondence this family of solutions (12)
would correspond to a CFT with central charges given by
(24) and depending explicitly on the constant value X as
determined by Eq. (9). This clearly emphasizes the differ-
ence with the BTZ solution in the sense that the scalar field,
through its constant kinetic term X, will leave its mark. This
would mean that, in principle, for a given CFT with equal
central charges, it can be possible to adjust the form of
LðXÞ for its central charges to coincide with (24).

IV. CONCLUSIONS AND DISCUSSIONS

In the present work, we have shown that the equations of
motion of a very general class of scalar tensor theories (1)–
(3) can be fully integrated for a stationary metric ansatz
together with a purely radial scalar field. Interestingly
enough, the kinetic term of the scalar field solution was
forced to be constant, while at the same time the spacetime
metric resulted to be a BTZ-like metric with an effective
cosmological constant expressed in terms of the coupling
functions. It is somehow appealing that the spectrum of
such general class of theories only consists of a BTZ-like
metric with (different) effective cosmological constants.
This observation is even more relevant considering that in
four dimensions, theories which are much less general than
that studied here admit black hole solutions that are
asymptotically AdS, flat or even exhibit a rather exotic
asymptotic behavior [29–36]. Even more, in four dimen-
sions a recipe has even been given to construct black hole
solutions from any simple seed metric [17]. Nevertheless,
one can notice an important difference concerning the
kinetic term of the scalar field solution between the three-
and the four-dimensional situations. Indeed, solutions in
four dimensions with a nonconstant kinetic term were
shown to exist [17,35], while in our case the algebraic
relation (9) forces the kinetic term to be constant. One
might also have thought that the presence of a coupled
scalar field should have affected the thermodynamics of the
solution but this was not the case. This is essentially due to
the constancy of the kinetic term of the scalar field solution.
It would be nice to provide a physical explanation for the
emergence of a BTZ-like metric as the solution of such a
very general class of scalar tensor theories (1)–(3).
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It is further intriguing that the equations of motion
become fully integrable by imposing the condition (3)
on the coupling function A5. As mentioned before, this
relation is quite similar to the four-dimensional DHOST
conditions [14,15] which prevent the emergence of
Ostrogradski ghosts. It would be compelling to explore
this point more deeply. Moreover, it is worth mentioning
that said BTZ-like solution remains a solution even if one
replaces the scalar field ansatz with ϕ ¼ qtþ ψðrÞ þ Lθ in
(2), and if X still solves the algebraic Eq. (9). Note that in
this case, the vanishing of the radial component of the
current Jr ¼ 0 is a consequence of the field equation [37].
In [17] the uniqueness of this solution was shown for the
quadratic Horndeski action. Whether or not it is unique in
the general case has yet to be established.
In [17], it was shown that the solution generating method

also applies for generalized Proca theories with solutions
having a nonzero radial component for the potential [38].
Hence, in a complete analogy with the work done here, it
will be interesting to look for black hole solutions in three
dimensions for more general vector tensor theories [39].
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APPENDIX: FIELD EQUATIONS ASSOCIATED
TO THE ACTION (1)

Here we report the equations of motion of the action (1)
that are obtained by varying the action with respect to the
metric Eμν and those with respect to the scalar field εðϕÞ.
The former are given by

Eμν ≔ GZ
μν þ GG

μν þ
X5
i¼2

GðiÞ
μν ¼ 0; ðA1Þ

where

GZ
μν ¼ −

1

2
ZðXÞgμν þ KXϕμϕν;

GG
μν ¼ GGμν þ GXRϕμϕν −∇ν∇μGþ gμν∇λ∇λG;

Gð2Þ
μν ¼ −ϕμðA2X∇νXÞ□ϕ − ðA2X∇μXÞϕν□ϕ − A2ϕνμ□ϕ − ϕνμϕλðA2X∇λXÞ þ ϕνϕλμðA2X∇λXÞ þ ϕμϕλνðA2X∇λXÞ

þ A2Rνλϕμϕ
λ þ A2Rμλϕνϕ

λ − A2ϕλνμϕ
λ þ 1

2
A2gμνð□ϕÞ2 þ gμνϕλðA2X∇λXÞ□ϕþ A2gμνϕλϕρ

ρλ − A2gμνRλρϕ
λϕρ

þ 1

2
A2gμνϕρλϕ

ρλ þ A2Xϕμϕνðð□ϕÞ2 − ϕλρϕ
λρÞ;

Gð3Þ
μν ¼ −

1

2
A3ϕμϕνð□ϕÞ2 − 1

2
ϕμϕνϕλðA3X∇λXÞ□ϕþ 1

2
A3ϕμϕλνϕ

λ
□ϕþ 1

2
A3ϕνϕλμϕ

λ
□ϕ −

1

2
A3ϕμϕνϕ

λϕρ
ρλ

þ 1

2
A3Rλρϕμϕνϕ

λϕρ −
1

2
ϕμðA3X∇νXÞϕλϕρλϕ

ρ −
1

2
ðA3X∇μXÞϕνϕ

λϕρλϕ
ρ −

1

2
A3ϕνϕ

λϕρλμϕ
ρ −

1

2
A3ϕμϕ

λϕρλνϕ
ρ

− A3ϕνϕ
λϕρλϕ

ρ
μ − A3ϕμϕ

λϕρλϕ
ρ
ν þ 1

2
gμνϕλðA3X∇λXÞϕρϕσρϕ

σ þ 1

2
gμνA3ϕ

λϕρϕσρλϕ
σ þ gμνA3ϕ

λϕρϕσρϕ
σ
λ

þ A3Xϕμϕνð□ϕÞϕρϕσρϕ
σ;

Gð4Þ
μν ¼ −A4ϕμϕνϕ

λϕρ
ρλ þ A4ϕλμϕ

λϕρνϕ
ρ − ϕμϕνðA4X∇λXÞϕρλϕ

ρ − A4ϕμϕνϕρλϕ
ρλ −

1

2
A4gμνϕλϕρϕσρϕ

σ
λ

þ A4Xϕμϕνϕλρϕ
λϕρσϕσ;

Gð5Þ
μν ¼ −A5ϕμϕνϕ

λϕρλϕ
ρð□ϕÞ − ϕμϕνϕλðA5X∇λXÞϕρϕσρϕ

σ þ A5ϕνϕλμϕ
λϕρϕσρϕ

σ þ A5ϕμϕλνϕ
λϕρϕσρϕ

σ

− A5ϕμϕνϕ
λϕρϕσρλϕ

σ − 2A5ϕμϕνϕ
λϕρϕσρϕ

σ
λ −

1

2
A5gμνϕλϕρλϕ

ρϕσϕτσϕ
τ þ A5Xϕμϕνϕ

λϕρϕρλϕ
σϕτϕτσ;

while the field equations associated to the scalar field allow to construct a current conservation equation given by

εðϕÞ ¼ ∇μJμ ¼ ∇μ

�
δL

δðϕμÞ
−∇ν

�
δL

δðϕμνÞ
��

¼ 0;

where
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Jμ ¼ JμZ þ JμG þ
X5
i¼2

JμðiÞ;

with

JμZ ¼ 2ZXϕ
μ;

JμG ¼ 2GXRϕμ;

Jμð2Þ ¼ 2A2Xϕ
μ½ð□ϕÞ2 − ϕλρϕ

λρ� − 2∇ν½A2ðgμν − ϕμνÞ�;
Jμð3Þ ¼ 2A3Xϕ

μ
□ϕϕλϕλρϕ

ρ þ 2A3□ϕϕμ
λϕ

λ −∇ν½A3ðgμνϕλϕλρϕ
ρ þ□ϕϕμϕνÞ�;

Jμð4Þ ¼ 2A4Xϕ
μϕσϕσρϕ

ρλϕλ þ A4ðXÞ½ϕμ
ρϕρλϕλ þ ϕσϕσρϕ

ρμ� −∇ν½A4ðXÞðϕμϕνρϕρ þ ϕσϕμ
σϕνÞ�;

Jμð5Þ ¼ 2A5Xϕ
μðϕσϕσρϕ

ρÞ2 þ 2A5ðXÞðϕσϕσρϕ
ρÞðϕμσϕσ þ ϕσμϕσÞ − 2∇ν½A5ðXÞϕσϕσρϕ

ρϕμϕν�:
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1 Introduction

It is an undeniable fact, whose origin goes back to the Schwarzschild solution, that the notion
of a black hole is intimately linked to the concept of spacetime singularities. In fact, it is
well-known that, under certain energy conditions, classical solutions of general relativity
exhibit singularities as a direct consequence of the so-called singularity theorems [1, 2]. The
appearance of singularities is essentially due to the classical character of the theory of general
relativity, and a quantum theory of gravity may be expected to cure such pathologies.

However, in the absence of a complete theory of quantum gravity one can search for
black hole spacetimes with a global structure similar to the well-known solutions (like the
Schwarzschild or Reissner-Nordström solutions), but in which the central singularity is absent.
Such solutions are commonly known as regular black holes. These ideas originate from the
pioneering works of Sakharov [3], Gilner [4] and also Bardeen [5] who presented the first
example of a regular black hole as an ad-hoc metric (not originating from an action). A
physical construction of the Bardeen metric as a solution of a given action was finally proposed
much later in [6]. There the authors showed that the Bardeen metric can be obtained from
the Einstein equations with a non-linear magnetic source. Although the Bardeen metric
was the first example of a regular spacetime, the first exact regular black hole solution of a
given theory was found by Ayón-Beato and Garcia [7] for the Einstein equations coupled to
a specific non-linear electrodynamic source.

Models involving non-linear electrodynamics have been fruitful in the construction of
regular solutions, see e.g. refs. [8–12], and also ref. [13] for a review. Many of these regular
black holes present a de Sitter core at the origin, and their regularity is quantified by a reg-
ularizing parameter identified with a non-linear electrodynamic charge. It is also important
to stress that the parameter of regularization is not a constant of integration but is rather an
input of the matter action. This observation has important consequences, for example on the
thermodynamic properties of these regular solutions. Indeed, depending on whether the regu-
larizing parameter is considered as a varying parameter or not, the thermodynamic properties
may be different. In order to illustrate this fact, one can note that for the Bardeen regular
black hole, the one-quarter area law of the entropy is usually violated [14] when considering
a non varying magnetic charge, while this “universal” law can be restored by promoting the
magnetic charge as a variable parameter [15]. Note that in certain non-minimally coupled
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Lagrangians analytic regular solutions were found where the mass and the charge truly are
integration constants [16, 17].

In this work we will construct regular black hole solutions, which are asymptotically
very similar to Schwarzschild, without the need of introducing an additional regularization
parameter inherent to the action. For these black holes, regularity will not be enforced by
the fine tuning of some action parameter, it will rather be achieved due to the functional
form of the regularizing function appearing in the solutions. In other words, the fall-off of
the mass term of our solutions turns out to be an analytic function with a de Sitter core at
the origin as a consequence of the field equations. The degree of regularity and its strength
are monitored by two parameters, one fixing the core to be de Sitter or higher and one fixing
the strength of the higher order term against the mass of the black hole. The regular black
holes found here are exact solutions of scalar tensor theories beyond those initially proposed
by Horndeski [18]. The regularizing function sets, as one would expect, the scalar degree of
freedom without any fine tuning of the theory.

The scalar tensor theories have higher than second derivative equations of motion and
are (still) free of Ostrogradski type pathologies [19–22]. These general Lagrangians have been
dubbed Degenerate Higher Order Scalar Tensor (DHOST) or Extended Scalar Tensor (EST)
theories [19–24], and are widely studied in the literature (see for example [25–33] for their
compact objects and [34] for a review). More precisely, we will consider the following class
of shift symmetric and parity preserving DHOST theories that contain up to second order
covariant derivatives of the scalar field (in the action),

S[g, φ] =
∫
d4x
√−g

[
K(X) +G(X)R+A1(X)

[
φµνφ

µν − (�φ)2
]

+A3(X)�φφµφµνφν

+A4(X)φµφµνφνρφρ +A5(X) (φµφµνφν)2
]
, (1.1)

where the coupling functions K,G,A1, A3, A4 and A5 depend only on the kinetic term of the
scalar field X = gµνφµφν , and where φµ = ∂µφ and φµν = ∇µ∇νφ. The coupling functions
A4 and A5 are chosen to satisfy

A4 = 1
8(G−XA1)2

{
4G

[
3(−A1 + 2GX)2 − 2A3G

]
−A3X

2(16A1GX +A3G)

+4X
[
−3A2A3G+ 16A2

1GX − 16A1G
2
X − 4A3

1 + 2A3GGX
]}
,

A5 = 1
8(G−XA1)2 (2A1 −XA3 − 4GX) (A1(2A1 + 3XA3 − 4GX)− 4A3G) (1.2)

in order to ensure the absence of Ostrogradski ghosts [19–22]. Recently, it has been shown
that regular black hole solutions for this class of theories can be constructed (including
the well known cases of Bardeen [5] or Hayward metrics [35]), see ref. [36]. The algorithm
of construction is a byproduct of extending the Kerr-Schild solution generating method to
scalar tensor theories. The key point in extending this well known method from GR is the
assumption that the kinetic term of the scalar field remains unchanged under the static
(usual) Kerr-Schild transformation. Another crucial observation that we make here is that
regular black holes cannot belong to Horndeski theory. We will see that the theories involving
regular black holes correspond to a conformal and disformal map originating from Horndeski
theory and ultimately belong to a pure DHOST theory. We will trace the reason for this to
the recent interesting work discussing singularities in scalar tensor theories [37].
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We would like to note that although the kinetic term of the scalar field will be assumed
to be only depending on the radial coordinate, this does not exclude the fact that the scalar
field can depend linearly, for example, on the time coordinate, i.e. φ(t, r) = αt+ ψ(r) where
α is a constant. This possibility is attributed to the higher order nature of DHOST theory,
and the shift invariance symmetry of the scalar field. The scalar time dependence was first
used in [38] and has been found recently to be related to the geodesics of spacetime [32]
whenever the kinetic term X is constant. In fact, in the case of higher order scalar tensor
theories, examples of compact objects with a linear time dependent scalar field have been
found, see e.g. [38–45]. In particular, stationary solutions, which are distinctively different
from the Kerr spacetime [46–48], have been recently constructed.

In our search for regular black holes we will focus on a static scalar field where X will
not be a constant function. This is a crucial requirement as X will also play the role of
the regularizing function smoothing out the geometry near the origin. Once we obtain our
regular solution we will discuss its most important properties. We will then proceed to study
its possible observational characteristics scanning from weaker to stronger gravity effects.

The plan of the paper is organized as follows. In the next section, we will explicitly write
the field equations associated to the variation of the DHOST action (1.1)–(1.2). The key steps
of the Kerr-Schild solution generating method [36] will also be outlined, in order to explicitly
construct a family of regular asymptotically flat black holes, that are solutions of some specific
DHOST action (1.1)–(1.2) with coupling functions specified in appendix A. We will analyze
the solutions and discuss the leading Post-Newtonian parameters, precession effects and null
geodesics, scanning through observable signatures. In section 3, the thermodynamic analysis
of these regular solutions will be carried out through the Euclidean method, and we will
show that the regularity condition of the solutions is incompatible with the area law of the
entropy. In spite of this, the first law of thermodynamics is shown to hold for the regular
solutions. Our conclusions will be presented in section 4.

2 Field equations and construction of regular black holes

We will be dealing with a four-dimensional scalar tensor theory described by the metric g
and a single scalar field φ whose dynamics is governed by the action (1.1) and whose coupling
functions A4 and A5 are given by (1.2). We will focus on static metrics with a scalar field
such that its standard kinetic term X = gµνφµφν only depends on the radial coordinate r,
i.e.

ds2 = −h(r) dt2 + dr2

f(r) + r2
(
dθ2 + sin(θ)2dϕ2

)
, X = gµνφµφν := X(r). (2.1)

For this ansatz, the field equations associated with the DHOST action (1.1)–(1.2) are conve-
niently written as

X[2(A1G)X +GA3] + r2
[
(KH)X + 3

4KB
]

= 0, (2.2a)

−3(BrX ′)2 + 8(BrX ′)H
(
rh′

h
+ 4

)
− 32H

[
Kr2 + 2G

f
+ 2H

(
rh′

h
+ 1

)]
= 0, (2.2b)

r2(16BXH+ 3B2)X ′2 + 8HX ′r
(
Brf

′

f
− 16HX

)
+ 16r2HBX ′′

−64H2
[(

rf ′

f
+ 1

)
+ 2G+ r2K

2fH

]
= 0, (2.2c)
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where ( )′ denotes the derivative with respect to the radial coordinate, r, while subscript X
denotes the derivation with respect to the kinetic term X. To simplify the notation, we have
defined the auxiliary functions of the action,

H(X) = A1(X)X −G(X), B(X) = A3(X)X + 4GX(X)− 2A1(X),
Z(X) = A3(X) +A4(X) +X A5(X). (2.3)

Another interesting note is the Horndeski limit [18] and the beyond Horndeski
limit [49, 50] of our general DHOST theory equations. Indeed, (quartic) Horndeski the-
ory, parameterized by G4 = G is attained with 2GX = A1 = −A2 and A3 = 0, while quartic
beyond Horndeski is given by 2GX−XF = A1 = −A2 and A3 = −2F . The function F is the
quartic beyond Horndeski term which is in a one to one correspondence with the disformal
transformation, mapping Horndeski to beyond Horndeski theory (see for example the nice
analysis in [21, 22]). In particular, we note that in both cases of quadratic Horndeski and
beyond Horndeski we have B = 0, which means that B in our field equations represents the
conformal transformation mapping beyond Horndeski to pure DHOST theory. We will come
back to this observation in a moment.

In order to be self-contained, we will briefly recall the procedure described in [36] which
allows the construction of regular black hole solutions from simple seed configurations. The
first step is to look for a simple seed solution of the field equations (which does not describe
a black hole) and schematically represent it by

ds2
0 = −h0(r)dt2 + dr2

f0(r) + r2
(
dθ2 + sin(θ)2dϕ2

)
, X0 = gµν(0)φ

(0)
µ φ(0)

ν := X0(r). (2.4)

Now, as shown in ref. [36], the equations of motion (2.2) are invariant under a Kerr-Schild
transformation of the metric, provided that the kinetic term of the scalar field is left invariant.
More precisely, it is straightforward to see that the equations (2.2) are invariant under the
following simultaneous transformations

h0(r) → h0(r)− 2µm(r)
r

, f0(r)→ f0(r)
h0(r)

(
h0(r)− 2µm(r)

r

)
, with m(r) = e

3
8

∫
dX
B(X)
H(X) ,

(2.5)

and X remains unchanged, i.e. X0(r) = X(r). Here µ is a constant that will be shown to be
proportional to the mass of the resulting solution. Our second step is to use this Kerr-Schild
symmetry (2.5) to deduce that the configuration given by,

ds2 = −
(
h0(r)− 2µ m(r)

r

)
dt2 + h0(r) dr2

f0(r)
(
h0(r)− 2µ m(r)

r

) + r2
(
dθ2 + sin(θ)2dϕ2

)
,

X(r) = gµνφµφν = X0(r), (2.6)

will satisfy the same equations as those satisfied by the simple seed solution (2.4), provided
that the mass function m(r) is given by

m(r) = e
3
8

∫
dX
B(X)
H(X) . (2.7)

Note that in order for the mass term to be non trivial (i.e. with a non-Newtonian fall-
off) we need to venture outside of beyond Horndeski theory, where B 6= 0. According to
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the observation made in the previous paragraph, B is related to the conformal degree of
freedom for pure DHOST theory. This leads us to the conclusion that we must have a
combined disformal and conformal transformation of Horndeski theory to have any hope of
constructing a regular solution. The regular solutions are crucially situated in higher order
DHOST theory-not in Horndeski or beyond Horndeski theory.

To keep things simple we make the following working hypothesis [36]

3B
8H = 1

X
=⇒ m(r) = X(r), (2.8)

Hence, starting from a seed metric, the “choice” of the mass function m(r), or equivalently
of the seed kinetic term (2.8) will be key in order to ensure the regularity of the final (mas-
sive) configuration (2.6) at the origin and at infinity. Moreover, once we fix the expression
of X0(r) as an invertible function, we will be able to specify the corresponding DHOST
theory (1.1)–(1.2), that is to determine the functions K,G,A1 and A3 (as functions of X
only) [36]. For example, in the asymptotically flat case with a seed metric f0 = h0 = 1, the
regularity at the origin will be ensured if m(r) = O(r3). Indeed, in this case the solution is
shown to exhibit a de Sitter core at the origin, ensuring that any invariant constructed out
of the Riemann tensor will be regular at the origin. Given these preliminary requirements
we see that it is essential to be in the context of DHOST theory, in order to find regular
black holes in accordance with the discussion and findings in [37]. Hence, regular black holes
are necessarily solutions of a pure DHOST theory. In other words, such regular solutions
would be images of the mapping of a combined conformal and disformal transformation of a
Horndeski solution.

2.1 Asymptotically flat regular black holes
We will first focus on the construction of asymptotically regular black holes with a flat seed
metric given by h0 = f0 = 1. In this case, following the results obtained in ref. [36], one can
easily express H and G as

H = 1
X
(
rX′
3X − 1

) , G = 1
X

(
1− rX ′

X

)
− Kr2

2 .

Now, in order to get the coupling function K, we first write

A3 = −4GX
X

+ 2A1
X

+ 8H
3X2 , A1 = H+G

X
(2.9)

and then inserting the expressions (2.9) into eq. (2.2a), we obtain, after some algebraic
manipulations,

2(HG)X + r2(KH)X + 2H
X

(4
3G+Kr2

)
= 0. (2.10)

Finally, the coupling function K is shown to be given by

K = −2
[
3X (rX ′′ + 2X ′) + r2X−1X ′3 − 7rX ′2

]

rX (rX ′ − 3X)2 .

We are now ready to construct an explicit family of regular black hole solutions. We will
opt for a (seed) kinetic term,

X(r) = X0(r) = 2
π

arctan
(
πrp

2σp−1

)
. (2.11)
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The function X depends on the integer p and the bookkeeping parameter σ. In particular,
the limiting case σ → 0 gives us the usual Schwarzschild case. Our choice is motivated from
three essential requirements emanating from the resulting metric function, h(r) = 1− 2µX(r)

r :

• First of all, for r close to the origin we have,

h(r) = 1− 2µ
(
r

σ

)p−1
+O(r3p−1), (2.12)

and hence, as shown below for p ≥ 3, σ 6= 0 , the final metric will be regular at the
origin. The de Sitter core is attained for p = 3, and increasing regularity from there
on for p > 3.

• Secondly, X asymptotes unity for large r, and as such gives for h a similar behavior at
asymptotic infinity to the Schwarzschild solution. We have,

h(r) = 1− 2µ
r

+ 8µσp−1

π2rp+1 +O(r3p+1), (2.13)

• Last but not least, the function X(r) is bijective for our coordinate range r ∈ [0,∞[.

Using the latter property one can see that the seed configuration, h0 = f0 = 1, with a kinetic
term given by (2.11), is a solution of the DHOST action (1.1)–(1.2) with coupling functions
reported in appendix A. Crucially, the action functionals are only functions of X, and the
theory parameters, σ and p. The power, p, fixes the solution’s core regularity at the origin.
Once p is fixed, the solution is regular without any fine-tuning of the parameter σ, which
has been inserted so as to track down differences from GR at σ → 0. Using therefore the
generalized Kerr-Schild transformation, one determines that the solution given by

ds2 = −

1−

4µ arctan
(

πrp

2σp−1

)

rπ


 dt2 + dr2

(
1− 4µ arctan

(
πrp

2σp−1
)

rπ

) + r2
(
dθ2 + sin(θ)2dϕ2

)
,

X(r) = 2
π

arctan
(
πrp

2σp−1

)
, (2.14)

satisfies the field equations of the DHOST action (1.1)–(1.2) with coupling functions given
in appendix A, which has been additionally verified by inserting this solution directly into
the equations of motion.

Let us now make some comments on the properties of (2.14). First of all, for p > 0,
the metric solution will behave asymptotically (r → ∞) as the Schwarzschild spacetime.
For µ > 0 and p > 0, the metric solution has an inner and an outer event horizon as
we see from the plot in figure 1. The outer horizon is an event and Killing horizon (for the
Killing vector ∂t), which is manifest by preforming the usual Eddington-Finkestein coordinate
transformation. The inner horizon is a Cauchy horizon for any timelike hypersurface situated
in the exterior spacetime where ∂t is timelike. The solution has a central curvature singularity
for 0 < p < 3. However, for p = 3, the metric solution (2.14) is regular with a de Sitter core,
while for p > 3, the family of solutions are again regular black holes with an increasingly
regular core [51]. The region internal to the inner horizon is spacelike and completely regular
at the origin. Setting p = 3 for definiteness and 2σ2 = π we find that for µext ∼ 1.13 we
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Figure 1. Metric function g00 for p = 3 and 2σ2 = π. The inner and outer horizons correspond to
the roots of the function, while for smaller masses than µext (blue dotted curve) the solution has no
horizon.

have an extremal black hole. For µext ≤ µ we have a sequence of regular black holes whereas
for smaller masses than µext we have a regular solution without horizon; spacetime is curved
but not sufficiently in order to create an event horizon. These solutions are gravitational
particle-like solutions akin to dark matter, provided they are stable.

We now proceed to scan, starting from weak up to strong gravity, the possible notable
differences of our regular solution, as compared to standard GR. We do not aim to be
extensive here, we rather give a first approach that is useful for future studies. Let us
first seek the leading PPN parameters of this solution in order to effectively see how it
compares with GR. In order to do this we effectively find a Cartesian distance coordinate
ρ =

√
x2 + y2 + z2 where (x, y, z) are harmonic coordinates suited for a Newtonian gauge.

As an example take p = 3 whereupon we get,

r = ρ+M − 4µσ2

ρ3 +O(1/ρ4). (2.15)

This coordinate system is harmonic for large distances compared to the size of the outer
event horizon. Furthermore, to leading order, it agrees with the harmonic radial coordinate
of Schwarzschild (see [52] for clarification on coordinate issues in higher PN calculations).
Such distances of the order of some 1400 Schwarzschild radii correspond to the orbits of stars
like S2 orbiting Sgr*A. Using these coordinates we can quite easily obtain the leading (see
for example [53]) PN parameters, β = γ = 1, which end up identical to GR for p ≥ 3.

We can try to go a step further and evaluate directly the precession of a star like S2
orbiting the massive compact object identified with Sgr A* (see [54] and references within).
Star S2 orbits the central, regular for our purposes, black hole, following timelike geodesics
at the equator θ = π/2. Using the Killing symmetries for rest energy per unit rest mass E
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and angular momentum per unit rest mass L we have the standard relations,

E = h(r) dt
dτ
, L = r2dφ

dτ
, (2.16)

where τ is the geodesic parameter. Transforming to u = 1/r coordinates and using the above,
it is straightforward to obtain the Binet’s modified equation governing the trajectory of S2,

d2u

dφ2 + u = µ

L2 (uXu +X) + 3µu2X + µu3Xu, (2.17)

where now u is a function the angular coordinate φ. The above equation gives us precisely
the GR case of Schwarzschild for X = 1. Binet’s original equation, valid for the Newtonian
limit, is obtained if we take X = 1 and we additionally neglect the higher order 3µu2 term.
This orbital equation is valid for any regular black hole we choose in the face of X and for
classical precession tests of solar system planets. As an example, we can set p = 3 for our
regular solution and Taylor expand for small u (or large r),

X = 1− 4σ2

π2 u
3 +O(u9). (2.18)

We get the approximate equation,

d2u

dφ2 + u = µ

L2 + εL2

µ
u2 − 16σ2ε

3µπ2 u
3 +O(u5). (2.19)

Here we have introduced ε = 3µ2

L2 as our small1 dimensionless parameter [55]. We are using
the same expansion parameter as for the case of Schwarzschild as we want to point out the
difference with the case of GR. Now expanding u = u0 + εu1, we obtain to zeroth order the
elliptic Kepler trajectory u0 = µ

L2 (1 + e cosφ), where e is the eccentricity. To linear order in
ε, keeping only the term with growing contribution we find at the end,

u ∼ µ

L2

[
1 + e cos[φ(1− εfSP )]

]
, (2.20)

where fSP = 1 − 8 µσ2

L4π2

(
1 + e2

4

)
denotes our correction beyond the GR fSP = 1 value.

Constraints from GRAVITY place fSP ∼ 1.1 ± 0.2 which in turn constrains our action
parameter σ. Note however, that given our expansion in ε we are assuming that our parameter
σ2 is big enough so as to be of the same order as the Schwarzschild correction. If we adapt our
calculation to the orbit characteristics of the S2 star orbit there will be fine-tuning involved.
Generically fSP = 1 since β = γ = 1 for our background. A similar calculation can be
undertaken using null geodesics for time delay effects akin to pulsars for example (see the
review by Johannsen [56]).

A last interesting point is to consider our solution in the strong field regime. For our
generic purposes we will pursue here the light trajectories of photons or massless particles
such as neutrinos in presence of our regular black hole. Again we follow the standard text
book procedure for equatorial geodesics but now we focus on light rays, defining b = L/E, the
apparent impact parameter, for an observer in the asymptotically flat region. The parameter
b can vary up to the closest distance photons get to the black hole without being necessarily

1In our geometrized units we have G = c2 = 1 and therefore µ(cm) = 0.742× 10−28 cm
g
µ(g).
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Figure 2. Effective potential (2.22) for different values of σ our theory parameter. In particular,
σ = 0 corresponds to the effective potential of the Schwarzschild solution for which X = 1. Varying
σ > 0 changes the root of the potential and a non-zero value actually changes the singularity to a
minimum. Increasing the value of σ further can even remove the root corresponding to the absence
of an event horizon altogether. The height of the potential maximum marks 1/b2

crit for each curve of
the potential.

eaten up by the gravitational well of the black hole. The geodesic equation takes a familiar
(particle in a potential) form,

1
2

(
dr

dτ̃

)2
+ h(r)

2r2 = 1
2b2 , (2.21)

where we have rescaled τ̃ = Lτ . Therefore the effective potential takes the form,

Veff = 1
2r2

(
1− 2µ

r
X(r)

)
, (2.22)

and critical light rings occur at the zeroes of V ′eff = 0 which are the zeroes of the equation,

r + µX ′ − 3µX = 0. (2.23)

The effective potential and its derivative are depicted in figures 2 and 3 respectively. Note
the familiar light ring solution at rR = 3µ for Schwarzschild when we set X = 1. Once we
have a zero of (2.23), r = rR we get the maximal impact parameter using (2.21),

bcrit = rR√
h(rR)

. (2.24)

The critical impact factor can be as well formulated as

bcrit = bSchwar.

(
X(rR)− 1

3X
′(rR)

) 3
2

√
X(rR)−X ′(rR)

= bSchwar.

(
rR
3µ

)√ 4σ4 + π2r6
R

π2r6
R − 24µrRσ2 + 4σ4 , (2.25)
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Figure 3. Derivative of the effective potential. One can see a small but finite shift of its root, rR,
for different values of σ as a decreasing function of σ.

where the impact factor for the Schwarzschild solution is given by bSchwar. = 33/2µ. It is easy
to see that (

rR
3µ

)
bSchwar. ≤ bcrit ≤

(
r2
R

3µ

)√
π

πr2
R − 6µ

and the lower bound is achieved for σ = 0 (the Schwarzschild limit) and at the limit σ →∞,
corresponding to the flat limit.

The determination of the light ring sets the size of the black hole shadow. The Event
Horizon Telescope (EHT) has obtained the first image of the supermassive M87 black hole.
For M87 the size of the shadow was used as a test for GR, estimating the black hole
mass [57, 58] and comparing to the independent calculation for M87’s mass given by stellar
dynamics [59]. There are a number of caveats with this calculation as a test of GR that have
primarily to do with the little knowledge of the illuminating accretion flow for M87 or the
sheer mass of the object (see in particular the critical analysis presented in [60]). Rather
than putting in the numbers we will choose here to sketch the different cases for our regular
solution as opposed to Schwarzschild. For definiteness let us fix the mass of the black hole
to µ = 1 and vary the theory parameter σ instead, in order to see how the characteristics
of the effective potential change as we sweep through our theory. Indeed we find that for
0 < σ < σext our effective potential always has a photon ring (outside of the event horizon)
and as σ is increased we have rσR < 3, the GR photon ring case. At the same time, increasing
σ, the height of the potential maximum increases and therefore the critical impact parameter
bσcrit < b0crit is always below the Schwarzschild one (again see [60]). Note also that once σ > 0
we always have a minimum of the potential. This scheme continues until we arrive at σext,
the case where (for unit mass) we have an extremal black hole. Beyond this point there is no
event horizon anymore, for µ = 1, and our theories present now two visible critical points,
one stable and one unstable. For a region of impact parameters in between the critical values
of the potential, we have bound light orbits for local light sources at r < 3 or so. This is
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a distinctive feature of the particle-like solutions and is something that differentiates them
from the regular black hole case. Furthermore, note that photons starting out from infinity
can probe into the gravitational solution to all distances. Therefore, for σ > σext there is no
longer a central shadow, but rather enhanced light rings very close to the r = 0 center. In
summary, for each given theory (where p and σ are fixed) we will have particle-like solutions
for µ < µext and regular black holes for µ > µext.

3 Thermodynamics of asymptotically flat regular black holes with a scalar
field source

We now turn to the study of the thermodynamic properties of the regular class of black hole
solutions (2.14). The thermodynamics of regular solutions is one of the aspects that is widely
studied in the literature, see e.g. [61–65]. We start by pointing out a difference of our DHOST
solution in comparison to regular black holes with non-linear electrodynamics. In the latter
case the regularization parameter is actually part of the theory, and is usually associated
with a magnetic charge. This means that the latter solution exists for a fixed value of the
magnetic charge, and that to change this value corresponds to changing the theory. A direct
consequence of this is that the regularization parameter cannot be considered as a variable
parameter, and hence must not appear in the equation of the first law of thermodynamics.
This aspect obscures the thermodynamic interpretation of regular solutions. On the contrary
in our case, the regularity of the solution (2.14) is not inherent to the presence of our action
bookkeeping parameter σ, but rather in the presence of the regularizing arctangent function
rendering the metric function smooth at the origin. In addition, as it can be seen in eq. (2.14),
the regularizing function comes with a constant µ which is an integration constant, and hence
its interpretation as a thermodynamical variable is not ambiguous.

The thermodynamic analysis of the regular solution (2.14) will be carried out with the
Euclidean approach in which the partition function is identified with the Euclidean path
integral in the saddle point around the classical solution. In practice, we consider a mini
superspace with the following ansatz

ds2 = N(r)2f(r)dτ2 + dr2

f(r) + r2dΣ2
2, φ = φ(r), (3.1)

where τ (in this section) is the Euclidean (periodic) time with 0 < τ ≤ β and, where β is the
inverse of the temperature

β−1 = T = 1
4π N(r)f ′(r)|rh , (3.2)

with rh being the radius of the horizon. In the mini superspace defined by the ansatz (3.1),
the Euclidean action IE (using the proper normalization factor) reads

IE = −1
4β
∫
N
[(P − 2Q′) f −Q f ′ + 2G+ r2K

]
+BE , (3.3)

where H,B and Z are given in (2.3), and where for simplicity we have defined,

Q = B4 r
2X ′ − 2rH, P = rX ′B + r2

4 (X ′)2Z − 2H. (3.4)
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In the Euclidean action (3.3), the term BE is an appropriate boundary term ensuring that
the solution corresponds to an extremum of the action, and at the same time it codifies all
the thermodynamic properties. After some algebraic manipulations we get,

BE = β

4 lim
r→∞

{
N(r)Q(r)X(r)

r

}
µ− π

∫
Q(rh)drh. (3.5)

On the other hand, since the Euclidean action is related to the Gibbs free energy G through

IE = β G = βM−S,

one can easily read off the expressions of the massM and of the entropy S from the boundary
term,

M = 1
4 lim
r→∞

{
N(r)Q(r)X(r)

r

}
µ, S = π

∫
Q(rh)drh. (3.6)

For the specific regular black hole solution (2.14), these expressions reduce to

M = 1
6

rh

arctan
(

1
2πr

p
hσ

1−p
) , S = 2

3

∫
πrh

arctan
(

1
2πr

p
hσ

1−p
)drh, (3.7)

while the temperature is given by

T = 1
4πrh


1− 2πσp−1prph(

π2r2p
h + 4σ2p−2

)
arctan

(
1
2πr

p
hσ

1−p
)


 .

It is clear from these relations that the mass and the entropy of the regular solution are
positive, and although we do not have a closed form of the entropy we can nonetheless verify
the validity of the first law dM = T dS. We also note that the entropy of the regular solution
does not satisfy the area law. In fact, from the generic expression as obtained in (3.6), the
only way for the entropy to satisfy the area law is that the function Q, as defined in (3.4),
must be proportional to Q(r) ∝ r. However, it is a simple matter to check that the solutions
of the field equations given by (2.2), and for an ansatz of the form (2.6) will necessarily
imply that

Q(r) ∝ r

X(r) ,

and, consequently the entropy will be proportional to one-quarter of the area only for a
constant kinetic term. On the other hand, our analysis shows that a constant kinetic term
is incompatible with the regularity of the solution. Hence, we deduce that for the DHOST
theories considered here the regularity of the solutions fitting our ansatz (2.6) will not be
compatible with the one-quarter area law for the entropy. This is not uncommon for modified
gravity theories and is understood geometrically in certain cases such as Einstein-Gauss-
Bonnet theory (see for example [66]).

Thermodynamic stability of the regular solution is addressed by computing the heat
capacity CH = T ∂S

∂T . From this definition it becomes clear that the heat capacity will provide
information about the thermal stability with respect to the temperature fluctuations, and
that a positive heat capacity is a necessary condition to ensure the local stability of the
system. Also, the critical hypersurfaces, that is those where CH vanishes or diverges, will
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Figure 4. Heat capacity of the (A.1) black hole for different values of p and σ such that 2σp−1 = π
starting at rExtremal respectively. Note that these correspond to different theories. There is a second
order phase transition at rPT. The asymptotic behavior is like ∝ −r2 at infinity. Setting p = 0
corresponds to the Schwarzschild solution, which has no phase transition.

correspond to the extrema of the temperature with respect to the entropy. For technical
reasons, it is more convenient to express the heat capacity as

CH = T
∂S
∂T

= T

(
∂S
∂rh

)(
∂T

∂rh

)−1
,

and, for the regular black hole solution (2.14) we get

CH =
2πCr2

h

(
r2p
h + 4

π2σ
2p−2

) [(
r2p
h + 4

π2σ
2p−2

)
arctan

(
1
2πr

p
hσ

1−p
)
− 2

πσ
p−1prph

]

C ,

with

C = 3 arctan
(1

2πr
p
hσ

1−p
)[ 2

π
σp−1p

( 4
π2σ

2p−2(p− 1)− (p+ 1)r2p
h

)
rph

+
(
r2p
h + 4

π2σ
2p−2

)2
arctan

(1
2πr

p
hσ

1−p
)]
− 12
π2σ

2p−2p2r2p
h .

Due to its lengthy form it is insightful to plot the heat capacities. The heat capacities are
shown in figure 4, where we have excluded the part that corresponds to negative temperatures
(akin to the presence of an internal horizon). From this picture, one can see that only small
black holes are locally stable and a critical hypersurface will emerge at some positive radius
revealing the existence of a second order phase transition, as it is the case for the non-linear
electrodynamical regular black holes, see e.g. [61–65].
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Before closing this section, we would like to address the following question: for the
DHOST theory as defined in appendix A, does there exist another solution, and if so, would
this allow for a thermodynamic stability comparison of the two solutions? In order to answer
this question, we notice that the first equation (2.2a) gives,

0 =
16
[

2
πσ

p−1 sin
(
π
2X

)]− 2
p

3π2
[

2
πp sin

(
π
2X

)− 6X
]4
X

[
−r2 cos

(
π

2X
) 2
p

+
( 2
π
σp−1 sin

(
π

2X
)) 2

p

]
F [X], (3.8)

with F [X] being an algebraic equation in X given by

F [X] = 72X2
[
p2 cos (2πX)− p cos (πX)− 2

]
− 32
π2 p

2 sin2 (πX) [p cos (πX)− 4]

+12
π
pX sin (πX)

[
p2 cos (2πX) + 3p2 − 26p cos (πX) + 26

]
.

From this it is easy to see that there are only two possibilities: either X is given by the
previous form (2.14), or X is a constant solving the constraint F [X] = 0. On the other hand,
taking the difference between (2.2b)–(2.2c) yields f(r) = h(r), so in the first case we end up
with the regular black hole. After some straightforward computations, we can establish that
only the DHOST theory defined in appendix A with p = 1 will admit two different solutions,
and one of these is a stealth Schwarzschild black hole configuration given by

h(r) = f(r) = 1− µ

r
, X = 1 + 2n, (3.9)

where n is an integer number. The thermodynamic quantities of this stealth solution are
given by

M = rh
3π , S = 2

3r
2
h, T = 1

4πrh
, CH = −4

3r
2
h, (3.10)

and as stressed before the entropy satisfies the area law because of the constant value of the
kinetic term (3.9). The comparison of the respective heat capacities can be seen in figure 5.
We can now compare the arctan−solution (2.14) for p = 1 with the stealth solution (3.9).
Using the free energy, defined as F = M − TS, one can calculate the difference of the
respective solutions at equal temperatures

∆F = Fregular − Fstealth = T

∫
F(rh)drh,

F(r) =
r
[
−4
(
r2+1

)
arctan(r)2+π

(
r2+1

)
arctan(r)−πr

][
−2r3 arctan(r)−r2+

(
r2+1

)2 arctan(r)2
]

arctan(r) [(r2 + 1) arctan(r)− r]3

It is easy to notice that the integrand F(r), goes to +∞ for r → 0 and to −∞ for r → ∞.
Hence, one would expect the stealth solution to be thermodynamically favored for small rh,
and there is the possibility that this changes for sufficiently large rh. However, because of its
lengthy integral form it is not possible to make any exact statements about this.
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Figure 5. Heat capacity of the (A.1) black hole for p = 1 and the stealth Schwarzschild solution.
This time they correspond to the same theories, even though their behaviour looks identical to before.
Further the temperature is positive everywhere, so there is no extremal value of r and the heat
capacities can be plotted from r = 0.

4 Conclusions

Making use of a generalized Kerr-Schild solution generating method, as described in [36],
we have constructed a family of regular black holes, namely solutions without curvature
singularities. They are characterized by the presence of an arctangent regularizing function,
and are regular solutions of specific higher-order scalar tensor theories known as DHOST
theories. The solutions are asymptotically flat and are accompanied by a regular scalar field.
They are characterized by a de Sitter or, increasingly regular core, inner and outer event
horizons and particle-like regular solutions. The latter appear depending on a certain theory
strength parameter σ (related to the mass) and could have a distinct phenomenology as
compared to black holes due to the absence of the horizon. Indeed we examined a number of
observable consequences of our solutions ranging from weaker to stronger gravity: from the
leading post-Newtonnian Eddington parameters to leading precession effects up to enhanced
geodesic light rings. It would be interesting to go beyond our initial calculations and check
for example echoes of our particle-like solutions as predicted in [67–69]. Very recent similar
studies have shown such effects in the case of Einstein-Gauss-Bonnet theories [70] and it
would be interesting to apply known methods for our analytic explicit solutions.

Our regular black hole solutions differ from existing models of regular solutions in several
ways. First of all, it is important to stress that the DHOST models for which regular black
holes exist are not finetuned by some regularizing parameter, which is usually the case for
regular black holes. Regularity of the solution is achieved directly by the form of the kinetic
X(r) function. As a direct consequence the regular solutions (once regularity of the core is
fixed) only depend on a unique integration constant, mass and a bookkeeping parameter σ
which measures the magnitude of the higher order effects (the limiting case σ → 0 gives GR).
This is a major difference with respect to the regular black holes of non-linear electrodynamic
models, since in those cases the mass, as well as the regularizing parameter (usually associated
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to a magnetic charge), are part of the non-linear electrodynamic Lagrangian. In the present
case, the regular solutions only depend on a unique integration constant, which is shown
to be proportional to the mass. We also note that the “usual” area law for the entropy is
not compatible with the regularity of our solution (2.6)–(2.8) and this is due to the theory’s
modified nature of gravity. This is quite common and understood in certain cases due to the
higher order nature of the theory (see for example [66]). In spite of the violation of the area
law, we have shown that the first law of thermodynamics is always satisfied. The regular
black hole solutions have a mass fall-off of the form arctan(rp)

r , where p > 0 is a parameter
of the theory. Note that examples of black hole solutions with such regular terms at the
origin have been encountered [71] as AdS solitons. We have seen that the small regular black
holes are thermodynamically stable since their heat capacity turns out to be positive and for
the range of values of the parameter ensuring the regularity solution, we have observed the
existence of second order phase transitions for all our regular black holes.

It would be interesting to question if regularity of such solutions in DHOST theories
persists once these are rotating. Given the recent progress in this direction [46–48] there may
be hope in such a direction, even analytically. Furthermore, it would be an interesting first
step to extend regular solutions to the presence of a time dependent scalar field in order to
understand how the picture of geodesics is altered with regularity. These are some of the
possible directions in this exciting field that we hope to pursue in the near future.
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A DHOST models for the regular solution (2.14)

Along the lines of [36], one can show that the DHOST action defined by

H(X)= − 2
3πX − p sin(πX) ,

G(X)= p2 sin(2πX)− 8p sin(πX) + 6πX
(p sin(πX)− 3πX)2 ,

A1(X)= 2p sin(πX)(p cos(πX)− 3)
X(p sin(πX)− 3πX)2 ,

K(X)=
p sin(π2X)

p−2
p cos(π2X)

p+2
p
(
B2p2 cos(2πX)−B2p2−24pX2 cos(πX)+28BpX sin(πX)−24X2)

3X2A
2
p (p sin(πX)− 3πX)2

,

and

A3(X) =
B(2p2(5B2+144X2)cos(2πX)+3p(B2p2−192X2)cos(πX)−3B2p3cos(3πX)−10B2p2+24BpXsin(πX)(−23p cos(πX)+2p2+43)−288X2)

3X2(Bp sin(πX)−6X)3
,
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where A = 2σp−1

π and B = 2
π and σ an unspecified constant, admits the following regular

black hole solution

ds2 = −

1−

2µ arctan
(

πrp

2σp−1

)

πr


 dt2 + dr2

(
1− 2µ arctan

(
πrp

2σp−1
)

πr

) + r2(dθ2 + sin2 θdϕ2),

X(r) = 2
π

arctan
(
πrp

2σp−1

)
. (A.1)
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Abstract In five dimensions we consider a general shift
symmetric and parity preserving scalar tensor action that con-
tains up to second order covariant derivatives of the scalar
field. A rotating stealth black hole solution is constructed
where the metric is given by the Myers–Perry spacetime
with equal momenta and the scalar field is identified with the
Hamilton–Jacobi potential. This nontrivial scalar field has an
extra hair associated with the rest mass of the test particle, and
the solution does not require any fine tuning of the coupling
functions of the theory. Interestingly enough, we show that
the disformal transformation, generated by this scalar field,
and with a constant degree of disformality, leaves invariant
(up to diffeomorphisms) the Myers–Perry metric with equal
momenta. This means that the hair of the scalar field, along
with the constant disformality parameter, can be consistently
absorbed into further redefinitions of the mass and of the sin-
gle angular parameter of the disformed metric. These results
are extended in higher odd dimensions with a Myers–Perry
metric for which all the momenta are equal. The key of the
invariance under disformal transformation of the metric is
mainly the cohomogeneity−1 character of the Myers–Perry
metric with equal momenta. Starting from this observation,
we consider a general class of cohomogeneity−1 metrics in
arbitrary dimension, and we list the conditions ensuring that
this class of metrics remain invariant (up to diffeomorphisms)
under a disformal transformation with a constant degree of
disformality and with a scalar field with constant kinetic term.
The extension to the Kerr+-de Sitter case is also considered
where it is shown that rotating stealth solutions may exist
provided some fine tuning of the coupling functions of the
scalar tensor theory.

a e-mail: olaf.baake@inst-mat.utalca.cl (corresponding author)
b e-mail: hassaine@inst-mat.utalca.cl

1 Introduction

Even though the detection of gravitational waves [1] has
raised Einstein’s four-dimensional General Relativity (GR)
to an exceptional position, this should not slow down our
desire of exploring the theories of gravity in higher dimen-
sions, as well as to study its black hole solutions. The inter-
ests in these studies are numerous and diverse. For example
one can mention the gauge/gravity duality [2] which allows
to relate the properties of black holes in some dimension
to the properties of strongly coupled quantum field theories
defined in some lower dimension. For example, by applying
the AdS/CFT machinery with a five-dimensional AdS black
hole, the authors of Ref. [3] were able to show that the ratio
of the shear viscosity and the volume density of entropy was
close to a certain universal constant, which was further con-
firmed at the Relativistic Heavy Ion Collider. From a different
point of view, it is undeniable that, using a purely mathemat-
ical approach, the study of higher-dimensional black holes
has required the development of new mathematical tools with
significant benefit for the scientific community. For a nice
review on higher-dimensional black holes see Ref. [4]. In
the same spirit we deem it important to accompany the stud-
ies of higher-dimensional black holes with modifying GR in
order to explore new promising theoretical possibilities in the
realm of gravity. From this angle, scalar tensor theories have
attracted a great deal of attention over the past two decades.
These theories can be considered as one of the simplest mod-
ifications to the theory of gravity, since one only needs to
introduce a single scalar field in addition to the metric. One
of the pioneering works in this context was provided by Horn-
deski in the seventies where he presented the most general
scalar-tensor theory with second order equations of motion
in four dimensions [5]. This requirement of not having more
than two derivatives is a sufficient condition that prevents the
theory to have a Hamiltonian that is unbounded from below.
More recently, it was shown that this virtue of the Horndeski
theories can also be extended to scalar tensor theories which
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have higher than second order equations of motion. These
latter are now known as the Degenerate Higher Order Scalar
Tensor Theories (DHOST theories) [6–11]. Many interesting
solutions have been found concerning these DHOST theo-
ries, see e.g. [12–23]. While the above-mentioned relevant
features are inherent in the four-dimensional DHOST theo-
ries, we find it interesting to also consider the extension of
general scalar tensor theories in higher dimensions in order
to explore, among other things, their possible rotating black
hole solutions.

This is precisely the aim of the present paper where we
will be investigating the possibility of constructing rotating
black hole solutions in these modified gravity theories. As is
known, this task is highly non-trivial, especially for scalar-
tensor theories, where in general the complexity and the high
degree of non-linearity of the field equations almost make
it impossible to find spinning solutions. Starting from this
observation, we will approach the problem from a very par-
ticular perspective, which can be summarized as follows.
We will start by fixing the metric background to be a vac-
uum rotating black hole spacetime, and we will investigate
whether this spacetime can be endowed with a non-trivial
scalar field such that the full equations of motion are satisfied.
Such solutions may be identified with the so-called stealth
solutions, see Refs. [24,25] for the original works on stealth
configurations. In the present case, we will show that the
vacuum Myers–Perry metric [26] in higher odd dimensions,
with equal angular momenta, can accommodate a non-trivial
scalar field in such a way that the resulting scalar tensor con-
figuration will satisfy the complete field equations of some
general scalar tensor theories containing, in particular, the
DHOST branch, and also including the sector with unitary
speed of gravitational waves. Regarding the scalar field solu-
tion, we will see that its expression merges with that of the
Hamilton–Jacobi action [27] in which the azimuthal con-
served quantities are zero, and the energy is equal to the test
particle mass. More precisely, the scalar field is shown to
be linearly time-dependent with a radial dependence in such
way that its kinetic term is a constant given by minus the
square of the test particle mass. These conditions are similar
to those found for the disformed Kerr metric in [19,28,29],
where it was shown that the restriction on the energy ensures
the scalar hair to be well defined from the event horizon up
to asymptotic infinity, while the vanishing of the azimuthal
conserved quantities guarantees the regularity at the poles.
Note that such an ansatz for the scalar field has been proven to
be fruitful for finding solutions of Horndeski/DHOST scalar
tensor theories, see Ref. [30] and also [31–33].

Following Refs. [28,29], we will make use of the stealth
scalar field solution for constructing disformal versions of the
metric solution. Surprisingly, we will establish that the odd-
dimensional Myers–Perry spacetimes with equal momenta
remain invariant (up to diffeomorphisms and redefinitions

of the constants) under a disformal transformation gener-
ated by the stealth scalar field with a constant degree of dis-
formality. This result is in itself intriguing since the disfor-
mal transformations are supposed to map solutions of some
classes of scalar tensor theories to other (different) classes,
and the resulting disformed metrics are in general quite dif-
ferent from the original ones, [17,18,34]. To illustrate this
assertion, we mention the works of Refs. [28,29] where a
disformal version of the Kerr spacetime with a regular scalar
field was constructed, and where the disformed Kerr metric
turned out to be neither Ricci flat nor circular [28]. Note that
disformal transformations in the case of static metrics were
previously considered in [35].

It is clear that the possibility of constructing rotating
stealth black hole configurations, and that the correspond-
ing scalar field leaving the metric invariant under a con-
stant disformal transformation, are highly correlated with
the particular symmetries of the metric. Indeed, it is well-
known that the Myers–Perry line element in D dimensions
can be shown to have an isometry group identified with
R × U (1)n where R corresponds to time translations and
n = [(D − 1)/2]. Nevertheless, this symmetry group in odd
dimension, D = 2N +3, with all its angular momenta equal,
ai = a, is extended to a bigger symmetry group given by
R × U (N + 1). As a direct consequence of this symme-
try enhancement, the odd-dimensional Myers–Perry space-
time with equal momenta is cohomogeneity−1, which is to
say that it only non-trivially depends on a single coordinate.
We may note that the cohomogeneity−1 character of the
Myers–Perry metrics has been proven to be of great impor-
tance in order to study the stability of theses particular odd-
dimensional Myers–Perry spacetimes, see [36], where it was
concluded that there was no evidence of instability in five
and seven dimensions in contrast with the nine-dimensional
case where an instability was found. In the present work, one
can claim with sincerity that the cohomogeneity−1 property
of the Myers–Perry metrics with equal angular momenta is
clearly responsible for its disformal invariance. We will go
further in this direction by considering a general class of
cohomogeneity−1 metrics in arbitrary dimension, and by
establishing a list of conditions for the metric, ensuring its
invariance (up to diffeomorphisms) under a disformal trans-
formation with a constant degree of disformality, and with a
scalar field whose kinetic term is constant.

The extension to the Kerr-de Sitter case is also considered
where it is shown that rotating stealth solutions may exist
provided some fine tuning of the coupling functions of the
scalar tensor theory.

The plan of the paper is organized as follows. In Sect. 2, we
will introduce the scalar tensor theories under consideration
and present their field equations in the particular case where
the scalar field is taken to have a constant kinetic term. We
will establish that for a vacuum black hole metric the com-
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plete set of field equations can be satisfied, provided that the
scalar field solves a unique constraint equation which, as we
will see, can be solved in odd dimensions. In Sect. 3, we
will start by considering the five-dimensional case where the
rotating stealth black hole will be constructed on the Myers–
Perry spacetime with equal angular momenta. We will also
see that the scalar field leaves the metric invariant under a
constant disformal transformation. These results will then
be generalized in higher odd dimensions where the Myers–
Perry spacetime with equal momenta is cohomogeneity−1.
In Sect. 4, starting from this observation, we consider a gen-
eral class of cohomogeneity−1 metrics in arbitrary dimen-
sion, and we list the conditions ensuring this class of metrics
to remain invariant (up to diffeomorphisms) under a constant
disformal transformation. The last section is concerned with
our conclusions while an Appendix is devoted to extend our
results in presence of a cosmological constant.

2 Set up of the theory

In the present work, we will be concerned with the following
shift symmetric, and parity preserving scalar tensor action
that contains up to second order covariant derivatives of the
scalar field

S[g, φ] =
∫

dDx
√−g

[
G(X)R + A1(X)

×
[
φμνφ

μν − (�φ)2
]

+ A3(X)�φ φμφμνφ
ν

+A4(X)φμφμνφ
νρφρ + A5(X)

(
φμφμνφ

ν
)2

]
,

(2.1)

Here the coupling functions G, A1, A3, A4 and A5 are func-
tions of the kinetic term, X = gμνφμφν , in order to ensure
the shift symmetry φ → φ+cst. Also, for simplicity we have
defined φμ = ∇μφ and φμν = ∇μ∇νφ. As mentioned in the
introduction, the action (2.1) can propagate healthy degrees
of freedom in four dimensions, provided the functions A4

and A5 are constrained by

A4 = 1

8(G − X A1)2

{
4G

[
3(−A1 + 2G′)2 − 2A3G

]

−A3X
2(16A1G

′ + A3G)

+4X
[
3A1A3G+16A2

1G
′−16A1(G′)2−4A3

1+2A3GG′]} ,

A5 = 1

8(G − X A1)2 (2A1 − X A3 − 4G′)

× (
A1(2A1 + 3X A3 − 4G′) − 4A3G

)
,

but for our specific task, we will not a priori consider such
restrictions on the coupling functions.

Neither will we write down the equations of motion in
all of their generality, but instead restrict their expressions
in the case of a constant kinetic term X = cst. In doing so,

the equations arising from the variation of the general scalar
tensor field action (2.1) with respect to the metric reduce to

G(X)Gμν + G ′(X)Rφμφν

−1

2
A3(X)

[
(�φ)2 − (φαβ)(φαβ)

]
φμφν

+1

2
A3(X)

[
Rαβφαφβ

]
φμφν

+A1(X)

[
− Rνλφμφλ − Rμλφνφ

λ

−1

2
gμν

[
(�φ)2 − (φαβ)(φαβ)

]

+gμν

[
Rλρφλφρ

]
+ φμν�φ + φλφλμν

]

−A′
1(X)

[
(�φ)2 − (φαβ)(φαβ)

]
φμφν = 0, (2.2)

while its variation with respect to the scalar field is a con-
served current equation given by ∇μ Jμ = 0, with

Jμ = 2

(
G ′(X)R −

[
A′

1(X) + 1

2
A3(X)

]

×
[
(�φ)2 − (φαβ)(φαβ)

]

+1

2
A3(X)

[
Rαβφαφβ

])
φμ

−2A1(X)Rμνφν. (2.3)

Note that this conservation equation is a direct conse-
quence of the shift symmetry of the action.

Further, it is remarkable to note that for any any vacuum
metric solution Rμν = 0, the field equations (2.2–2.3) will be
automatically fulfilled, provided that the scalar field satisfies
(in addition of having a constant kinetic term) the following
two conditions

(�φ)2 − (
φμν

) (
φμν

) = 0, (2.4a)

φμν �φ + φλφλμν = 0, (2.4b)

and this without imposing any restrictions on the coupling
functions, G(X), A1(X), A3(X), A4(X) and A5(X). On the
other hand, since the kinetic term of the scalar field is con-
stant, φμφμ = cst, it is easy to see that the trace of the second
equation (2.4b) yields the first condition (2.4a). As a direct
consequence, for a vacuum metric it will be sufficient for the
scalar field to have a constant kinetic term and to satisfy the
following tensorial equation

φμν �φ + φλφλμν = 0, (2.5)

to ensure the field equations (2.2–2.3) to be satisfied for any
coupling functions. This observation will be our guiding prin-
ciple in order to construct stealth rotating black hole solutions
of the general scalar tensor theory defined by (2.1). In pres-
ence of matter sources, conditions ensuring the construction
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of solutions in general quadratic higher order scalar-tensor
theories with and without cosmological constant have been
derived in [37]. However, in contrast to the present case, these
conditions put constraints on the coupling functions of the
theories instead of the scalar field (for example requiring that
A1 and A2 vanish at the constant value of X ).

Now, in order to construct the corresponding stealth scalar
field, φ, we must first make sure that its kinetic term is con-
stant. A simple option would be to identify the scalar field
with the Hamilton–Jacobi potential, S, as is done in [19], i.e.

φ ≡ S, (2.6)

where S satisfies the Hamilton–Jacobi equation of a free
particle of mass m,

gμν ∂μS ∂νS = −m2. (2.7)

This hypothesis on the scalar field (2.6) is also useful to
take advantage on the known results on the integrability of
the Hamilton–Jacobi equations. It is also clear that, in this
representation, the constant value of the kinetic term would
be given by minus the square of the mass of the particle, i.e.
φμφμ = −m2.

In what follows, we will consider vacuum spacetime met-
rics (representing rotating black holes) with a scalar field
identified with the corresponding Hamilton–Jacobi potential
(2.6), and we will discuss under which conditions the tenso-
rial equations (2.5) can be fulfilled.

3 Rotating stealth black holes and their disformal
transformations

In this section, we construct a concrete example of a rotat-
ing stealth black hole solution for the scalar theory defined
by the action (2.1) and whose field equations for a constant
kinetic term reduce to (2.2–2.3). As shown below, this will be
possible in odd dimensions, and for a Myers–Perry vacuum
metric [26] where all the angular momenta ai take a sin-
gle value, ai = a, together with a scalar field identified with
the Hamilton–Jacobi potential (2.6–2.7). Having in hand this
scalar tensor solution, namely a metric, g, and a nontrivial
scalar field, φ, it will be interesting to study the disformal
transformation of the metric

ḡμν = gμν − P(φ, X) φμ φν,

where P may be an arbitrary function of the scalar field and
its kinetic term. The interest on such consideration is mainly
due to the fact that such disformal transformations are known
to be internal maps of the scalar tensor theories considered
here (2.1). The special ingredient in our construction will
be the fact that the the scalar field responsible for the dis-
formed metric is related to the geodesics of Myers–Perry
spacetimes (2.6–2.7). In Refs. [28,29], this construction was

done for a stealth solution defined on the four-dimensional
Kerr metric, and it was shown that the deviation of the dis-
formed metric with respect to the Kerr metric is considerable.
Indeed, the disformed Kerr metric was shown to be neither
Ricci flat, nor circular, and obviously no longer a vacuum
metric. In the present case, we will see that the disformal
transformation of the Myers–Perry metric with equal angular

momenta, denoted by g MP,ai=a
μν , and with a constant disfor-

mality parameter, P , i.e.

ḡμν = gMP,ai=a
μν − P φμ φν, (3.1)

is diffeomorphic to itself, that is ḡμν ∼
diffeo

gMP,ai=a
μν .

We first analyze in detail the five-dimensional case before
considering the extension to higher odd dimensions.

3.1 Stealth on the five-dimensional Myers–Perry spacetime
and its (invariant) disformed transformation

As we have seen in the previous section, any vacuum met-
ric together with a scalar field satisfying the tensorial equa-
tion (2.5) will be a solution of the full field equations (2.2–
2.3) without any conditions on the coupling functions. In
four dimensions, this problem was considered in Ref. [19],
where the authors constructed a stealth solution defined on
the Kerr(-de Sitter) metric. Nevertheless, in this case we
would like to underline that, as the stealth scalar field does
not fulfill the conditions (2.5), restrictions on the coupling
functions are necessary. We now turn to the five-dimensional
situation where we will notice that this kind of restrictions
can be circumvented thanks to the symmetries of the vacuum
metric.

The five-dimensional Myers–Perry solution [26] of the
vacuum Einstein equations, Rμν = 0, in Boyer–Lindquist
coordinates, (t, r, θ, ϕ, ψ), reads

ds2
MP = −

(
1 − 2M

ρ2

)
dt2 + r2ρ2

�
dr2 + ρ2dθ2

+4aM sin2 θ

ρ2 dtdϕ + 4bM cos2 θ

ρ2 dtdψ

+4abM sin2 θ cos2 θ

ρ2 dϕdψ

+ sin2 θ

(
r2 + a2 + 2Ma2 sin2 θ

ρ2

)
dϕ2

+ cos2 θ

(
r2 + b2 + 2Mb2 cos2 θ

ρ2

)
dψ2, (3.2)

where we have defined
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� = (r2 + a2)(r2 + b2) − 2Mr2,

ρ2 = r2 + a2 cos2 θ + b2 sin2 θ. (3.3)

The metric (3.2) is characterized by its mass, M , and two
angular momenta denoted by a and b. Once the vacuum met-
ric is fixed, following the strategy outlined in the previous
section, we now identify the scalar field with the Hamilton–
Jacobi potential associated to the five-dimensional Myers–
Perry solution. Fortunately, it was shown in Ref. [27] that the
Hamilton–Jacobi equation of the Myers–Perry metric can be
separated into the form

S = 1

2
m2λ − Et + Sr (r) + Sθ (θ) + L1 ϕ + L2 ψ, (3.4)

where E is the energy, the Li ’s are the conserved quantities
associated with each rotation, and

Sr (r) =
∫ r √

X (r)

�
r dr, Sθ (θ) =

∫ θ √
�(θ) dθ,

with

X (r) = �

[
r2(E2 − m2) + (a2 − b2)

×
(

L2
1

r2 + a2 − L2
2

r2 + b2

)
− K

]

+2M(r2+a2)(r2+b2)

[
E+ aL1

r2 + a2 + bL2

r2 + b2

]2

,

�(θ) = (E2 − m2)
(
a2 cos(θ)2 + b2 sin(θ)2

)

− L2
1

sin(θ)2 − L2
2

cos(θ)2 + K .

Here K is a constant allowing to separate the equations of
motion, and which plays a role analogous to Carter’s con-
stant, [38].

For the identification of the scalar field with the Hamilton–
Jacobi potential (2.6–3.4), one can show after some calcula-
tions (which are somewhat too cumbersome to report them
here) that the tensorial equations (2.5) will be satisfied if: (i)
the azimuthal conserved quantities are zero, L1 = L2 = 0,
(ii) the Carter constant is zero, K = 0, (iii) the values
of the the two angular momenta of the Myers–Perry met-
ric are equal, b = a, and (iv) the energy, E , is equal to
the test particle mass, E = m. In other words, the non-
trivial stealth scalar field is linear in time and has a radial
dependence,

φ(t, r) = −mt + Sr (r) �⇒ φμφμ = −m2. (3.5)

These restrictions are similar to those obtained for
the disformed Kerr(-de Sitter) spacetimes [19,28,29] in

order to deal with a regular scalar field. We then con-
clude that a rotating stealth black hole solution of the
scalar tensor theory (2.1) with arbitrary coupling func-
tions, G(X), A1(X), A3(X), A4(X) and A5(X), can be
given by

ds2
MP,b=a

= −
(

1 − 2M

r2 + a2

)
dt2

+ r2(r2 + a2)

(r2 + a2)2 − 2Mr2 dr
2 + (r2 + a2)dθ2

+4aM sin2 θ

r2 + a2 dtdϕ + 4aM cos2 θ

r2 + a2 dtdψ

+4a2M sin2 θ cos2 θ

r2 + a2 dϕdψ

+ sin2 θ

(
r2 + a2 + 2Ma2 sin2 θ

r2 + a2

)
dϕ2

+ cos2 θ

(
r2 + a2 + 2Ma2 cos2 θ

r2 + a2

)
dψ2,

(3.6)

together with a scalar field defined by

φ(t, r) = −mt − √
2Mm

∫
r(r2 + a2)

(r2 + a2)2 − 2Mr2 dr. (3.7)

Many comments can be made concerning this solution.
Firstly, it is important to stress the importance of the linear
time dependence of the scalar field (3.7) which ensures the
existence of a non-trivial stealth configuration. Indeed, elim-
inating the time dependency of the scalar field would amount
to considering an identically-to-zero scalar field. Leaving
aside the physical interpretation of the constant m in (3.7), it
can be set to one by exploiting the fact that the tensorial equa-
tion (2.5) is quadratic in the scalar field, and hence invariant
under a rescaling by a constant, i.e. φ → 1

mφ. Also, the
Myers–Perry metric with equal momenta enjoys an exten-
sion of its symmetry given byU (1)× SU (2) = U (2), which
gives rise to its cohomogeneity−1 characteristic. Finally, we
shall mention that in the non-rotating limit, a = 0, the
solution reduces to a stealth configuration defined on the
Schwarzschild spacetime.

Surprisingly, the non-trivial scalar field (3.7) will be
shown to leave the cohomogeneity−1 metric (3.6) invari-
ant (up to diffeomorphisms) through a disformal transfor-
mation (3.1) with a constant degree of disformality P .
Indeed, in order to show this result explicitly, the disformed
Myers–Perry metric with equal momenta, as defined in (3.1),
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becomes

ds̄2
disf. MP = −

(
1 − 2M

r2 + a2 + Pm2
)
dT 2

+ r2(r2 + a2)

(r2 + a2)2 − 2M
Pm2+1

r2 + 2MPa2m2

Pm2+1

dr2

+(r2 + a2)dθ2

+4aM sin2 θ

r2 + a2 dTd
 + 4aM cos2 θ

r2 + a2 dTd�

+4a2M sin2 θ cos2 θ

r2 + a2 d
d�

+ sin2 θ

(
r2 + a2 + 2Ma2 sin2 θ

r2 + a2

)
d
2

+ cos2 θ

(
r2 + a2 + 2Ma2 cos2 θ

r2 + a2

)
d�2,

(3.8)

where, in order to eliminate the undesirable cross-terms, we
have introduced the new variables T,
 and � by means of

dt = dT + k0(r)dr, dϕ = d
 + k1(r)dr,

dψ = d� + k1(r)dr,

with

k0(r) = Pm2
√

2Mr(r2+a2)
[
(r2+a2)2+2Ma2

]
[
(r2+a2)2−2Mr2

] [
(r2+a2)2(Pm2 + 1)−2M(r2−Pm2a2)

] ,

k1(r) = −(2M)3/2Pm2r2(r2+a2)[
(r2+a2)2−2Mr2

] [
(r2+a2)2(Pm2 + 1)−2M(r2−Pm2a2)

] .

Finally, under the following redefinitions

t̄ = T
√

1 + Pm2, r̄ =
√
r2 − Pm2a2,

M̄ = M

1 + Pm2 , ā2 = a2

1 + Pm2 , (3.9)

it is easy to see that the disformed metric (3.8) is nothing but
the Myers–Perry metric (3.6) with equal angular momenta
ā and with mass M̄ . This result is surprising by itself, since
one would expect that the hair of the scalar field, m, and the
constant disformality factor, P , would have a certain impact
in the disformed metric, but this is not the case, since both
parameters can be consistently absorbed into the redefinitions
of the coordinates, and into the physical constants (3.9). This
is clearly in contrast with the four-dimensional disformed
Kerr metric [28], where the deviations from General Rela-
tivity are strongly codified by the disformality coefficient P ,
which cannot be absorbed.

Before extending these results to higher odd-dimensions,
in which the Myers–Perry spacetime can be as well a
cohomogeneity−1 metric, we would like to propose a geo-
metrical explanation of the disformal invariance. Generically,

for a disformal transformation of the form

ḡμν = gμν − Pφμ φν,

with P being constant, and with a scalar field φ such that
X = gμν∂μφ∂νφ = cst, the Riemann and Ricci tensors of
the disformed metric ḡμν can be expressed as

R̄α
βμν = Rα

βμν + 2∇[μKα
ν]β + 2Kα

γ [μKγ
ν]β �⇒ R̄μν

= Rμν + 2∇[αKα
μ]ν + 2Kα

γ [αKγ
μ]ν, (3.10)

where we have defined

Kα
μν := �̄α

μν − �α
μν = ḡαλ

(
∇(μḡν)λ − 1

2
∇λḡμν

)
. (3.11)

We know that for a constant degree of disformality, P , the
expression of the tensor Kα

μν reduces to

Kα
μν = − P

1 − PX
φαφμν. (3.12)

On the other hand, for X = cst, one can easily establish that
each term of Kα

γ [αKγ
μ]ν vanishes, as well as ∇μKα

αν , and
hence the expression of the Ricci tensor of the disformed
metric (3.10) reduces to

R̄μν = Rμν + ∇αKα
μν = Rμν − P

1 − PX
∇α

(
φαφμν

)
.

(3.13)

This last expression is noting but the Ricci tensor of any dis-
formed metric constructed by means of a constant degree of
disformality, P , and with a scalar field whose kinetic term, X ,
is constant. In our particular situation, since the Myers–Perry
metric is a vacuum metric solution, the expression (3.13)
becomes

R̄μν = − P

1 − PX
∇α

(
φαφμν

)

= − P

1 − PX

(
φμν �φ + φλφλμν

)
, (3.14)

and hence, we can conclude that the disformed metric is also
a vacuum metric if and only if the following current

jαμν := φαφμν, (3.15)

is conserved, i.e. ∇α jαμν = 0. It is easy to see that this diver-
gence is exactly the tensorial equation (2.5) that ensures our
construction of the stealth solution for any vacuum metric,
and for any coupling functions. Hence, we recover that, for a
scalar field satisfying the conditions (2.5) on a vacuum met-
ric, its disformal transformation will be as well a vacuum
metric.
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3.2 Stealth on the higher odd-dimensional Myers–Perry
solution with equal angular momenta and its disformed
transformation

In five dimensions we have seen that a stealth solution defined
on the Myers–Perry spacetime was possible only if the sym-
metry of this spacetime is enhanced to a SU (2), and that
this can be done by equating the two angular momenta. As
a direct consequence, this Myers–Perry spacetime turns out
to be a cohomogeneity−1 metric. This particular feature is
inherent to the Myers–Perry spacetimes only in odd dimen-
sions, D = 2N+3, and in the particular case of equal angular
momenta, ai = a. This will be our starting point, in order
to generalize the previously found rotating stealth black hole
solution in higher odd dimensions (D > 5).

In odd dimensions, D = 2N + 3, the cohomogeneity−1
Myers–Perry metric can be conveniently represented as

ds2
MP = −(1 − f 2(r, rM , a))dt2 + g2(r, rM , a)dr2

+h2(r, rM , a)[dψ + A jdx
j

−�(r, rM , a)dt]2 + r2ĝi j dx
i dx j , (3.16)

with the metric functions given by

g2(r, rM , a) =
(

1 − r2N
M

r2N + r2N
M a2

r2N+2

)−1

h2(r, rM , a) = r2

(
1 + r2N

M a2

r2N+2

)
,

f (r, rM , a) =
√

1 − r2

g2(r, rM , a) h2(r, rM , a)

�(r, rM , a) = r2N
M a

r2Nh2(r, rM , a)
.

Here, rM is the mass radius parameter, ĝi j is the Fubini-Study
metric on CPN with Ricci tensor R̂i j = 2(N + 1)ĝi j , and
A = A jdx j is related to the Kähler form J by d A = 2J .
Following closely the five-dimensional case, we look for a
scalar field depending on the radial coordinate, r , and linearly
in time, satisfying the constraint (2.5), and with a kinetic term
X = −m2. Such a scalar field for the metric representation
(3.16) is given by

φ(t, r) = −mt + m
∫

g(r, rM , a) f (r, rM , a)√
1 − f (r, rM , a)2

dr, (3.17)

and hence, one can easily conclude that in odd dimensions,
D = 2N + 3, the cohomogeneity−1 metric (3.16) together
with the non-trivial scalar field (3.17) will represent a rotating
stealth solution of the field equations associated to the scalar
tensor theory (2.1) without imposing any constraints on the
coupling functions of the theory.

Continuing the analogy with the five-dimensional case,
we now consider the disformed transformation of the
cohomogeneity−1 metric (3.16) using the stealth scalar field
(3.17). In order to bring the disformed metric in the same
form as (3.16), we redefine the time, t , and the angular coor-
dinate, ψ , as

dt → dt√
1 + Pm2

− Pm2 f (r, rM , a)g(r, rM , a)√
1 − f 2(r, rM , a)(1 + Pm2 − f 2(r, rM , a))

dr,

dψ → dψ

− Pm2 f (r, rM , a)g(r, rM , a)�(r, rM , a)√
1 − f 2(r, rM , a)(1 + Pm2 − f 2(r, rM , a))

dr,

and, after some algebraic manipulations, the disformed
Myers–Perry metric reads

ds̄2
disf. MP = −

(
1 − f 2(r, rM , a)

1 + Pm2

)
dt2

+
g2(r, rM , a)

(
1 − f 2(r, rM , a)

)

1 − f 2(r,rM ,a)

(1+Pm2)

dr2

+h2(r, rM , a)

(
dψ+A jdx

j−�(r, rM , a)√
1+Pm2

dt

)2

+r2 ĝi j dx
i dx j . (3.18)

Now it remains to proof that this disformed metric is diffeo-
morphic to the original cohomogeneity−1 metric (3.16). It
is easy to see that under the following redefinitions of the
constants of integration

ā =
(

1 + Pm2
) 1

2
a, r̄M =

(
1 + Pm2

)− 1
2N

rM , (3.19)

the metric functions change as

f 2(r, rM , a)

1 + Pm2 = f 2(r, r̄M , ā),
�(r, rM , a)√

1 + Pm2
= �(r, r̄M , ā)

h(r, rM , a) = h(r, r̄M , ā), g2(r, rM , a)2
(

1− f 2(r, rM , a)
)

= g2(r, r̄M , ā)
(

1 − f 2(r, r̄M , ā)
)

, (3.20)

and hence the disformed metric (3.18) is nothing but the
original Myers–Perry spacetime (3.16) with the constants of
integration given by ā and r̄M , as defined in (3.19). As in the
five-dimensional case, the scalar field’s hair, m, along with
the constant disformality parameter, P , can be reasonably
absorbed into the redefinitions of the constants of integration
(3.19). As a last remark, one can note that by redefining the
constants of integration as

xM := r NM , y := 1

a
, (3.21)
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the conditions (3.20) can be interpreted as requiring f and
� to be homogeneous functions of degree one with respect
to theses “new” integration constants, while the function h
and the determinant of the sector (t, r) of the metric, namely
det[tr ] := −g2(1 − f 2), are of degree zero, i. e.

f (r, αxM , αy) = α f (r, xM , y),

�(r, αxM , αy) = α�(r, xM , y),

h(r, αxM , αy) = h(r, xM , y),

det[tr ](r, αxM , αy) = det[tr ](r, xM , y), (3.22)

for any α ∈ R\ {0}.

4 Conditions for the disformal invariance of
cohomogeneity−1 metrics

In the previous section we have seen that the odd-dimensional
Myers–Perry metric with equal momenta remains invari-
ant by means of a disformal transformation with a constant
degree of disformality and with a scalar field given by (3.5).
This result is strongly correlated to the cohomogeneity−1
character of the Myers–Perry metric. We will go fur-
ther in this direction by considering a general class of
cohomogeneity−1 metrics (not necessarily a vacuum met-
ric), and by identifying the conditions which ensure that its
disformed transformation remains invariant (up to some dif-
feomorphisms and some redefinitions of the constants of inte-
gration). In order to achieve this task, we consider a class
of cohomogeneity−1 metrics in arbitrary, D, dimensions
parametrized as follows for latter convenience

ds2 = (−1 + gtt (r, aα)) dt2 + grr (r, aα)dr2

+2
D−2∑
i=1

g(i t)(r, aα) dt dxi

+
D−2∑

i �= j=1

gi j (r, aα) dxi dx j

+
D−2∑
i=1

gii (r, aα)(dxi )2, (4.1)

where the aα are some constants (like the mass, angular
momenta, electromagnetic charges, · · · ). Note that we do
not consider off-diagonal terms of the form gtr (r, aα)dtdr
in the ansatz (4.1), since these can always be eliminated due
to the cohomogeneity−1 property of the metric.

Following the same steps as before, a solution of X =
gμν∂μφ∂νφ = −m2 will be given by

φ(t, r)= −mt−m
∫ √

−grr (r, aα)
(

1+ |�n(r, aα)|
|�n+1(r, aα)|

)
dr,

(4.2)

where |�n+1| and |�n| are the determinants of the following
reduced metrics

|�n+1| =

∣∣∣∣∣∣∣∣∣∣∣

−1 + gtt (r, aα) gtx1(r, aα) . . . gtxn (r, aα)

gtx1(r, aα) gx1x1(r, aα) . . . gx1xn (r, aα)
...

...
. . .

...

gtxn (r, aα) gx1xn (r, aα) . . . gxnxn (r, aα)

∣∣∣∣∣∣∣∣∣∣∣
,

|�n| =

∣∣∣∣∣∣∣

gx1x1(r, aα) . . . gx1xn (r, aα)
...

. . .
...

gx1xn (r, aα) . . . gxnxn (r, aα)

∣∣∣∣∣∣∣
.

With these definitions, it is clear that the determinant of the
cohomogeneity−1 metric (4.1) denoted by det(g) is given
by

det(g)(r, aα) = |�n+1(r, aα)| grr (r, aα). (4.3)

Using the scalar field defined by (4.2), the disformed metric,

ds̄2
disf = ds2 − P (dφ)2 , (4.4)

yields, after eliminating the undesired off-diagonal term dt−
dr (which is possible since we have a cohomogeneity−1
metric),

ds̄2
disf =

(
−1 − Pm2 + gtt (r, aα)

)
dt2 + ḡrr (r, aα)dr2

+2
D−2∑
i=1

g(i t)(r, aα) dt dxi (4.5)

+2
D−2∑

i �= j=1

gi j (r, aα) dxi dx j+
D−2∑
i=1

gii (r, aα)(dxi )2,

(4.6)

where, for simplicity we have defined

ḡrr (r, aα) := (1 + Pm2) |�n+1(r, aα)| grr (r, aα)

|�n+1(r, aα)| − Pm2|�n(r, aα)|
= (1 + Pm2) det(g)(r, aα)

|�n+1(r, aα)| − Pm2|�n(r, aα)| . (4.7)

Hence, although the form of the metric is preserved by the
disformed metric, there is a priori no reason for the latter to
be diffeomorphic to the original metric (4.1), unless, as we
will see now, the metric functions satisfy certain conditions.
First of all, by noting that the dt2−term can be rewritten as

(
−1 − Pm2 + gtt (r, aα)

)
dt2 =

(
−1 + gtt (r, aα)

1 + Pm2

)
dt̄2

with dt̄ = dt
√

1 + Pm2, it is easy to see that the disformal
factor 1 + Pm2 can be absorbed if the metric function gtt
satisfies the following homogeneity condition

gtt (r, aα)

1 + Pm2 = gtt (r, āα), (4.8)
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where āα are some redefinitions of the constants aα , i.e.

āα = fα
(
aα, P,m2

)
. (4.9)

Now, because of the time redefinition, we also need to require
that the off-diagonal terms on the t−row must satisfy as well
a homogeneity condition given by

git (r, aα)√
1 + Pm2

= git (r, āα). (4.10)

In addition, even if the gi j− terms are not affected by the
disformal transformation, nor by the time redefinition, we
still have to demand that they remain invariant under the
redefinitions (4.9), that is

gi j (r, xk, aα) = gi j (r, xk, āα). (4.11)

Finally, the condition on the dr2−disformed term (4.7) that
will ensure the full disformed metric to be diffeomorphic to
itself reads

|�n+1(r, aα)| grr (r, aα)

|�n+1(r, aα)| − Pm2|�n(r, aα)|
= 1

1 + Pm2 grr (r, āα). (4.12)

Nevertheless, it is simple to see that if the conditions (4.8–
4.11) are fulfilled, we will automatically have

|�n+1(r, aα)| − Pm2|�n(r, aα)|
= (1 + Pm2)|�n+1(r, āα)|, (4.13)

and as a direct consequence, the condition (4.12) will be
achieved if

|�n+1(r, aα)| grr (r, aα) = |�n+1(r, āα)| grr (r, āα). (4.14)

From the definition (4.3), this last equation is equivalent to
requiring the determinant of the metric to remain invariant
under the redefinition of the constants of integration (4.9),
i.e.

det(g)(r, aα) = det(g)(r, āα). (4.15)

To summarize, we have shown that, in order for the
cohomogeneity−1 metric (4.1) to remain invariant under a
disformal transformation generated by a scalar field with con-
stant kinetic term, and with a constant factor of disformality,
P , the metric functions have to satisfy the listed conditions
(4.8), (4.10), (4.11) and (4.15). In particular, these conditions
ensure that the hair of the scalar field, m, and the constant,
P , can be absorbed into the redefinitions of the constants
(4.9). It is also easy to check that in the case of the odd-
dimensional Myers–Perry metric with equal momenta these
conditions reduce to the homogeneous conditions listed pre-
viously (3.22).

5 Conclusions

The main objective of the present work is to look for non-
trivial rotating black hole solutions of some general extended
scalar tensor theories. Here, we restrict our study to a general
shift symmetric and parity preserving scalar tensor action that
contains up to second order covariant derivatives of the scalar
field. In order to tackle the problem of finding non-trivial
rotating configurations of the field equations, we fix the met-
ric spacetime to be a vacuum rotating black hole spacetime,
and we investigate whether this metric can accommodate a
non-trivial scalar field. Since the metric is fixed and corre-
sponds to a vacuum metric, it is reasonable to identify these
solutions with stealth configurations. In order to ensure that
the solution will not require any fine-tuning of the coupling
functions, our ansatz for the scalar field is such that its kinetic
term is assumed to be constant. In doing so, we prove that
such a scalar field has to satisfy a single tensorial equation
(2.5), and this solution would exist for any coupling func-
tions of the theory. Our hypothesis on the scalar field is also
useful to identify it with the Hamilton–Jacobi potential, and
to take advantage on the known results on the integrability
of the Hamilton–Jacobi equations.

In four dimensions, it was known that the condition (2.5)
cannot be satisfied in the Kerr metric. Starting from this
observation, we consider the problem of finding rotating
stealth black hole solutions defined on the five-dimensional
Myers–Perry metric. In doing so, we have noticed that such
an ansatz is not appropriate, unless we impose some restric-
tions on the metric, and on the scalar field. In particular,
the angular momentum parameters of the Myers–Perry met-
ric must be chosen to be equal. This restriction is known to
enhance the symmetry group of the metric to aU (2) symme-
try, and allows to express the metric components entirely as
functions of a single (radial) coordinate. In addition, we have
shown that the scalar field solution must depend linearly on
time and on the radial coordinate (3.5). The non-trivial scalar
field solution corresponds to the Hamilton–Jacobi potential
in which the energy must be given by the particle mass,
the conserved quantities associated to each rotation must be
taken to be zero, and where the equivalent of the Carter’s
constant is taken to be zero, K = 0.

Interestingly enough, we have also shown that the dis-
formed cohomogeneity−1 Myers–Perry spacetime obtained
using this stealth scalar field is diffeomorphic to itself. This
means that the hair of the scalar field identified with the par-
ticle mass and the constant disformality parameter can be
consistently absorbed into further redefinitions of the mass
and of the single angular parameter of the disformed metric.
In other words, the invariance of the disformal transforma-
tion can be viewed as a map that brings a rotating black
hole configuration with mass M and angular momentum a to
another rotating configuration with rescaled mass and angu-
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lar momentum, and where this rescaling is quantified by the
hair and the disformality parameter. The invariance of the
cohomogeneity−1 Myers–Perry spacetime under a disfor-
mal transformation can also be explained from the transfor-
mation of the Ricci tensor (3.14) together with the fact that
the condition (2.5) rescales with an overall factor of 1

(1−PX)2

under a disformal a transformation, i.e.

∇̄μ∇̄νφ �̄φ + ∇̄λφ
(∇̄λ∇̄μ∇̄νφ

)

= 1

(1 − PX)2

(
∇μ∇νφ �φ + ∇λφ

(∇λ∇μ∇νφ
) )

.

(5.1)

This would imply that for any vacuum metric with a scalar
field satisfying the tensorial equations (2.5), its disformal
transformation generated by the scalar field would as well be
a solution of the field equations (2.2). Also, since the kinetic
term, X , of the non-trivial stealth scalar field is constant, one
could easily consider more general disformal and conformal
transformations that respect the symmetry φ → φ + cst, i.e.

ḡμν = A(X) gμν − P(X) φμφν,

and this will not affect our results. All these results are
shown to hold in higher-odd dimensions, where the Myers–
Perry metric with equal momenta is known to be of
cohomogeneity−1 class. Starting from this observation, we
have listed the conditions on a general class of
cohomogeneity−1 metrics, ensuring its invariance (up to
diffeomorphisms) under a disformal transformation with a
constant degree of disformality and with a scalar field with
constant kinetic term. Finally, in the appendix, we consider
the extension to the five-dimensional Kerr–de Sitter met-
ric, where it is shown that rotating stealth solutions exist,
provided some fine tuning of the coupling functions of the
extended scalar tensor theory.
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Appendix: Rotating stealth solution with an Einstein
space

The rotating stealth black hole solutions defined on the odd-
dimensional cohomogeneity-1 Myers–Perry metric can also
be extended in the presence of a cosmological constant with
some subtleties as we shall see. In this appendix, we present
in detail the five-dimensional case, but its extension to higher
odd-dimensions is straightforward.

In order to achieve this task, we consider the following
scalar tensor theory

S[g, φ] =
∫

d5x
√−g

[
K (X) + G(X)R + A1(X)

×
[
φμνφ

μν − (�φ)2
]

+A3(X)�φ φμφμνφ
ν

+A4(X)φμφμνφ
νρφρ + A5(X)

(
φμφμνφ

ν
)2

]
,

(5.1)

whose field equations for a constant kinetic scalar field reduce
to

−1

2
K (X)gμν + K ′(X)φμφν

+G(X)Gμν + G ′(X)Rφμφν

−1

2
A3(X)

[
(�φ)2 − (φαβ)(φαβ) − Rαβφαφβ

]
φμφν

+A1(X)

[
− Rνλφμφλ − Rμλφνφ

λ

−1

2
gμν

[
(�φ)2 − (φαβ)(φαβ)

]

+gμν

[
Rλρφλφρ

]
+ φμν�φ + φλφλμν

]

−A′
1(X)

[
(�φ)2 − (φαβ)(φαβ)

]
φμφν = 0, , (5.2)

and the conserved scalar field current, ∇μ Jμ = 0, with

Jμ = 2

(
G ′(X)R −

[
A′

1(X) + 1

2
A3(X)

]

×
[
(�φ)2 − (φαβ)(φαβ)

]

+1

2
A3(X)

[
Rαβφαφβ

]
+ K ′(X)

)
φμ

−2A1(X)Rμνφν. (5.3)

In analogy with the Myers–Perry case, we consider the
cohomogeneity−1 five-dimensional Kerr-de Sitter metric
[39] satisfying Rμν = 4λgμν ,
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ds2 = − �

ρ2

[
dt − a

�a

(
sin2 θdϕ + cos2 θdψ

) ]2

+�a sin2 θ

ρ2

[
adt− ρ2

�a
dϕ

]2

+�a cos2 θ

ρ2

[
adt− ρ2

�a
dψ

]2

+ (1 − r2λ)

r2ρ2

[
a2dt−aρ2

�a

(
sin2 θdϕ+ cos2 θdψ

) ]2

+ρ2

�
dr2 + ρ2

�a
dθ2, (5.4)

where we have defined

� = 1

r2 (r2 + a2)2(1 − r2λ) − 2M,

�a = 1 + a2λ, ρ2 = r2 + a2.

For an Einstein metric satisfying Rμν = 4λgμν , it is easy to
see that the field equations (5.2) reduce to

[
−1

2
K (X) − 6λG(X) + 4λA1(X)X

−1

2
A1(X)

(
(�φ)2 − (φαβ)(φαβ)

)]
gμν

+
[
K ′(X) + 20λG ′(X) − 8λA1(X) − A′

1(X)

×
(
(�φ)2 − (φαβ)(φαβ)

)

−1

2
A3(X)

(
(�φ)2 − (φαβ)(φαβ) − 4λX

)]
φμφν

+A1(X)
(
φμν �φ + φλφλμν

)
= 0. (5.5)

We do not pretend to solve these equations in full generality
but instead opt for a strategy similar to the asymptotically flat
case. Indeed, we will consider a scalar field whose kinetic
term is a constant, X = −m2, that is

φ(t, r) = −mt − m
∫

r(r2 + a2)
√

λ(r2 + a2)2 + 2M

(r2 + a2)2(1 − λr2) − 2Mr2

dr �⇒ φμφμ = −m2. (5.6)

Since we are considering the de Sitter case λ > 0, the scalar
field is well defined. Nevertheless, one can see that in contrast
with the asymptotically flat case, the scalar field, as defined
by (5.6), does not satisfy the tensorial conditions (2.5), but
instead

φμν �φ + φλφλμν = 4λφμφν + 4m2λgμν. (5.7)

This might seem like an obstruction, but given the structure
of the Eq. (5.5), these can be recast using the relation (5.7)

into[
−1

2
K − 6λG − 6m2λA1

]
gμν

+
[
K ′ + 20λG ′ − 4λA1 − 12m2λA′

1 − 8m2λA3

]
φμφν = 0,

(5.8)

where we have explicitly used that X = −m2, as well as
the trace of Eq. (5.7) which yields (�φ)2 − (φαβ)(φαβ) =
12m2λ. Now, since gtr = 0 while φtφr �= 0, each bracket
of (5.8) must vanish independently which in turn implies the
conditions

K (X) = −12λ
(
G(X) − X A1(X)

)
,

G ′(X) + A1(X) + 3X A′
1 + X A3(X) = 0. (5.9)

In [37] different conditions, for example requiring that A1

and A2 vanish at the constant value of X , have been imple-
mented to look for solutions of more general quadratic theo-
ries.

It is also straightforward to see that under these restric-
tions, the current Jμ as defined in (5.3) vanishes identically,
and hence the equations of motion for the scalar field are well
verified. Hence, we conclude that the Kerr–de Sitter metric
(5.4) together with the scalar field (5.6) will be a solution
of the field equations (5.2–5.3) provided that the coupling
functions are tied as (5.9).

Finally, as in the asymptotically flat case, the disformed
metric generated by the scalar field (5.6) with a constant
degree of disformality, ds̄2 = ds2 − P(dφ)2, is as well an
Einstein metric. Indeed, combining the equations (3.13) and
(5.7), one gets

R̄μν = Rμν − P

1 − PX

[
4λφμφν + 4m2λgμν

]

= 4λgμν − P

1 + Pm2

[
4λφμφν + 4m2λgμν

]

= 4λ

1 + Pm2 ḡμν.

Generalizations to higher odd dimensions can be done with
the Kerr–de Sitter metric with equal momenta given in [40].
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Chapter III
Quantum effects in curved space-times

This chapter discusses possible quantum effects around black holes. The starting point will be a
little overview of the field of quantum gravity, followed by a motivation as to why it is interesting
to consider semiclassical gravity. Then a work about the backreaction of a quantum scalar field
on an overspinning BTZ geometry is presented. This is a work in progress in collaboration with
Jorge Zanelli.
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1 How to (not) quantize gravity
In the previous chapters, we were solely concerned with theories of gravity in the absence
of quantum effects. But why not go beyond classical effects? Let us consider regions where
the effects of gravity are strong, for example in the vicinity of black holes or other compact
astrophysical objects like neutron stars. It would be foolish to assume that these regions are
devoid of microscopic particles and therefore, we need to understand how gravity interacts with
these particles on a quantum level. Even worse, black hole solutions in general relativity always
contain a singularity close to which classical physics breaks down, and so it could be an indication
for the need of including quantum effects into the theory. In the previous chapter we have shown
that classical modifications can avoid these singularities and therefore one may believe that
the observational effects in strong gravitational fields are governed by classical physics and a
quantum description is not necessary. But even then, there is still the question of what happened
close to the big bang. There is no way that this primordial, densely packed soup of particles
can be entirely described within the framework of classical physics. In these extreme regions,
one may even assume that space-time itself undergoes quantum fluctuations. The treatment of
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gravity differs drastically from the other three fundamental interactions of physics, so how do
we combine gravity and quantum field theory? Naively, the answer is straightforward: since
general relativity can be written as a classical field theory, we just need to quantize it, following
the usual procedure when going from classical to quantum field theory. It is no secret that we
will eventually run into trouble due to the non-renormalizability of GR. Any textbook on QFT
will explain that whether a theory is renormalizable or not depends on the mass dimension of its
coupling constant. If it is positive, as is the case of GR, then the theory is not renormalizable.
Let us sketch how this happens for gravity through an example. Consider the variation of flat
space-time1

gµν = ηµν +
√
Ghµν , (1.1)

with G = 16πGN and GN being the Newton constant. The choice of this normalization factor
will become clear below. Remember that the stress energy tensor in GR is defined through the
variation of the matter action with respect to the metric:

Tµν(x) = − 2√−g
δSM
δgµν(x) . (1.2)

Then, expanding the matter action SM to first order in h, we get something of the form

SM [h] = SM [h = 0]−
∫
d4x

[1
2hµνT

µν +O(h2)
]
. (1.3)

In analogy to the photon field coupling to the electromagnetic current, we can interpret hµν as
the graviton field that couples to the matter (or actually anything with energy and momentum)
through the stress energy tensor. Expanding the scalar curvature, the perturbative action reads
schematically

S ∼
∫
d4x

(
∂h∂h+

√
Gh∂h∂h+Gh2∂h∂h+ · · ·+

√
GhT + . . .

)
. (1.4)

Note that the perturbative action of gravity is an infinite series, but this is all we need here.
The first term corresponds to the graviton propagator, which is properly normalized due to the
factor we introduced in equation (1.1). The second and third terms represent the self interaction
terms of the graviton. We can see that there are three- and four-point vertices. According to
this, the first order Feynman diagrams of a graviton-graviton scattering process are:

� =� +�
+� +�+ . . .

Let us take a look at the one-loop diagram of the three-point vertices. A vertex goes as k2 and
the propagator as 1/k2, and so the diagram diverges like

∫
d4k(k4/k4) =

∫
d4k ∼ k4. The next

loop order adds three more propagators, two more vertices and another integral, increasing
1 We could as well expand around a curved metric.
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the degree of divergence by two to ∼ k6. This goes on and on indefinitely, with every order
being worse than the previous. To remedy this, we would have to introduce infinitely many
counterterms, which clearly is not feasible. Thus, a modification to GR is needed. One option
is to modify it classically in such a way that it becomes renormalizable. However, by now,
GR is enjoying a tremendous amount of experimental evidence with an impressive accuracy,
which puts strong constraints on these theories. Another option is a fundamentally different
theory that contains general relativity as an effective theory. Nowadays, there are numerous
such attempts. One of the difficulties of this approach is that quantum gravitational effects only
appear at length scales near the Planck scale that is only accessible with enormous energies.
Even with modern technology, these energies cannot be reached, and so it is not possible to
experimentally rule out most of these new theories. So, how do we choose from this swamp of
possibilities? We may want to get a better understanding of what these theories have to be
capable of before we can have a well-informed opinion on this. Therefore, we need to have a
better understanding of the regimes close to the breakdown of the established theories. We can
achieve this by studying the behavior of quantum fields in curved space-time, that is, we keep
gravity as it is and only quantize the matter fields in an underlying space-time.

1.1 Semiclassical gravity

Due to the difficulty of finding a theory that unifies general relativity with quantum field
theory, a good way of developing a better understanding of the issue is to give an approximate
description of quantum gravity. This is done in the model of semiclassical gravity, where we
treat the matter fields as being quantum while keeping the gravitational field classical. Since
the background metric is not flat anymore, the behavior of the matter fields is now governed by
the theory of quantum fields in curved space-time. We cannot derive the equations of motion
directly from an action principle, but rather replace the stress energy tensor in the classical
Einstein equations with the renormalized expectation value of its quantum operator:

Gµν = κ 〈ψ|T̂µν |ψ〉 , (1.5)

where ψ indicates the quantum state of the matter fields. From now on, we will omit the hat and
abbreviate the renormalized stress energy tensor (RSET) as 〈Tµν〉. Solving these semiclassical
Einstein equations is a highly difficult task in (3+1)-dimensions, and to the best of our knowledge
it has not been achieved for black hole space-times yet (at least not with an explicitly calculated
RSET without further approximations). It is therefore natural to study a simpler model that
still shares the important conceptual features of GR, for example by going to (2+1)-dimensions.
Even though the dynamics of this model is quite different from standard GR, it still allows us
to learn more about the general analysis of many problems, for instance, the construction of
states and observables, or the different approaches to quantization. The classical solution we
have at hand is the BTZ metric (see section 1 of the first chapter), so we will have to include a
cosmological constant:

Gµν − l−2gµν = κ 〈Tµν〉 . (1.6)

In the next section, a work in progress in collaboration with Jorge Zanelli is presented, where
we are calculating the quantum back reactions of a massless, conformally coupled scalar field on
the BTZ metric. We will outline some preliminaries here that will not appear in the publication.
Before we can calculate the quantum operator, we have to take a look at the classical equations.
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The action of the model reads

S =
∫
d3x
√−g

[
R+ 2l−2

2κ − 1
2g

µν∇µφ∇νφ−
1
16Rφ

2
]
, (1.7)

and results in the field equations

Gµν − l−2gµν = κTµν ,(
�− 1

8R
)
φ = 0.

(1.8)

with the classical stress energy tensor

Tµν = ∇µφ∇νφ−
1
2gµνg

λρ∇λφ∇ρφ+ 1
8 (gµν�−∇µ∇ν +Gµν)φ2. (1.9)

Using the equation of motion for φ, together with the fact that Gµν = l−2gµν holds for AdS3,
it is straightforward to show that it is conserved and traceless. From this expression, we can
obtain the quantum stress tensor 〈Tµν〉 by taking the coincidence limit of the corresponding
point-split expectation value (see, for example, [101–103]):

κ 〈Tµν(x)〉 = πlP lim
y→x

(
3∇xµ∇yν − gµνgλρ∇xλ∇yρ −∇xµ∇xν −

1
4l2 gµν

)
G(x, y), (1.10)

where G(x, y) is the Green’s function of the differential operator acting on the scalar field in
equation (1.8). To renormalize the quantum stress energy tensor, we follow the Hadamard-
regularization method. It is implemented at the level of the Green’s function and consists of
subtracting a locally determined elementary solution with the same singularity structure in the
coincidence limit y → x. Therefore, instead of using the divergent propagator of the scalar field
in (1.10), we replace it with the regularized expression G(x, y)reg:

G(x, y)reg = G(x, y)−Gdiv(x, y). (1.11)

But what does the scalar field propagator look like? Consider the embedding of AdS3 into four
dimensional flat space through

ηabx
axb = −(x0)2 + (x1)2 + (x2)2 − (x3)2 = −l2 (1.12)

Then the two-point function of the scalar field shown to be [101, 104–108]

G(x, y) = 1
|x− y| . (1.13)

The derivation is not that trivial, but it is easy to show that it satisfies the same equation of
motion as the scalar field:

(
∇µ∇µ + 3

4l2
)
G(x, y) = 0, x 6= y. (1.14)

To achieve this we define the projection operator for AdS3 as

P ab = ηab + xaxb

l2
, (1.15)
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which satisfies P abxb = 0 and P abηab = 3. This allows us to re-write the three-dimensional
d’Alembert operator in terms of the embedding coordinates:

∇µ∇µ =gµν(∂µxc)(∂νxd)P ac∂a
(
P bd∂b

)

=ηcdP ac∂a
(
P bd∂b

)
= P ad∂a

(
P bd∂b

)

=P ab∂a∂b + 1
l2
P ab (δcaxb + ηabx

c) ∂c

=P ab∂a∂b + 1
l2
P abηabx

c∂c

=P ab∂a∂b + 3
l2
xa∂a.

(1.16)

With this at hand, it is straightforward to insert the propagator into the scalar field equation of
motion. We shall compute the relevant terms here, starting with

xa∂a|x− y|−1 = −xa xc − yc|x− y|3 = l2 + ηabx
ayb

|x− y|3 , (1.17)

and

P ab∂a∂b|x− y|−1 = P ab
[3 (xa − ya) (xb − yb)

|x− y|5 − ηab
|x− y|3

]
= 3Pabyayb
|x− y|5 −

3
|x− y|3 . (1.18)

Inserting these into the equation, then yields

∇µ∇µG(x, y) =
(
P ab∂a∂b + 3

l2
xa∂a

)
|x− y|−1

=3Pabyayb
|x− y|5 −

3
|x− y|3 + 3

l2
l2 + ηabx

ayb

|x− y|3

=3Pabyayb
|x− y|5 + 3

l2
ηabx

ayb

|x− y|3

= 3
l2

(
−l4 + xaxby

ayb
)
− 2xaya

(
l2 + xby

b
)

|x− y|5

=− 3
l2

(
l2 + xay

a
)2

|x− y|5 = − 3
4l2G(x, y)

(1.19)

and hence the field equation is satisfied.
These are the principal concepts that are used during our calculations. We will present it in

the following section.
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2 Quantum backreaction for overspinning BTZ geometries
Since the dawn of general relativity, many black hole solutions to Einstein’s field equations have
been found. And all these black holes are hiding something, namely a space-time singularity.
Furthermore, one can even tune the parameters of such a solution to remove its event horizon
and obtain naked singularities, which is an exact solution to the classical equations of general
relativity as well. And to top it off in the vicinity of these singularities causality is greatly
violated, which is why Roger Penrose suggested the existence of the (weak) cosmic censorship
hypothesis [22]. The cosmic censorship hypothesis states that singularities must be hidden
behind an event horizon. However, classically these solutions cannot be rules out on theoretical
grounds, and it is difficult to prove whether all possible processes forming a black hole lead to
the occurrence of an event horizon, but at least so far no naked singularity has been found in the
universe. One could argue that in such a strong gravity regime general relativity breaks down
and there is the need for a theory that combines gravity with quantum effects, which hopefully
gets rid of these singularities altogether or at least makes sure that every one of them is hidden
behind a horizon. In the latter case, at least one would not need to worry anymore about them,
since there would be no causal connection from the singularity going outside to an observer.
Now, with every year passing by, we have more and more experimental and observational

confirmation of the predictions of general relativity. This puts very tight constraints on any
possible theory incorporating both, general relativity and quantum field theory. Since both
theories are so well established, it is therefore sensible to start looking at common regimes where
one can use a semi-classical approach to obtain a better understanding of the issues at hand.
Calculating quantum effects on a curved background space-time is notoriously difficult, but
there is a wonderful testing ground where these problems become a lot easier yet still provide
meaningful information to learn from: The (2+1)-dimensional Bañados-Teitelboim-Zanelli (BTZ)
space-time. In previous works (cf. [108] and references therein) this has been done for several
cases of the BTZ geometry, the static black hole, the rotating and extremal black holes, and the
conical singularity. Here we are concerned with the so-called overspinning geometry of the BTZ
space-time, which is essentially when the angular momentum is greater than a certain threshold
(cf. next section). For this type of geometry, we include the quantum effects in the stress-energy
tensor of a conformally coupled massless scalar field and solve the resulting semi-classical Einstein
equations. The quantized stress-energy tensor for matter fields contains ultraviolet divergences
and therefore has to be renormalized. With this at hand, we can perturbatively solve the
equations to obtain the quantum-backreacted metric. Our results show that the quantum effects
indeed cause the singularity to be hidden behind an event horizon, thus supporting the (weak)
cosmic censorship conjecture.

2.1 Overspinning BTZ space-time

We will give a brief review of the classical background that is being used, that is the rotating
BTZ metric [26, 109], which is given by:

ds2 = −
(
r2

l2
−M

)
dt2 − Jdtdθ +

(
r2

l2
−M + J2

4r2

)−1

dr2 + r2dθ2, (2.1)

where the coordinate ranges are: −∞ < t < ∞, 0 < r < ∞ and 0 ≤ θ < 2π, Λ = −l−2 is the
cosmological constant, and M and J are mass and angular momentum respectively.
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To classify the space-times that are given for different values of M and J , one has to study the
four roots of the equation grr = 0, which take the form

λ± = l

2



√
M + J

l
±
√
M − J

l


 , (2.2a)

λ̃± = −λ±. (2.2b)

The different classifications are explained in detail in [109], however, in our case we will only
concern ourselves with the parameter relation |J | > Ml, the so-called overspinning case. Its
classical properties are studied in [28], so here we will be looking into its quantum corrections,
as has been done for other parameter ranges in [108, 110–112]. To achieve this, note that in
general the BTZ space-time can be obtained as a quotient space of the universal covering of
anti-De Sitter space-time (CAdS3), using an appropriate Killing field to identify certain points
[109]. Remember that the AdS3 pseudosphere can be embedded in (R(2,2), η) through

ηABX
AXB = −

(
X0
)2

+
(
X1
)2

+
(
X2
)2
−
(
X3
)2

= −l2. (2.3)

Then, in the overspinning geometry, we can parametrize the embedding coordinates for J > 0
as [28]:

X0 = l

2
√
A+ 1 cosh [a (t/l − θ)] {cos [b (θ + t/l)]− sin [b (θ + t/l)]}

+ε l2
√
A− 1 sinh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]} ,

(2.4a)

X1 = l

2
√
A+ 1 sinh [a (t/l − θ)] {cos [b (θ + t/l)]− sin [b (θ + t/l)]}

+ε l2
√
A− 1 cosh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]} ,

(2.4b)

X2 = l

2
√
A+ 1 sinh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]}

−ε l2
√
A− 1 cosh [a (t/l − θ)] {cos [b (θ + t/l)]− sin [b (θ + t/l)]} ,

(2.4c)

X3 = l

2
√
A+ 1 cosh [a (t/l − θ)] {sin [b (θ + t/l)] + cos [b (θ + t/l)]}

−ε l2
√
A− 1 sinh [a (t/l − θ)] {cos [b (θ + t/l)]− sin [b (θ + t/l)]} ,

(2.4d)

with
a =

√
|J |/l +M

2 , b =
√
|J |/l −M

2 , (2.5)

A =
2
√

J2
4 + r4

l2 −Mr2
√
J2 − l2M2 , (2.6)

and where ε = 1 for 2r2 ≤ l2M and ε = −1 for 2r2 ≥ l2M . Note that both cases will lead to
the same RSET in the end, and hence to the same results. Without loss of generality, we will
assume J > 0 for the rest of this work.
The rotating BTZ space-time is now obtained through identifications generated by the Killing
field, ξ, represented as [28, 109]

ξ = b(J03 − J12)− a(J01 − J23), (2.7)
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which can be written as ξ = 1
2ω

ABJAB, where the antisymmetric matrix ωAB characterizes the
identification. The Killing field in matrix form reads

ξ =




0 −a 0 −b
−a 0 −b 0
0 b 0 −a
b 0 −a 0


 . (2.8)

The action under the Killing field in the embedding space, R(2,2), is a matrix, H(ξ) = e2πξ,
which takes the form

H =




C(a)c(b) −S(a)c(b) S(a)s(b) −C(a)s(b)
−S(a)c(b) C(a)c(b) −C(a)s(b) S(a)s(b)
−S(a)s(b) C(a)s(b) C(a)c(b) −S(a)c(b)
C(a)s(b) −S(a)s(b) −S(a)c(b) C(a)c(b)


 , (2.9)

where C(a) ≡ cosh(2πa), S(a) ≡ sinh(2πa) c(b) ≡ cos(2πb), and s(b) ≡ sin(2πb). Iterating the
identification by H is equivalent to acting with

Hn =




C(na)c(nb) −S(na)c(nb) S(na)s(nb) −C(na)s(nb)
−S(na)c(nb) C(na)c(nb) −C(na)s(nb) S(na)s(nb)
−S(na)s(nb) C(na)s(nb) C(na)c(nb) −S(na)c(nb)
C(na)s(nb) −S(na)s(nb) −S(na)c(nb) C(na)c(nb)


 . (2.10)

Before we continue with the calculations, we will take a closer look at the identification. The
Killing vector, (2.7), is a linear combination of a rotation and a boost. We can use this fact
to treat the rotational plane and the boosted plane separately by splitting the identification
matrix in the following way:
Consider writing n = qm + p, where p ∈ {0, 1, . . . ,m − 1}, q ∈ {0, 1, . . . ,∞} and m is some
positive integer. Now we have the following structure:

1 H H2 H3 . . . Hm−1

Hm Hm+1 Hm+2 Hm+3 . . . H2m−1

H2m H2m+1 H2m+2 H2m+3 . . . H3m−1

...
...

...
...

...
...

(2.11)

Purely looking at the general structure, each column can be associated with a black hole. To
see this, first note that in the rotational plane, we need the parameter to be a rational number
[108]. This is because the quotient space of a manifold by a rotation Killing vector requires
the identification angle to be a rational fraction of 2π. Otherwise, each point is identified with
infinitely many images, densely covering a circle, and the resulting image set would not be a
smooth manifold. Therefore, the coefficient b must be a rational number, b = k/m, where k
and m are relative primes. No restrictions are necessary for a, since boosts act transitively in a
non-compact manner. Now define

Ha = H|b=0 , (2.12a)
Hb = H|a=0 , (2.12b)

to obtain matrices having the following beautiful properties:

H = Ha ·Hb = Hb ·Ha. (2.13)
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There is a deeper reason behind this: The boost and rotation generators, that is, K ≡ J01 − J23
and J ≡ J03 − J12, respectively, commute [K,J ] = 0. Thus, the identification matrix H can be
factored in this way. And so, using the well-known properties of the trigonometric functions, we
can write

Hqm+p == Hqm
a Hp

aH
p
b = Hq

a·mH
p
aH

p
b . (2.14)

So that the p-th column reads

Hp
aH

p
b

{
1, H1

a·m, H
2
a·m, H

3
a·m, · · ·

}
. (2.15)

Then, remembering that Ha is the identification matrix for the black hole [108], the previous
statement follows. Finally, we can go on with the calculations.

2.2 Renormalized stress tensor
We consider the semi-classical Einstein equations

Gµν − l−2gµν = κ 〈Tµν〉 , (2.16)

where 〈Tµν〉 is the so-called renormalized expectation value of the quantum stress-energy tensor
(RSET):

κ 〈Tµν(x)〉 = πlP lim
x′→x

(
3∇xµ∇x

′
ν − gµνgλρ∇xλ∇x

′
ρ −∇xµ∇xν −

1
4l2 gµν

)
G(x, x′). (2.17)

Here, the propagator, G(x, x′) = {φ(x), φ(x′)} is the anti-commutator of the scalar field, which
takes the form (using the method of images) [101, 104–108]

G(x, x′) = 1
2
√

2π
∑

n∈I

Θ(σ(x,Hnx′))√
σ(x,Hnx′)

, (2.18)

where

σ(x, x′) = 1
2

[
−
(
X0 −X ′0

)2
+
(
X1 −X ′1

)2
+
(
X2 −X ′2

)2
−
(
X3 −X ′3

)2
]

(2.19)

and Θ is the Heaviside step function, that was introduced in [108] since, in the rotating case,
σ(x,Hnx) can be negative. Writing

dn = 2σ(x,Hnx), (2.20)

the RSET takes the form [101, 108]

κ 〈Tµν〉 = 3lP
2

′∑

n∈I\{0}

(
Snµν −

1
3gµνg

λρSnλρ

)
, (2.21)

with
Snab = Hn

ab

d
3/2
n

+ 3Hn
acX

cH−nbd X
d −Hn

acX
cHn

bdX
d

d
5/2
n

, (2.22)

and the prime attached to the sum symbol denotes the appearance of the Heaviside function:
′∑

n

sn ≡
∑

n

Θ(dn)sn. (2.23)
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Now is the time to clarify what set I we are summing over. We need to sum over all distinct
images. However, we will treat the boosted and the rotational plane differently: Recall the
splitting that was shown in the previous subsection. In this spirit, we will have to sum over q
and p, and hence one cannot expect to have the same summation ranges for both parameters.
In fact, remembering that each column in (2.11) had the structure of a black hole, we deduce
that q ∈ {0, 1, . . . ,∞}. Further, for p = 0 we essentially have copies of the n = 0 image, and
therefore this has to be considered for the renormalization of the stress energy tensor. We
conclude that p ∈ {1, . . .m − 1}. In summary, going back to the sum over n, one excludes
n = 0 and additionally all n that are multiples of m. Then the non-vanishing components of the
stress-energy tensor can be written in the overspinning case as

κ 〈T tt〉 = lP l
2

8ab

∞∑

n=1
m-n

′ 1
d

5/2
n

{
6
(
a2 + b2

)
Bbn − 4abb̄n + 12Bān

+
[
3
(
a2 − b2

)
B − 2ab

]
(c̄n − 8) +

[
3(a2 − b2) + 2abB

]
cnen

}
,

(2.24a)

κ 〈T tθ〉 =3lP l3
8ab

∞∑

n=1
m-n

′ 2
[(
b2 − a2)B − 4ab

]
bn − 4Ban −

(
a2 + b2

)
[B (c̄n − 8) + encn]

d
5/2
n

, (2.24b)

κ 〈T rr〉 =lP
∞∑

n=1
m-n

′
cn

d
3/2
n

(2.24c)

κ 〈T θt〉 =3lP l
8ab

∞∑

n=1
m-n

′ 2
[(
a2 − b2)B − 4ab

]
bn + 4Ban +

(
a2 + b2

)
[B (c̄n − 8) + cnen]

d
5/2
n

, (2.24d)

κ 〈T θθ〉 =− κ
[
〈T tt〉+ 〈T rr〉

]
, (2.24e)

where we have defined the auxiliary functions

B = B(r) = l2M − 2r2

4abl2 , (2.25a)

dn = 2l2 [−1 + cosh(2πan) cos(2πbn)−B sinh(2πan) sin(2πbn)] , (2.25b)
en = 4 sinh(2πan) sin(2πbn), (2.25c)

and

an = a2 cos(4πbn) + b2 cosh(4πan), (2.25d)
ān = a2 cos(4πbn)− b2 cosh(4πan), (2.25e)
bn = cos(4πbn)− cosh(4πan), (2.25f)
b̄n = cos(4πbn) + cosh(4πan), (2.25g)
cn = 2 cosh(2πan) cos(2πbn) + 2, (2.25h)
c̄n = 2 cosh(4πan) cos(4πbn) + 2. (2.25i)

Note that, if b = k/m, with m being an even number, the sum contains infinitely many values
n = qm+ p = qm+m/2 for which dn is independent of r. For these values, the RSET diverges
at radial infinity so that the perturbative approximation breaks down. We will therefore exclude
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these values for b in the analysis and assume that m is an odd number. For if m is odd, the sine
function is only zero if kp = mz, for some positive integer z. But since k and m are relatively
prime, this implies that z is a multiple of k. This is a contraction since p has to be smaller than
m, and hence we can safely work with m being an odd number. In the next subsection, we will
insert this into the field equations (2.16) to look for a quantum corrected (up to first order in
lP ) solution.

2.3 Backreacted metric

We use the ansatz

ds2 =−N(r)2f(r)dt2 + f(r)−1dr2 + r2 (dθ + k(r)dt)2 ,

N(r) =N0(r) + lPN1(r) +O(l2P ),
f(r) =f0(r) + lP f1(r) +O(l2P ),
k(r) =k0(r) + lPk1(r) +O(l2P ).

(2.26)

The zeroth order equations are obviously the vacuum equations that yield the BTZ metric as a
solution, or in other words

N0(r) = 1, f0(r) = r2

l2
−M + J2

4r2 , k0(r) = − J

2r2 . (2.27)

Now, the field equations (up to first order in lP ) can be written as

N ′1 =− Jκ 〈T tθ〉 − 2r2κ 〈T rr〉+ 2r2κ 〈T tt〉
2rlP f0

, (2.28a)

(
r3f ′1

)′
=− 2r3f0N

′′
1 + 2r2

(
f0 + 3M − 6r2

l2

)
N ′1 + 2r3

lP
κ 〈T rr〉 , (2.28b)

Jk′1 =− f ′1 + J2N1
r3 + J

rlP
κ 〈T tθ〉+ 2r

lP
κ 〈T tt〉 . (2.28c)

And we obtain

N1(r) = κ

lP

∫
dr 1
f0(r)

(
r 〈T rr〉 − r 〈T tt〉 −

J

2r 〈T
t
θ〉
)

+K1, (2.29a)

f1(r) =
∫

dr
[
−2f0(r)N ′1(r) +

(
J2

r3 −
2M
r

)
N1(r)

+ 2
r3

∫
dr
(

2MrN1(r) + κ

lP
r3 〈T rr〉

)]
+ K2
r2 +K3,

(2.29b)

Jk1(r) =− f1(r)− 2f0(r)N1(r) + 2
∫
rdr

( 2
l2
N1(r) + κ

lP
〈T rr〉

)
+K4, (2.29c)

where the integration constants will be chosen to be zero in order for the metric corrections to
vanish for a vanishing RSET.
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This in turn leads to

N1(r) =− l2

2ab

∞∑

n=1
m-n

′ An
end

3/2
n

, (2.30a)

f1(r) =
∞∑

n=1
m-n

′
l2An

(
r2enf0 − 16a2b2Bdn

)− 32a3b3cnd2
n

abr2e2
nd

3/2
n

, (2.30b)

k1(r) = 4
r2

∞∑

n=1
m-n

′ Bn
e2
nd

1/2
n

, (2.30c)

where we have defined

An =2
(
a2 + b2

)
bn + 4

(
a2 − b2

) (
cosh2(πan) cos2(πbn)− 1

)
+ abcnen, (2.31a)

Bn =2l
[(
a2 − b2

)
bn + 2

(
a2 + b2

) (
cosh2(πan) cos2(πbn)− 1

)]
. (2.31b)

These functions solve the field equations (up to first order in lP ) and in the following subsections
we will analyze them to study their physical properties. But before note that at large r the
functions behave like N1 ∼ 1

r3 , f1 ∼ 1
r and k1 ∼ 1

r3 , and so they do not modify the asymptotic
behavior of the solution, since the zeroth order functions are dominating at infinity.

2.4 Quantum field acting as cosmic censor
In this subsection, we will determine whether the quantum backreaction yields to the formation
of an event horizon. We will closely follow the steps that were done in [108] for the case of the
rotating naked singularity.
First, note that the zeroes of dn are determined by

r2
n

l2
= a2 − b2 + 2ab1− cosh(2πan) cos(2πbn)

sin(2πbn) sinh(2πan) . (2.32)

We remind the reader that b = k/m is a rational number such that k and m are relatively prime,
and m is odd. Then it is easy to see that this expression is bounded from above for discrete
values of n = qm+ p. In fact, the upper bound is an accumulation point of the radii as q →∞
and n = qm+ (m+ 1)/2. We will denote the upper bound by r∗ and approximate the functions
in its vicinity:

dn∗(r) ≈
2r∗ (r − r∗)

ab
sinh(2an∗π) sin(2bn∗π), (2.33)

so that the correction (2.30b) becomes

f1(r) = Ξf0(r∗)
(r − r∗)3/2 + C, r → r∗, (2.34)

with

Ξ =
√

8abl2An∗
en∗ (r∗en∗)3/2 . (2.35)
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The constant C includes all other terms of the sum in (2.30b) that are being dominated by the
n∗-term. Note that this has the same form as the case of the rotating naked singularity in [108].
We further remind the reader about the introduction of the Heaviside step function in (2.18),
which, together with (2.33), ensures the positivity of the sine factor in the denominator. This is
also why the n∗ at the beginning of this subsection were written with the factors of two and a
half respectively. Then, using (2.34), the defining equation for the quantum corrected horizon,
grr(r(q)

+ ) = 0, reads

0 =
[
f0(r(q)

+ ) + lPC
] (
r

(q)
+ − r∗

)3/2
+ lPΞf0(r∗), (2.36)

and expanding f0(r(q)
+ ) around r∗ it follows that r(q)

+ − r∗ is of order l
2/3
P and that we can safely

ignore the constant C (cf. [108]). Thus, the defining equation for the horizon can be written as

r
(q)
+ = r∗ + (−Ξ lP )2/3 +O

(
l
7/3
P

)
. (2.37)

With An∗ , and therefore also Ξ, being manifestly negative it follows that the horizon is indeed
hiding all the singularities occurring in the metric.
Having established the geometry to be that of a black hole, it is now interesting to look at

another feature of such a solution, the static limit surface. Its defining equation is

gtt = −N(r)2f(r) + r2k(r)2 = 0, (2.38)

which can be written up to first order in lP as [108]

0 = −
(
r2

l2
−M

)
− lP (2f0N1 + f1 + Jk1) . (2.39)

In the case of the overspinning geometry we have

2f0N1 + f1 + Jk1 =
∞∑

n=1
m-n

′ 16
([
a2 + b2

]
bn + 2

[
a2 − b2]

[
cos2(2πbn) cosh2(2πan)− 1

])

e2
nd

1/2
n

. (2.40)

This term is negative, as can be easily seen:

2
[
a2 − b2

] [
cos2(2πbn) cosh2(2πan)− 1

]
≤2
[
a2 + b2

] [
cos2(2πbn) cosh2(2πan)− 1

]

<2
[
a2 + b2

] [
cosh2(2πan)− cos2(2πbn)

]

=−
[
a2 + b2

]
bn,

(2.41)

and the result follows.
This in turn can be approximately solved near the singularity by

r
(q)
SL = r∗ + µl2P , (2.42)

with,

µ =
128ab

([
a2 + b2

]
bn∗ + 2

[
a2 − b2]

[
cos2(2πbn∗) cosh2(2πan∗)− 1

])2

r∗e5
n∗

[( r∗
2l
)2 − (a2 − b2)

]2 , (2.43)
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which is manifestly positive (remember (2.33) and the fact that it is positive). Note the
similarities with the naked singularity studied in [108]. In particular, in the overspinning case
the ergoregion is non-existent for the same reason: Its distance r(q)

SL − r∗ is of order O(l2P ), while
r

(q)
+ − r∗ is of order O(l2/3P ), and so the static limit surface is hidden behind the event horizon.

We can therefore conclude that for the overspinning black hole, we do not have an ergoregion.

2.5 Thermodynamics
In the previous section we have shown the existence of an event horizon, and consequently
ascertained the solution to be that of a black hole. It is now natural to go one step further and
explore its thermodynamic properties. Due to the semi-classical approach that we are using, it
should be evident that there is no straightforward approach to this. However, it is known that
O(r−1) corrections to the metric functions leave the ADM mass ([113]) unchanged, and because
of this, it is reasonable to work with the mass of the unperturbed space-time, M . Starting there,
we can assume the validity of the first law of thermodynamics to calculate the entropy. To do so,
we will have to find the temperature first, and so we begin by transforming the metric ansatz
(2.26) to Eddington-Finkelstein-like coordinates:

dv = dt+ dr

Nf
, dφ̃ = dφ− k

Nf
dr, (2.44)

which yields
ds2 = −N2fdv2 + 2Ndvdr + r2

(
dφ̃+ kdv

)2
. (2.45)

Note that f vanishes at the horizon, making it a null hypersurface. In fact, the horizon is a
Killing horizon generated by the Killing vectorfield

χ = ∂v − k(r+)∂φ̃, (2.46)

and writing r+ instead of r(q)
+ from now on. Then, the surface gravity can be calculated, using:

κ2 = −1
2∇

µχν∇µχν , (2.47)

which is directly related to the temperature:

T = κ

2π = 1
4π |N(r+)f ′(r+)|, (2.48)

with the functions being approximated at the horizon as

f ′(r+) = f ′0 (r+) + 3f0(r∗)
2(−lPΞ)2/3 , N(r+) = 3

2 . (2.49)

Now, assuming the validity of the first law of thermodynamics, one may calculate the entropy
via

S =
∫
dM

T
. (2.50)

The integrand is a very complex function of the mass and is quite lengthy. Also note that the
integration constant of this integral would possibly depend on J ! We can not solve it analytically,
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but we can still use it to get some information about the entropy. Remembering that a and b
depend on M , we can write the temperature as

β = 1
T

= 2
3




3
(
l2(a2+b2)2

r2∗
− 2a2 + 2b2 + r2

∗
l2

)

2(−lPΞ)2/3 − 2l2
(
a2 + b2

)2
[
(−lPΞ)2/3 + r∗

]3 +
2
[
(−lPΞ)2/3 + r∗

]

l2




−1

,

(2.51)
where a, b, Ξ and r∗ depend non-trivially on M . Clearly, the first term dominates the others.
Taking the limit a→ b, or essentially M ≈ 0, the first order term, and therefore the entropy, is
positive:

S =
∫

[β(0) +O(M)] dM. (2.52)

For arbitrary M it is not clear since the integral of the inverse temperature cannot be calculated
analytically. However, interestingly, even without calculating the integral, one can immediately
see that the classical limit of the entropy, lP → 0, is zero. This is as expected, since its classical
counterpart is not a black hole.

2.6 Summary
We have shown that the presence of a conformally coupled quantum scalar field on an overspinning
BTZ geometry gives rise to infinitely many curvature singularities which are all hidden behind an
event horizon, thus supporting the cosmic censorship conjecture in three dimensions. Additionally,
we have established that the static limit surface is also hidden behind the horizon. It is interesting
to point out that behind the horizon there is an infinite number of curvature singularities hidden.
This is very different from the classical black hole and an exclusive feature of the overspinning
solution. In the derivation of the horizon radius we only used the outmost singularity, but one
can do the same procedure using any of those, which hints at each singularity being covered
by a horizon, giving the space-time an onion-like structure. It should be noted though that
at a curvature singularity the linear approximation breaks down, so it is questionable how
reliable the results are between the singularities, in particular those that are fairly close to
one another. Even though the singularities itself appear in the RSET and hence are not just
perturbative artifacts but rather exact results of the theory, in their vicinity one would still
have to consider strong quantum gravitational effects to study its geometry. However, from
a more pragmatic perspective, one would be more concerned with the geometry outside the
event horizon, for which the linear approximation is quite reasonable. It is therefore interesting
that when one takes quantum effects into account, using a semi-classical approach, the cosmic
censorship conjecture is satisfied naturally. Even though this has been established for conical
and (mildly) rotating singularities before (cf. [108] and references therein), this is not obvious
for such an extreme scenario that is the overspinning geometry.
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Conclusions and outlook

In this thesis, we examined several methods of sourcing black holes through scalar fields, each
allowing for a different interpretation of the scalar field’s physical meaning. We presented
projects carried out in different theories, naturally splitting the thesis into three parts. The
first chapter discusses the work we have done in standard general relativity, while the second
considers classical modifications to GR by introducing changes to the Einstein-Hilbert action by
means of a scalar field. In the last part of the thesis, we covered the semiclassical approach,
where the matter field was quantized but the metric not. We will summarize our results in the
following.

In chapter I we study the possibility of constructing black holes where the torsion of the underlying
geometry does not vanish. Usually, general relativity considers a torsion-free connection; however,
we can turn on the torsion part, by including the scalar field like a Lagrange multiplier of the
Gauß-Bonnet term. This approach was used in [40] to study possible cosmological solutions
with torsion. Through this trick, instead of being a topological invariant, we have an additional
contribution to the field equations. In particular, using the first order formalism of gravity,
these can cause a non-zero torsion. We argue that the model has some flaws by showing that,
making a spherically symmetric and static ansatz, the system of equations is underdetermined,
leaving a function unspecified. One possible reason for this is that, due to the field equations,
the Gauß-Bonnet term needs to vanish. This gives a strong constraint on the geometry, yet it
adds only one equation to the system. It is therefore reasonable to assume that one may have
to modify the model such that this constraint gets slightly relaxed.
In the second part of this chapter, we consider a scalar field as matter in the field equations

of GR and study its critical behavior during a gravitational collapse. To achieve this, we chose
affine-null coordinates, like in [49], and present a novel regularization scheme to tackle possible
singularities of the equations, which allowed us to solve the equations through pseudo-spectral
methods. With a consumer-grade computer, and relatively little computation time, our code
can not only reproduce the characteristic features like mass scaling and echoing of the Choptuik
critical solution [19], but also the exponential decay and oscillations of the Bondi mass first
discovered in [48]. As an additional feature, the collapsing time of our initial data is linearly
proportional to one of its parameters, allowing for a manual adjustment of the computation
time. Given the high potential of the code, it would be interesting to generalize it in the future,
for example to axial symmetry, or a different kind of matter field.

Chapter II discusses different aspects of modifying the Einstein’s theory of general relativity.
Here, the scalar field modifies the underlying theory of gravity under consideration. In particular,
we study a series of problems in DHOST theories that lead to three publications [23–25], and
which we will summarize here in chronological order. In all our projects, the coupling functions
of the DHOST action solely depend on the standard kinetic term of the scalar field, thus ensuring
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the invariance under the constant shift of the scalar field.
The first one considers the DHOST action in three dimensions together with a stationary

metric ansatz together with a purely radial scalar field, for which we show that the equations
of motion can be fully integrated. The kinetic term of the scalar field must then be constant,
and the only possible solution is shown to be a BTZ-like metric with an effective cosmological
constant expressed in terms of the coupling functions of the theory. This is very different from
four dimensions, where DHOST theories that are much more restrictive admit various solutions
with different asymptotic behavior, see for example [88, 90–93, 95, 97, 114, 115]. What is
particularly interesting is, that in three dimensions there is an algebraic relation which forces
the kinetic term to be constant, and that the general structure of the thermodynamics remains
as in the standard BTZ case, even though we coupled a scalar field to the equations. It would be
interesting to investigate whether the uniqueness of BTZ-like solutions is a more general feature
of three-dimensional theories, given that in [97] the uniqueness was shown for the quadratic
Horndeski action.

In our second work, we constructed regular (without curvature singularities), asymptotically
flat black holes by making use of a generalized Kerr-Schild solution generating method in
spherical symmetry. The solutions that we found depend on a mass integration constant, admit
a smooth core of chosen regularity (depending on a parameter that we can vary), and are
asymptotically flat. Interestingly, even though we use a spherically symmetric ansatz, they
generally have an inner and outer event horizon. Fine-tuning the mass below a certain threshold,
the solutions even become horizonless, yet still massive, hence particle-like. We examined a
few observational consequences of our solutions, scanning through different strengths of the
gravitational field. These results look very promising, which makes the solutions great models to
compare their predictions with observational data. Therefore, it would be interesting to calculate
further details allowing for more predictions. We also calculate the thermodynamic properties
and show that the entropy does not comply with the area law. An interesting extension would be
to find such solutions using an axial symmetric ansatz and compare them to the Kerr solution.

In the third project, we constructed a rotating stealth black hole solution in five dimensions.
Its metric is given by the Myers–Perry spacetime with equal angular momenta, and the scalar
field is identified with the Hamilton–Jacobi potential. Interestingly, the coupling functions of the
theory remain arbitrary, we did not need to fine-tune them. We further showed that this scalar
field generates a disformal transformation that, with a constant degree of disformality, leaves
the metric invariant2. We were able to extend these results to higher order odd dimensions, for
which the Myers-Perry metric needs to have all angular momenta to be equal. We concluded
that this is mainly due to the Myers-Perry metric being of cohomogeneity-1. This allowed us
to find conditions under which a general cohomogeneity-1 remains invariant under a disformal
transformation, generated by such a scalar field, with a constant degree of disformality.

In the last part of the thesis, chapter III, we take quantum effects under consideration. Con-
sidering the Einstein equations in three dimensions together with a conformally coupled scalar
field as matter source, we then studied the semiclassical backreaction when one quantizes the
scalar field. As a background geometry, we use an overspinning BTZ metric, that is, where
the relation between angular momentum and mass reads |J | > lM , which classically leads to a
naked singularity. Using the Hadamard regularization, we computed the renormalized quantum
stress-energy tensor of the scalar field to obtain the semiclassical Einstein equations and solved

2 By invariant we mean up to diffeomorphisms.
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them perturbatively to first order in lP , the Planck length. Our results show that the quantum
backreaction causes infinitely many curvature singularities to arise, which are all hidden behind
an event horizon. Similar results have been shown for different BTZ geometries in [108, 110–112],
though in these cases, they have not observed infinitely many curvature singularities, which
is an exclusive feature of the overspinning geometry. The arising of an event horizon due to
quantum effects is a strong indication in favor of the cosmic censorship conjecture, and it would
be intriguing to study whether this holds true in four dimensions as well, though this would be
a highly complicated task.
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1 Regular Black Hole solutions
Our starting point will be the action:

S[g, φ] =
∫
d4x
√−g

[
K(X) +G(X)R+A1(X)

[
φµνφ

µν − (�φ)2]+A3(X)�φφµφµνφν

+A4(X)φµφµνφνρφρ +A5(X) (φµφµνφν)2
]

(1.1)

The coupling functions, K,G,A1, A3, A4, A5, depend solely on the kinetic term of the scalar
field, defined by X = φµφµ, where we have used φµ = ∂µφ and φµν = ∂µ∂νφ. Further, we impose
the following condition on the functions:

A4 = 1
8(G−XA1)2

{
4G

[
3(−A1 + 2GX)2 − 2A3G

]
−A3X

2(16A1GX +A3G)

+4X
[
−3A2A3G+ 16A2

1GX − 16A1G
2
X − 4A3

1 + 2A3GGX
]}
,

A5 = 1
8(G−XA1)2 (2A1 −XA3 − 4GX) (A1(2A1 + 3XA3 − 4GX)− 4A3G) . (1.2)

This is to avoid the so-called Ostrogradski ghosts. For later convenience we further define the
auxiliary functions

H(X) = A1(X)X −G(X), B(X) = A3(X)X + 4GX(X)− 2A1(X),
Z(X) = A3(X) +A4(X) +X A5(X), (1.3)

and impose a simplifying hypothesis:
3B
8H = 1

X
, (1.4)

Thus we can express the functions as

H = 3
(rX ′ − 3X) , G = 1

X

(
1− rX ′

X

)
− Kr2

2 . (1.5)
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Writing

A3 = −4GX
X

+ 2A1
X

+ 8H
3X2 , A1 = H+G

X
(1.6)

leads to

K = −2
[
3X (rX ′′ + 2X ′) + r2X−1X ′3 − 7rX ′2

]

rX (rX ′ − 3X)2 . (1.7)

A more general form, where f(r) = 1− µXλ

r , is:

H = H0

Xλ
(
λrX′
3X − 1

) , (1.8)

K = − A,r
rXλ/3 , (1.9)

A =
H0
(
1− λrX′

X

)

X2λ/3
(
λrX′
3X − 1

) , (1.10)

G = H0
Xλ

(
1− λrX ′

X

)
− 1

2Kr
2, (1.11)

where H0 is an integration constant.
Following the same procedure that is outlined in [97], one can obtain an even more general form,
where the metric function, f(r), is arbitrary:

H = H0

Xλ
(
λrX′
3X − 1

) , (1.12)

G = H0
Xλ

[
rf ′ + f

(
1− λrX ′

X

)]
− 1

2Kr
2, (1.13)

K = KN
rX1+λ(rλX ′ − 3X)2 , (1.14)

with the numerator of K being

KN = −3H0(−rλX2(rf ′ − 2f)X ′′ +X2r(rλX ′ − 3X)f ′′ + 2
3r

2λ3fX ′3

−5
3(r(λ− 3

5)f ′ + 8
5(3

4 + λ)f)XλrX ′2 + 6X2(2
3f + rf ′)λX ′ − 6X3f ′) (1.15)
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