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Chern-Simons Poincaré Gravity in Higher Dimensions
Basic Supergravity
Chern-Simons Supergravity
11 Dimensional Wigner-Inönü Contraction
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Lagrangian Formalism

• A physical theory is described by an action, denoted S, which
is the integral of a lagrangian L over spacetime.

S =

∫
L(φ(x), ∂µφ(x))ddx

φ is the dynamical field. It usually describes a particle.

• Physical solutions = Extremum of the action

δS = 0 =⇒ δL = 0 up to boundary terms

• Euler-Lagrange equations:

∂L
∂φ
− ∂

∂µ

∂L
∂∂µφ

= 0
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Basics of Gauge Invariance

• Symmetry transformation : transformation of the dynamical
fields which leaves the action invariant = leaves the
lagrangian invariant up to boundary terms.

• Example :
L = ∂µφ ∂µφ∗ φ→ e iαφ (1)

• Global symmetry : α = constant

• Local symmetry : α = α(x)

• Introduce a new field A which transform as A→ A + ∂µα in
order to compensate the derivative of α. This field is added to
the derivative :

∂µ → Dµ = ∂µ + Aµ (2)
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Dictionary Mathematics / Physics

• In mathematics, one call ”global” a quantity defined in the
whole space and ”local” a quantity defined only on an open
subset.

• In physics, a transformation is ”global” if constant over the
whole space and ”local” if it depends on the point where it
acts.

• The ”local symmetry” under considerations is thus local from
a physical point of view, but global from a mathematical
point of view.

• We use Einstein’s summation convention where two repeated
indices are always summed.
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Basics of Gauge Invariance

• How to construct dynamics for the new field A ?

• Need to construct gauge invariant quantities :

Fµν = ∂µAν − ∂νAµ (3)

L = −1

4
FµνF

µν Maxwell’s lagrangian (4)

• The gauge field need to be massless. A mass term like

m2AµA
µ

known as Proca term, is not gauge invariant.
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Gauge Theory : Mathematical Framework

• A gauge theory has mathematically a fiber bundle structure.
The base manifold is the physical space and the structure
group is the gauge group, i.e. the group of gauge
transformation. The base manifold is riemanninan (or pseudo
riemannian).

• The fundamental field is the connection A. A gauge
transformation of it take the form :

δλA = Dλ = dλ+ [A, λ] (5)

where λ = λaXa is the parameter of the transformation.
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Yang-Mills Theory

• The Yang-Mills action is given by :

S =

∫
Tr(F ∧ ?F ) (6)

with F = dA + A ∧ A the curvature associated to the
connection A.

• Three of the four fundamental interactions - EM, weak and
strong interactions - are described by Yang-Mills theories,
whith respective gauge groups U(1), SU(2) and SU(3)
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Einstein-Hilbert Action in 4 dimensions
• Gravity is a gauge theory with gauge group the Lorentz group,

whose generators are {Jab} [Utiyama, 56]. The Lorentz
connection is

A =
1

2
ωabJab (7)

• Commutation relations of the Lorentz algebra :

[Jab, Jcd ] = ηadJbc + ηbcJad − ηacJbd − ηbdJac (8)

• Einstein-Hilbert action :

S =

∫
εabcdR

abeced (9)

• Rab = dωab + ωa
cω

cb curvature associated to the Lorentz
connection.

• ea is the vielbein.

• εabcd is the Levi-Civita symbol, Lorentz invariant.
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Einstein-Hilbert Action in 4 dimensions

• The vielbein is not part of the connection. Is there a way to
write the action as an integral of an invariant form of Lie
algebraic valued fields ? (as in Yang-Mills theory )

• Response : Expand the Lorentz group to the Poincaré Group.
New Poincaré generators : {Pa}. The connection for the
Poincaré group is

A =
1

2
ωabJab + eaPa (10)

• The new commuation relations are :

[Jab,Pc ] = ηbcPa − ηacPb [Pa,Pb] = 0 (11)
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Einstein-Hilbert Action in 4 dimensions

The gauge transformation δλA induced by a parameter
λ = 1

2λ
abJab gives the following transformations for the fields :

δλω
ab = Dλab D = d + ω (12)

δλe
a = λabe

b (13)

δλR
ab = λacR

cb + Ra
cλ

cb (14)

(Be careful with the notation : Dλab = (Dλ)ab = dλab + ωa
cλ

cb.)
This yields to

δλL = 0 (15)

Gravity is a gauge theory for the Lorentz Group SO(3,1)
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Einstein-Hilbert Action in 4 dimensions

• If one considers transformation of the type

ρ = ρaPa (16)

one gets

δρω
ab = 0 = δρR

ab (17)

δρe
a = Dρa (18)

δρS =

∫
δρL = 2

∫
εabcdR

abecDρd 6= 0 (19)

Gravity is not a gauge theory for the full Poincaré group.

• One recover Poincaré symmetry on-shell, where the equation
Dea = 0 holds, as

δλS = 2

∫
εabcdR

abDecλd − 2

∫
d(εabcdR

abecλd) (20)
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Einstein-Hilbert Action in 3 dimensions

• The action for gravity in three dimension is

S =

∫
εabcR

abec (21)

• One keeps
δλL = 0 with λ = λabJab (22)

But one has also, with ρ = ρaPa

δρL = εabcR
abDρc (23)

δρS =

∫
εabcD(Rabρc) = 0 (24)

where we have used Bianchi’s identity

DRab = 0 (25)

• 3D Gravity is a true gauge theory for the Poincaré Group.
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Chern-Simons Forms
• Consider a fiber bundle (P,M,A,F,G). The Lie algebra of G is
g. Consider a symmetric invariant polynomial map

Q : g→ C (26)

Invariant means

Q(Adg (A1),Adg (A2), ...) = Q(A1,A2, ...) (27)

Define Q(F ,F , ...)
.

= Q(F ) Charactericitic Class

dQ(F ) = 0 Q(F )− Q(F ′) is exact (28)

Q(F ) ∈ H?(M) Chern-Weil Homomorphism (29)

• As Q(F) is closed =⇒ locally exact (Poincaré’s lemma) :

Q(F ) = dW (A,F ) (30)

W is called a Chern-Simons form associated to the
characteristic class Q
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Chern-Simons Gravity

• The form

I [A] = Tr(AdA +
2

3
A3) (31)

satisfies
dI = Tr(F 2) (32)

which is the second Chern class.

• In 3D gravity, with A = 1
2ω

abJab + eaPa one has

L = εabcR
abec = I [A] + d(εabcω

abec) (33)

So one can take the Chern-Simons form as lagrangian for
gravity.

• Chern-Simons theories are only defined for odd dimensions.
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(A)dS Gravity

• Gravity theory need to have asymptotically constant radius of
curvature. But it does not need to vanish

• Gravity theories with non vanishing asymptotic radius of
curvature are called de Sitter and anti-de Sitter

• The action then take the form (respectively in dimension 4
and 3) :

S4 =

∫
εabcd(Rabeced − 2Λeaebeced) (34)

S3 =

∫
εabc(Rabec − 2Λeaebec) (35)

• Λ is the cosmological constant. De Sitter and anti-de Sitter
are respectively for positive and negative Λ.
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(A)dS Gravity

• The gauge groups are the (Anti)-de Sitter groups SO(3,2),
SO(4,1) (d=4), SO(2,2) SO(3,1) (d=3). The connection is :

A =
1

2
ωabJab ±

1

`
ecJc (36)

Λ = ∓ 1

6`2
(37)

• (A)dS gravity are also Chern-Simons theories in 3 dimensions.

• We will focus only on AdS theories(de Sitter theories present
problems when extended to supergravity).

• The AdS algebra is generated by the Lorentz generators +
generators Ja called pseudo-translations. Commutation
relations of these new generators :

[Jab, Jc ] = ηbcJa − ηacJb [Ja, Jb] = Jab (38)
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Wigner-Inönü Contraction

• Start with the AdS algebra. Re-scale the pseudo-translations
generators :Ja → `Ja. Then take the limit `→∞ and call
Pa = lim`→∞ `Ja

[Jab, `Jc ] = ηbca − ηacb → [Jab,Pc ] = ηbcPa − ηacPb (39)

[`Ja, `Jb] = `2Jab → [Pa,Pb] = 0 (40)

• Need to re-scale the associated field to leave the connection
invariant.

Ja → `Ja ea → 1

`
ea (41)

(Note that this was already done). So in the limit `→∞ you
get :

A =
1

2
ωabJab +

1

`
ecJc → A =

1

2
ωabJab + ecPc (42)
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Wigner-Inönü Contraction and Expansion of algebra

Mathematically :

• Divide your generators in two sets. Multiply all generators of
one set by `.

• Generate an infinite dimensional Lie algebra, graded by the
associated power in `.

• Quotient by the ideal generated by `2.

• One could takes a smaller ideal (a larger power of `) to get a richer
algebra.

See [Azcárraga, Izquierdo et. al, 07] Expansion of Lie algebras and
superalgebras

19 / 40



Quantizing gravity

The problem of quantizing gravity is a very difficult problem.
Attempt to solve it are :

• 3D gravity can be quantized [Witten, 88] but is too trivial.

• Loop Quantum Gravity [Rovelli-Smolin 87]

• Superstrings theories in 10 dimensions [Grenn-Schwarz, 84].

We will present in the next slides theories of supergravity in higher
dimensions which are related to this third attempt. Also,
supergravity alone is interesting for exploring the possible links
between gravity and the standard model.
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Chern-Simons Poincaré Gravity in Higher Dimensions

We consider Poincaré gravity in dimensions 2n+1. The lagrangian
is :

L = εa1...a2n+1R
a1a2 ...Ra2n−1a2nea2n+1 (43)

One can compute

dL = εa1...a2n+1R
a1a2 ...Ra2n−1a2nDea2n+1 = 〈F n+1〉 (44)

with

〈Ja1a2 , ... , Ja2n−1a2n , Pa2n+1〉 = εa1...a2n+1 (45)

F = 1
2R

abJab + DeaPa (46)

respectively the invariant tensor and the curvature of the 2n+1
dimensional Poincaré algebra.
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Lie superalgebras

• Let A be an algebra (over a field) and I be a monoid. A
gradation of A is a gradation of the underlying vector space

A =
⊕
i∈I

Ai

satisfying
ai ∈ Ai , aj ∈ Aj , aiaj ∈ Ai+j (47)

For a ∈ Ai one writes |a| = i , the degree of a.

• A Lie superalgebra is a supercommutative Z2-graded Lie
algebra.

[a, b] = (−)|a||b|+1[b, a] (48)

(−)|a||c|[a, [b, c]] + (−)|c||b|[c , [a, b]] + (−)|b||a|[b, [c , a]] = 0
(49)
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Basic Supergravity

• The usual supersymmetric extension of Einstein-Hilbert
gravity is the Rarita-Schwinger theory, whose lagrangian reads
in 4 dimensions :

LRS = ψ̄/eiγ5Dψ (50)

• Ask for the following gauge transformation :

δnewe
a = ε̄γaψ (51)

δnewω
ab = 0 (52)

δnewψ = (d +
1

2
ωabγab)ε = Dε (53)

• One can show that the variation of the Einstein-Hilbert
lagrangian and the Rarita-Schwinger lagrangian under these
new variations cancels.

23 / 40



Basic Supergravity

• These new transformations can be obtained from a new
(super)algebra satisfying the following commutation rules :

[Jab,Q] =
1

2
γabQ

[Pa,Q] = 0

[Q,Q]+ = (Cγa)Pa

where Q is the new supersymmetric generator. Accordingly
one extends the connection by A→ A + ψQ.

• However one needs to check Jacobi’s identity if one want to
have a true superalgebra. In fact one usually has to add
generators and thus fields.

[Q,Q]+ = (Cγa)Pa + ... (54)
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Chern-Simons Poincaré Supergravity

• For example in 11 dimensions one possibility is :

[Q,Q]+ = (Cγa)Pa + (Cγab)Zab + (Cγabcde)Zabcde (55)

This is the M-algebra. Other possible solutions are the super
2-brane algebra and the super 5-brane algebra.

• In 3 +8k dimensions the maximal supersymmetric extension
of the Poincaré algebra is :

[Q,Q]+ = (Cγa)Pa + (Cγab)Zab +
∑

k≡5,6[4]

(Cγa1...ak )Za1...ak

(56)
This was shown in [Hassaine-Romo, 08]. The next slides
present their work.
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Chern-Simons Poincaré Supergravity

• How do we find these new generators ? We show here how it
can be done in dimension 3 + 8k with Majorana spinors
(ψ̄ = Cψ).

• First write the known pieces of your lagrangian :

L = LP + LSUSY (57)

LP = Tr(/R
4k+1

/e) (58)

LSUSY = −2k+1Tr(/R
4k

(Dψ)ψ̄) (59)

• Then compute their variations under supersymmetric
transformations

δLP = Tr(/R
4k+1

ε̄γaψ) (60)

δLSUSY = −2kTr(/R
4k+1

(εψ̄ − ψε̄)) (61)
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Chern-Simons Poincaré Supergravity
• Use the fact that the gamma matrices form an orthogonal

basis of the space of matrices.

1, γa, γab, ... (62)

• Expand εψ̄ − ψε̄ in this basis (Fierz rearrangement). Then use
known symmetries to simplify the expansion. In our case we
get :

2kεψ̄−ψε̄ = ε̄γaψγa+
1

2
ε̄γabψγab+

1

5!
ε̄γabcdeψγabcde+... (63)

• The first term of the r.h.s. will cancel with the variation of
the vielbein.

• The cancellation of the supersymmetric variation need the
addition of new terms, involving new field coupled to new
generators.

• Here we will obtain the M-algebra.
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Chern-Simons AdS Supergravity
• AdS gravity in generic odd dimension d = 2n + 1 is given by

(Lovelock Theorem) :

L =
n∑

q=0

(
n

q

)
2n + 1− 2q

εa1...a2n+1R
a1a2 ...Ra2q−1a2qea2q+1 ...ea2n+1

(64)
This action define a Chern-Simons form for the Ads algebra
(dL = Euler Form)
• Supersymmetric extensions of AdS gravity in odd dimensions

(d = 2n+1) were constructed in [Zanelli-Troncoso, 98]. Take
a supersymmetric extension of the Ads algebra, build the
associated connection and curvature, find a Chern-Simons
lagrangian satisfying :

dLSAdS = 〈F 2n+2〉 (65)

where 〈, 〉 is a multilinear invariant form of the superalglebra.
This lagrangian need to contain the classical AdS gravity.
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Chern-Simons AdS Supergravity

• Minimal supersymmetric extension of AdS algebra in
dimension 3[8] were classified in [van Holten-Van Proyen, 82].

• The supersymmetric extension is build with an algebra with
generators satisfying :

[Q;Q]+ = (Cγa)Ja −
1

2
(Cγab)Jab +

∑
k≡5,6[4]

(Cγa1...ak )Za1...ak

(66)

• This is the orthosymplectic algebra Osp(2[d/2]|1).

• One builds a Chern Simons Ads supergravity lagrangian
satisfying

dLSAdS = Str(F 4(k+1)) (67)
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Chern-Simons AdS Supergravity

• From the algebra we obtain the following supersymmetric
transformations :

δea = ε̄Cγaψ δωab = −ε̄Cγabψ (68)

δb
a1...ap
p = ε̄Cγa1...apψ δψ = ∇ε (69)

with
∇ε = (D + eaγa +

∑
p

b
a1...ap
p γa1...ap)ε (70)

• Example in 11 dimension : The algebra is Osp(32|1). The
unique exotic generator is Z a1...a5 .

• Differences with Poincaré supergravity :

• Poincaré superalgebra has more generators : the Zab (there are
d(d−1)

2 of them)
• In AdS supegravity, the Lorentz connection ωab varies with

supersymmetric transformations while in the Poincaré case it is
left invariant.
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11 Dimensional Wigner-Inönü Contraction
• Use the re-scaling

Ja → `Ja Za1...a5 → `Za1...a5 Q →
√
`Q (71)

• Accordingly, re-scale the fields as

ea → 1

`
ea ba1...a5 → 1

`
ba1...a5

5 ψ → 1√
`
ψ (72)

• The lagrangian expands as

LSAdS = L?(ω) +
1

`
Tr
[1

4
/R

5
(/e + /b5)− /R

4
(Dψ)ψ̄

]
+ o(`−2)

= L(0) +
1

`
L(1) (73)

Here L?(ω) stand for the Chern-Simons form associated with
the Pontrjagin class. It involves only the spin connection ωab.

• Osp(32|1)→ Super 5-brane algebra.
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11 Dimensional Wigner-Inönü Contraction

• Problem : You have δL(0) = 0 but δL(1) 6= 0 under
supersymmetric transformation.

• Solution : split the spin connection ωab → ωab + 1
`b

ab
2 .

Correspondingly the lagrangian expands as :

L?(ω) +
1

`
Tr
[1

4
/R

5
/b2

]
+ o(`−2) (74)

• The addition of the two 1
` -parts of the lagrangian gives the

preceeding CS Poincaré supersymmetric lagrangian, invariant
under supersymmetry.

• The associated algebra is now the M algebra.
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Unconventional Supersymmetry

• In conventional Supersymmetry the gravitino ψ is in a
representation 1

2 ⊗ 1 = 1
2 ⊕

3
2 . It was shown [Das, Freedmann,

76] that the spin- 1
2 part can be eliminated by a gauge

transformation.

• Use the ”matter ansatz” that the spin- 3
2 part vanishes. You

get ψµ = eaµγaχ with χ a spin- 1
2 representation. This should

imply the lost of the full supersymmetry.

• We make this ansatz because we have never observed a
fundamental particle with spin- 3

2 .

• The new field χ could describe an usual matter field, like an
electron, a neutrino or a quark.
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Unconventional Supersymmetry

• The goal is to obtain an action for a theory describing gravity
and the standard model as a Yang-Mills theory.

• Start with the superalgebra su(2,2 |2)[
so(4, 2) Ferm.
Ferm. su(2)

]
• Consider the following set of generators :

Jab, Ja, J̃a, J5,TI ,Z ,Q, Q̄ (75)

and build a connection

A =
1

2
ωabJab + f aJa +gaJ̃a +hJ5 +AITI +AZ + χ̄/eQ + Q̄/eχ (76)
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Unconventional Supersymmetry

• With this connection we compute a curvature F. With this
curvature one can compute a Yang-Mills theory Str(F ∧ ?F).

• Problem : Gravitation is not a Yang-Mills theory and this
procedure will not give a satisfactory theory.

• One solution is to change the Hodge star. For example under
the change :

?/e/e = iγ5/e/e ? /R = iγ5 /R (77)

one recover a convenient gravity lagrangian (for AdS in d=4)
as a Yang-Mills form. Also this same replacement allows to
obtain a Dirac-type lagrangian. This leads to idea of replacing
the Hodge star by a multiplication by iγ5 for some fields.
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Unconventional Supersymmetry
• Denote by ~ this new operation. The election made is the

following : when acting on a field associated to a generator
which has non trivial commutation relation with the Lorentz
generators, we replace the Hodge ? by multiplication by iγ5.

• Example :

F = RabJab + FZ + Q̄/eF + ... (78)

~RabJab = iγ5R
abJab (79)

~FZ = ?FZ (80)

~Q̄/eF = i Q̄/eγ5F (81)

Then we form a Yang-Mills lagrangian :

L = Str(F ∧~F) (82)

• You obtain

L = LGR + LEM + LWI + LDirac + ... (83)
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Unconventional Supersymmetry

• This procedure breaks the invariance under the full
superalgebra. But still retains invariance under
so(3, 1)× su(2)× u(1) which are the observed symmetries of
nature.

• This procedure fixes the values of the coupling constants. For
example the usual LEM is :

LEM = ψ̄(/∂ + ie /A)ψ (84)

In our case we have

LEM = ψ̄(/∂ + iα/A)ψ (85)

We have to ensure that α reproduce the correct value of e.
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Future Work

• Classify all the possible supersymmetric extensions of the
Poincare algebra in any odd dimensions and construct their
corresponding invariant lagrangians with the appropriate
spinorial reprensentations.

• Achieve the same task in the AdS case.

• Establish a link between the Poincare/AdS superalgebras as
well as their invariant CS forms.

• In odd dimension d = 4k+1, it seems that a standard
Wigner-Inönü contraction is enough ; but in the other odd
dimensions, an expansion of the algebras seems to be
required. Investigate if this is not due to the presence of the
Pontryagin-Chern-Simons forms that are required in those
dimensions.
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Future Work

• Could we obtain the replacement ?→ iγ5 as a natural
transformation starting from a conventional supergravity
theory ?

• Classify the involutions which extends the Hodge star.

• Explore the matter ansatz. For example we started by showing
that the Rarita-Schwinger lagrangian leads to the Dirac
lagrangian when the matter ansatz is applied.

• Compute a similar lagrangian but for an algebra containing
su(3), to account for strong interaction.
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Thank You for your Attention
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