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Introduction

The main purpose of this thesis is the study of qualitative properties of resolvent families

of operators on Banach spaces and their applications to evolution equations. The concept

of resolvent families was introduced by Da Prato and Ianelli in [27, Definition 1], as an

extension of the notion of C0-semigroups, to study the existence of mild solutions to the

following integro-differential equations u′(t) =

∫ t

0

k(t− s)Au(s) ds, t ≥ 0,

u(0) = u0,

(0.1)

where A is a closed linear operator defined on a Banach space X, u0 ∈ X, k ∈ L1
loc(R+). By

a resolvent family for (0.1) we mean a family of bounded linear operators {U(t)}t≥0 ⊂ B(X)

(here B(X) denotes the space of all bounded and linear operators on X) which satisfies the

following properties:

a) u(t) := U(t)x ∈ C([0,∞), X), for all x ∈ X,
b) u(t) := U(t)x ∈ C1([0,∞), X) ∩ C([0,∞), D(A)) for all x ∈ D(A),

c) there exist M > 0, and ω ∈ R such that ‖U(t)‖ ≤Meωt for all t ≥ 0, and

d) the function u verifies problem (0.1).

The existence of a resolvent family to problem (0.1) allows us to solve the inhomogeneous

problem  u′(t) =

∫ t

0

k(t− s)Au(s) ds+ f(t), t ∈ [0, T ],

u(0) = x,

(0.2)

for any x ∈ X and f ∈ C([0, T ], X). In fact, if {U(t)}t≥0 is a resolvent family for (0.1), then

the solution to (0.2) is given in terms of its resolvent family by

u(t) = U(t)x+

∫ t

0

U(t− s)f(s) ds.

After that, this theory was developed rapidly. For instance, if A is a closed linear operator

defined on X, a ∈ L1
loc(R+), and f : R+ → X is a continuous function, then the Volterra
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4 INTRODUCTION

equation

u(t) = f(t) +

∫ t

0

a(t− s)Au(s) ds, t ∈ [0, T ], T > 0, (0.3)

is well-posed (which means that there exists a unique solution to (0.3)) if and only if the

equation (0.3) admits a resolvent family, (see [79, Chapter I]) that is, there exists a strongly

continuous family of operators {S(t)}t≥0 ⊂ B(X) such that S(t) commutes with A and

satisfies the following resolvent equation:

S(t)x = x+

∫ t

0

a(t− s)AS(s)x ds, t ≥ 0, x ∈ X.

If f ∈ W 1,1([0, T ], X), then the solution to (0.3) is given in terms of its resolvent family by

([79, Proposition 1.2])

u(t) = S(t)f(0) +

∫ t

0

S(t− s)f ′(s) ds, t ∈ [0, T ].

The examples above show that the solutions to certain abstract equations can be written

in terms of its resolvent families. Some more general concepts such as integrated semigroups

[7], [9], cosine (and sine) families [8], α-times resolvent [50], α-order resolvent [53], convoluted

semigroups [47], integral resolvents [37], (a, k)−regularized families [57], among others, can

be considered also as resolvent families because they play a crucial role in the representation

of the solutions to certain integral, differential, integro-differential, among other equations.

Therefore, the knowledge of properties of this resolvent families allows us to obtain important

qualitative properties about these abstract equations.

This thesis is primarily focused to the study of the norm continuity and compactness of

certain general resolvent families on Banach spaces. In addition, spectral mapping theorems

for convoluted semigroups are given, and we introduce the concept of cosine and sine family

on time scales.

In the following paragraphs, we provide a brief description of each chapter of this thesis:

Chapter 1 summarizes preliminaries and some notation used. Chapter 2 treats about

the norm continuity of (a, k)-regularized families. The property of uniform continuity (or

norm-continuity) for one-parameter families of bounded operators is a topic of increasing

interest in recent researches, mainly because of their important role in the exploration of

useful criteria for the existence of solutions to nonlinear partial differential equations when

they are modeled as an abstract evolution equation on vector-valued spaces of functions, see

e.g. the monographs [8] and [79]. The applications of uniform continuity are usually found in

the use of fixed point arguments, which try to avoid hypothesis of compactness on the data of



INTRODUCTION 5

the problem, but where this hypothesis needs to be replaced by some better behavior on the

family of bounded operators dealing with the well-posedness of the associated abstract linear

problem. See e.g. [5, Remark 3.4], [14, Theorem 3.4], [31, Theorem 4.1], [83, Theorems 4.1

and 5.3] and [87] to cite a few references. Note that uniform continuity also plays a crucial

role in investigating the stability of solutions to abstract Volterra equations [20, Theorem

2.9] and abstract Cauchy problems.

Recently, Z. Fan [31] and other authors (see e.g. [83, p.208, item (ii)]), obtained charac-

terizations of compactness for families of bounded operators associated to a class of semilinear

fractional Cauchy problem. In the searching of these characterizations, one of the difficult

points is that they require the uniform continuity of the studied family [31, Theorem 3.6

and Theorem 3.7]. As remarked by Fan, the main problem is the non-existence of practical

criteria that can assure uniform continuity of the given family of bounded operators.

The main goal of this chapter is to give a complete answer to this problem. Our framework

will be the theory of (a, k)-regularized families [57]. We reformulate the above question as

an inverse problem finding a class of scalar kernels (a, k) such that property of the uniform

continuity holds.

An exhaustive study of uniform continuity is given not only for families of bounded

operators associated to fractional Cauchy problems, but also for a very wide class of families

of bounded operators {R(t)}t≥0, namely, the class of (a, k)-regularized resolvent families [57].

This notion generalizes the theories of C0-semigroups [8, Section 3.1], α-times integrated

semigroups [8, Section 3.2], convoluted semigroups [25], cosine functions [8, Section 3.14],

n-times integrated cosine families [9], resolvent families [79] α-resolvent families [12], among

others. For example, if a(t) = k(t) = 1 for all t ≥ 0 and if a(t) = t, k(t) = 1, the result

is the well-known cases of strongly continuous semigroups and cosine operator functions,

respectively. If a(t) = 1 and k(t) = tn/n! then R(t) is an n-integrated semigroup. Taking

a ∈ L1
loc(R+) and k(t) = 1 for all t ≥ 0 we have that R(t) is a resolvent family, which

are the central object of study in the theory of abstract Volterra equations [79]. Finally, if

a(t) = tα−1/Γ(α) (α > 0) and k(t) = 1 for all t ≥ 0, then R(t) corresponds to a α-resolvent

family. An updated overview is given in [63, Section 2] and references therein.

Previous studies on uniform continuity for families of bounded operators have been done

mainly in the case of C0-semigroups [51]. K. Latrach, Paoli and Simonnet [48], [49] have

studied the problem from different perspectives. See also [55] and [56] for a study in the case

of resolvent families associated to Volterra equations. In the case of cosine and sine families

of bounded operators, first studies are due to Travis and Webb [80, Proposition 4.1], [81,
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Proposition 2.4]. See also [52]. More recently, in [39] the authors have proven that when the

semigroup generated by the linear part of some linear neutral partial functional differential

equations in Lp-spaces is norm-continuous, then the semigroup solution associated to the

neutral system is eventually norm-continuous.

It is well known that if a C0-semigroup {T (t)}t≥0 of type (M,ω) defined on a Banach

space X generated by an operator A is continuous in the operator norm for all t > 0, then

‖(s+ iτ −A)−1‖ → 0 as |τ | → ∞ for all s > ω. See [15], [29] and [68]. The converse is also

true in Hilbert spaces H (see [29], [33], [86]) but it might fail in general Banach spaces (see

for instance [69]). The recent paper [21] gives an example where the semigroup is nowhere

continuous in operator norm but the resolvent tends to 0 along 2 + iτ almost logarithmically.

However, the question of finding a similar characterization for (a, k)-regularized resolvent

families under reasonable conditions on the kernels a and k remains as an open problem.

One of the main issues of this chapter in this thesis is the ability to solve this problem

assuming that a and k are 2-regular (see Chapter 2 for definitions) and certain behavior of

k̂(λ) along the imaginary axis. More precisely, it is proved that the following assertions are

equivalent:

(i) {R(t)}t≥0 is continuous in B(H) for t > 0,

(ii) lim
|τ |→∞

‖k̂(s+ iτ)
(
I − â(s+ iτ)A

)−1‖ = 0 for some s > ω.

This chapter is organized in the following way: Firstly, the definition of (a, k)-regularized

resolvent families and their main properties, and the notion of Grothendieck space and the

Dunford-Pettis property are recalled. A notion of regularity on the kernels will be also

useful as well as an important result due to Lotz [66] that is the key to establishing one of

our main results in the forthcoming sections. Next, a slightly surprising result is given: in

Theorem 2.9 is shown that a strongly continuous (a, k)-regularized resolvent family on a class

of Banach spaces containing all L∞ spaces is necessarily uniformly continuous (t ≥ 0). This

result generalizes a known theorem in the case of C0-semigroups due to Lotz [66]. Then,

we remark an interesting corollary: The result is also true in the case of certain families of

bounded operators (called α-resolvent families) which play a central and decisive role in the

development of qualitative properties for solutions to fractional partial differential equations.

Next, to characterize those (a, k)-regularized resolvent families which have the property of

being near k(t) times the identity (i.e., R(t) − k(t)I is compact for some positive value of

t), early results on such property are due to Cuthbert [26], Henŕıquez [40] and Lutz [67]

among other authors. It turns out that this property is equivalent to the compactness of the

generator. This equivalence is proved in Theorem 2.14. Finally, an important characterization
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of uniform continuity (for t > 0) in case of Hilbert spaces (see Theorem 2.21) is given. This

characterization constitutes a remarkable and nontrivial extension of previous results (see

[56] and [86]) and will be useful in establishing practical criteria, e.g. on the compactness of

(a, k)-regularized families of operators in general, and their specialization in different cases

of interest. An example of this statement is given in Corollary 2.22 and further applications

are indicated in Remark 2.23. The results of this chapter are part of the paper [61].

Chapter 3 is devoted to the compactness of fractional resolvent families. A fractional

resolvent operator function endows the solution operator, defined by the inhomogeneous

equation

Dα
t u(t) = Au(t) + f(t, u(t)), 0 < α ≤ 2, (0.4)

by means of the variation of constants formula, with the compactness property, comparable

with the finite-dimensional counterpart.

For α = 1, the well known criterion for compactness of C0-semigroups (see e.g. [75,

Theorem 3.3, Chapter 2]), asserts that a C0-semigroup {T (t)}t≥0 generated by A is compact

(for t > 0), if and only if, T (t) is continuous in the uniform operator topology for t > 0, and

the resolvent operator (λ − A)−1 is compact for all λ ∈ ρ(A), the resolvent set of A. This

criterion has great importance in the study of existence of mild solutions for (0.4), because

arguments to solve (0.4) using fixed points theorems of Schauder’s type can be applied.

In case α = 2, we find a similar situation assuming that A is the generator of a strongly

continuous sine family {S(t)}t≥0. In this case, the compactness criterion of sine family (see

[80]), asserts that a sine family S(t) is compact for all t > 0, if and only if, the resolvent

operator (λ2 − A)−1 is compact for every λ ∈ ρ(A). Observe that, in infinite dimensional

Banach spaces, a cosine family {C(t)}t≥0 cannot be compact.

In the last decade, the fractional differential equation (0.4), where the fractional derivative

is understood in the Caputo sense, has been extensively studied. Equations with memory of

type (0.4) are in connection with several applications in physics and viscoelasticity theory

(see [76], [79] and references therein). The solution to equation (0.4) in the case 0 < α < 1

is essentially given by

u(t) = Sα(t)u(0) +

∫ t

0

Sα(t− s)f(s, u(s)) ds,

where {Sα(t)}t≥0 is the (α, 1)-resolvent family generated byA. Several properties of {Sα(t)}t≥0

have been studied in [19], [50], [53] among others. The compactness of {Sα(t)}t>0 was first

studied by subordination methods, i.e., A is supposed to be a generator of a compact semi-

group, and then compactness of the family {Sα(t)}t>0 is obtained, see Prüss [78, Corollary
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2]. After that, Wang, Chen and Xiao [83], assuming that A is an almost sectorial operator

and (λα − A)−1 is compact, proved that the family {Sα(t)}t>0 is continuous in the uniform

operator topology for t > 0 [83, Theorem 3.2], and compact [83, Theorem 3.5]. The method

relies on the use of functional calculus. Very recently, and under the hypothesis continuity

in the uniform operator topology for t > 0, Fan [31] found out that the compactness of

the resolvent operator (λα − A)−1 is necessary and sufficient for compactness of {Sα(t)}t>0.

The proof follows a direct method having in mind the case α = 1. However, the necessary

condition has a flaw in their proof (see Remark 3.10 below), and therefore the problem of

characterization of compactness remains open. The objective of this chapter is to provide

a completely new approach to Fan’s result, and to provide a complete characterization in

the complementary case 1 < α ≤ 2 for the associated family Rα(t) = (gα−1 ∗ Sα)(t) that

corresponds to the fractional counterpart of the sine functions for α = 2 and that has not

been studied previously in the literature. An application of these results to the existence of

mild solutions to a semilinear fractional abstract equations with nonlocal initial conditions

is also given. The results of this chapter are part of the paper [60].

In Chapter 4 we are interested in to obtain a version of the Spectral Mapping theorem

for k-convoluted semigroups. It is well known that if A is the generator of a C0-semigroup

{T (t)}t≥0 defined on a Banach space X, then the spectral inclusion

σ(T (t)) \ {0} ⊇ etσ(A),

holds for all t ≥ 0. Moreover, the equality holds for the point and residual spectrum, that is

σp(T (t)) \ {0} = etσp(A), (0.5)

σr(T (t)) \ {0} = etσr(A), (0.6)

for all t ≥ 0. However, the converse inclusion for the entire spectrum does not hold in

general [30, Chapter IV] because of the behavior of its approximate point spectrum. On

the other hand, the works of C. Day [28], and G. Greiner and M. Müller [36], show that

the equalities (0.5)-(0.6) and the corresponding equality for the approximate point spectrum

hold for integrated semigroups by using an extrapolation theorem exposed by W. Arendt, F.

Neubrander and U. Schlotterbeck (see [10]).

The k-convoluted semigroups, k ∈ L1
loc(R+), are a natural extension of the concepts of

n-integrated and α-integrated semigroups, n ∈ N ∪ {0} and α > 0, respectively.

In this chapter, a spectral mapping theorem for the point spectrum, approximate point

spectrum and residual spectrum for an k-convoluted semigroup {R(t)}t≥0 is proved. To be
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more precise, it is shown that if A generates a k-convoluted semigroup {R(t)}t≥0, then

σp(R(t)) ∪ {0} =

{∫ t

0

k(t− s)eλs ds : λ ∈ σp(A)

}
∪ {0}, (0.7)

σa(R(t)) ∪ {0} =

{∫ t

0

k(t− s)eλs ds : λ ∈ σa(A)

}
∪ {0}, (0.8)

σr(R(t)) ∪ {0} =

{∫ t

0

k(t− s)eλs ds : λ ∈ σr(A)

}
∪ {0}, (0.9)

for all t ≥ 0. In this chapter the equalities (0.7), (0.8) and (0.9) are proved in case when A is

the generator of a C0-semigroup and a k-convoluted semigroup. The results of this chapter

are part of the paper [62].

Finally, Chapter 5 is devoted to define and establish properties of cosine and sine functions

on time scales. Recently, it was introduced in the literature the concept of C0-semigroup

on time scales, which encompass this concept in all the classical cases and also, for several

interesting time scales such as the quantum scales, hybrid scales, among others (see [41]). We

point out that this definition is very general and does not require the additivity property on

the time scale. They employ the Laplace transform to address the definition of C0-semigroup,

which turns it much more general. On the other hand, it is a known fact that the theory

of semigroups plays a crucial role to study the first order abstract Cauchy problem on time

scales {
u∆(t) = Au(t), t ∈ T+

0 ,

u(0) = x,
(0.10)

and also, to study nonlinear first order abstract problem on time scales given by{
u∆(t) = Au(t) + f(t, u(t)), t ∈ T+

0 ,

u(0) = x,
(0.11)

where A is a closed linear operator in a Banach space X, x ∈ X and T0 is a time scale such

that 0 ∈ T0 and supT0 = +∞, and T+
0 = T0 ∩R+. The equations (0.10) and (0.11) are very

important for applications and to study several interesting models.

On the other hand, the theory of abstract cosine and sine families plays an important

role in the study of the existence of solutions to second order equations and to investigate

different problems in several fields of knowledge. Due to this fact, this theory has been

attracting the attention of several authors, see [3], [22], [35], [43], [58] and the references

therein. However the theory of discrete abstract cosine functions has not been completely

developed. For instance, the correspondence with the set of all discrete cosine functions

defined by means of D’Alembert functional equations is still an open problem as well the
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description of the generator of abstract cosine has not been given yet. Also, to the best of

our knowledge, the definition of abstract cosine functions on quantum or hybrid scales was

not introduced in the literature until now. Therefore, one of the goals of this paper is to try

to fulfill this lack of literature and to present a unified theory for abstract cosine functions

which encompass the continuous, discrete and hybrid cases.

Therefore, motivated by these results, it is introduced in this chapter the concept of cosine

and sine functions defined on time scales, in order to study the homogeneous abstract second

order Cauchy problem on time scales
u∆∆(t) = Au(t), t ∈ T+

0 ,

u(0) = x,

u∆(0) = y,

(0.12)

the inhomogeneous abstract second order Cauchy problem on time scales
u∆∆(t) = Au(t) + f(t), t ∈ T+

0 ,

u(0) = x,

u∆(0) = y,

(0.13)

and the nonlinear abstract second order Cauchy problem on time scales
u∆∆(t) = Au(t) + f(t, u(t)), t ∈ T+

0 ,

u(0) = x,

u∆(0) = y,

(0.14)

where A is a closed linear operator in a Banach space X, x, y ∈ X.

It is a known fact that when we are dealing with second order dynamic equations on

time scales, we can formulate the problem using several different ways. Therefore, it is a

big deal to find out an appropriate formulation to study each problem. In our case, since

we are interested to study abstract cosine and sine functions as well as their properties, our

equation given by (0.12) is the most appropriate to investigate this problem. See Remark

5.12 for details.

We recall the reader that the classical way to define cosine function is through the following

property: {
2C(t)C(s) = C(t+ s) + C(t− s), t, s ∈ R,

C(0) = I.
(0.15)

However, if we define the abstract cosine function on time scales by the usual property

(0.15), we need to require a very restrictive property to the time scale, in order to ensure

that the abstract cosine on time scales is well-defined, which means, the time scale should
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satisfy the group property, which is defined as follows. If T has the group property, then the

following two conditions are satisfied:

(1) 0 ∈ T,
(2) If t, s ∈ T, then t− s ∈ T.

Therefore, in order to avoid such restriction on the time scales, we present the definitions

of the cosine and sine functions using Laplace transform on time scales. This approach is

much more general and encompasses all time scales T0 satisfying 0 ∈ T0 and supT0 = +∞.

Further, using such approach, we are able to deal with several different types of time scale such

as quantum scale, hybrid scales, among others. Although of all these advantages, to prove

the results using only this general condition represents a big deal, because to prove mostly

of the results concerning abstract cosine and sine functions, we need to present completely

different and new arguments to the ones found in the literature, since these last ones usually

employ the functional equation to get them.

This chapter is organized as follows. The first section is devoted to remember the concept

of Laplace transform on time scales, its properties will be necessary to establish the main

results. The second section is devoted to define and develop the concept of abstract cosine

function on time scales, which generalizes the properties of the classical theory. Among

others, we prove the following properties of the abstract cosine function:

(a)
∫ t

0
(t − σT(s))C(s)x∆s ∈ D(A) and A

∫ t
0
(t − σT(s))C(s)x∆s = C(t)x − x for all

x ∈ X, t ∈ T+
0 .

(b) If x ∈ D(A), then C(t)x ∈ D(A) and AC(t)x = C(t)Ax for all t ∈ T+
0 .

(c) Let x, y ∈ X. Then x ∈ D(A) and Ax = y if, and only if, for all t ∈ T+
0 we have∫ t

0

(t− σT(s))C(s)y∆s = C(t)x− x.

(d) If 0 is right-dense, then D(A) =
{
x ∈ X : lim

h→0+

2(C(h)x− x)

h2
exists

}
, and

Ax = lim
h→0+

2(C(h)x− x)

h2
.

(e) If 0 and σT(0) are right-scattered, then

D(A) =
{
x ∈ X :

(C(σT(σT(0)))− C(σT(0)))x

µT(σT(0))µ(0)
+

(C(0)− C(σT(0)))x

µT(0)2
is well− defined

}
,

and

Ax =
(C(σT(σT(0)))− C(σT(0)))x

µ(σT(0))µT(0)
+

(C(0)− C(σT(0)))x

µT(0)2
.
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(f) If 0 is right-scattered and σ(0) is right-dense, then

D(A) =
{
x ∈ X : lim

h→0+

(C(σT(0) + h)− C(σT(0)))x

µT(0)h
+

(C(0)− C(σT(0))x

µT(0)
exists

}
,

and

Ax = lim
h→0+

(C(σT(0) + h)− C(σT(0)))x

µT(0)h
+

(C(0)− C(σT(0))x

µT(0)
.

In the previous properties, σT(t) and µT(t) denote the forward jump operator and the

graininess function, respectively. The properties (e) and (f) bring the definition of the gener-

ator A when 0 and σT(0) are right-scattered, and 0 is right-scattered and σT(0) is right-dense,

respectively. These descriptions to the generator are very surprising and to the best of our

knowledge, it has not been presented in the literature until now. Also, we point out that the

cases (d), (e) and (f) are the only ones to consider, since the case when 0 is right-dense and

σT(0) is right-scattered is not possible. See Remark 5.21 for details.

In the third section, our goal is to show how restrictive is the class of time scales which

satisfies the group property. In order to do it, we prove several results describing such

restriction. For instance, we prove that if the class of time scales satisfies the group property,

then the hybrid time scales are not included in this class (see Theorem 5.23). Also, we show

that if 0 is right-dense, then the only possibility for T is R (see Remark 5.25). The fourth

section is devoted to introduce the concept of abstract sine function on time scales and prove

its properties. Among others, we prove the following properties of the abstract sine function:

(a) If x ∈ D(A), then S(t)x ∈ D(A) and AS(t)x = S(t)Ax for all t ∈ T+
0 .

(b)
∫ t

0
(t − σT(s))S(s)x∆s ∈ D(A) and A

∫ t
0
(t − σT(s))S(s)x∆s = S(t)x − tx for all

x ∈ X, t ∈ T+
0 .

(c) Let x, y ∈ X. Then x ∈ D(A) and Ax = y if, and only if, for all t ∈ T+
0 we have:∫ t

0

(t− σT(s))S(s)y∆s = S(t)x− tx.

Also, we prove a result which ensures that if µ(0) > 0 and the homogeneous Cauchy problem

(0.12) has a solution, then A is a bounded linear map (see Theorem 5.34).

In the fifth section, we apply our results to study the inhomogeneous abstract second order

Cauchy problem (0.13), obtaining a version of variation constant formula for the solution of

the problem. Finally, in the last section we investigate the nonlinear abstract second order

Cauchy problem on time scales (0.14). The results of this chapter are part of the paper [70].



CHAPTER 1

Preliminaries

This chapter contains some preliminaries used throughout the whole thesis. After present-

ing some notations and definitions, the operators of Riemann-Liouville fractional integration

and Caputo fractional derivative are defined. Next, we introduce two special functions in-

timately related to fractional differential equations, in order to study the properties of the

operator of Riemann-Liouville fractional differentiation. At the end of this chapter, we study

the properties of the basic calculus on time scales.

Most notations used in this thesis are standard. Thus, N, R, R+ and C denote the sets

of natural, real, nonnegative and complex numbers, respectively.

We denote by L1
loc(R+) the set of locally integrable functions defined over [0,∞), and by

L1
loc(R+, X) the Banach space of all locally (Bochner) integrable vector-valued functions. Let

X, Y be Banach spaces with norms ‖ · ‖X , ‖ · ‖Y , and we omit subscripts when there is no

confusion. We denote by B(X, Y ) the space of all bounded linear operators from X into Y,

and by B(X) the space of all bounded linear operators from X into itself. If A is a linear

operator on X, then D(A), ker(A) and ran(A) denote respectively, domain of A, null space

of A and range of A. Also, ρ(A) and σ(A) will denote the resolvent set and spectrum of A

respectively, and R(λ,A) = (λI − A)−1 will represent the resolvent operator of A.

Definition 1.1. For a ∈ L1
loc(R+) and k ∈ L1

loc(R+) we define the finite convolution

between a and k as

(a ∗ k)(t) :=

∫ t

0

k(t− s)a(s) ds.

Also we denote by a∗n the convolution of a with itself n-times, that is,

a∗n(t) = (a ∗ a ∗ · · · ∗ a)(t).

Definition 1.2. For α > 0, we define the function gα as

gα(t) =


tα−1

Γ(α)
, t > 0

0, t ≤ 0

where Γ(·) denotes the Gamma function. We also define g0(·) = δ0, the Dirac delta.

13
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Definition 1.3. We say that a resolvent family {R(t)}t≥0 is exponentially bounded

(or of type (M,ω)) if there exist constants M ≥ 0 and ω ∈ R, such that

‖R(t)‖ ≤Meωt for all t ≥ 0.

Now, we give some definitons on fractional calculus.

Definition 1.4. Given a continuous function f , the Caputo fractional derivative of

order α > 0 is defined by

Dα
t f(t) := (gn−α ∗ f (n))(t) =

∫ t

0

gn−α(t− s)f (n)(s) ds,

where n = dαe is the smallest integer greater that or equal to α.

For details in fractional calculus, we refer the reader to [42], [46], [72] and [88]. We

notice that if α = m ∈ N, then Dm
t = Dm = dm

dtm
.

Definition 1.5. [88] Let α > 0. The α-order Riemann-Liouville fractional integral

of u is defined by

Jαu(t) :=

∫ t

0

gα(t− s)u(s) ds, t ≥ 0.

Also, we define J0u(t) = u(t). Because of the convolution properties, the integral operators

{Jα}α≥0 satisfy the following semigroup law: JαJβ = Jα+β for all α, β ≥ 0.

The Caputo derivative operator Dα
t satisfies

Dα
t J

αu(t) = u(t),

JαDα
t u(t) = u(t)−

n−1∑
k=0

u(k)(0)gk+1(t),

where n = dαe.
For more detailed results on fractional calculus and fractional differential equations, we

refer to [1], [2], [4], [46], [59], [77], [84], [88] and references therein.

Definition 1.6. The Laplace transform of f ∈ L1
loc(R+, X) is defined by

f̂(λ) :=

∫ ∞
0

e−λtf(t) dt, Re(λ) > ω,

whenever the integral is absolutely convergent for Re(λ) > ω.
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The reader can find in [8, Chapter 2] properties of the Laplace Transform for Bochner

integrals. Also, we have the following properties for the fractional derivatives:

D̂α
t u(λ) = λαû(λ)−

n−1∑
k=0

u(k)(0)λα−1−k,

where n = dαe and λ ∈ C.
Now, we present some basic concepts and properties about time scales which will be

essential to prove the main results. The reader can find more details in [17], [18].

A time scale T is a closed and nonempty subset of R. For every t ∈ T, we define the

forward and backward jump operators σT, ρT : T→ T, respectively, by:

σT(t) = inf{s ∈ T : s > t} and ρT(t) = sup{s ∈ T : s < t}.

If σT(t) > t, we say that t ∈ T is right-scattered . If t < supT and σT(t) = t, then t is

called right-dense . Analogously, if ρT(t) < t, we say that t ∈ T is left-scattered, whereas

if t > inf T and ρT(t) = t, then t is left-dense. Also, we define the graininess function

µT(t) : T→ [0,∞) by µT(t) := σT(t)− t.
We will denote a closed interval in T by [a, b]T = {t ∈ T : a ≤ t ≤ b}, where a, b ∈ T.

Similarly, we can define the open intervals and half-open intervals, among others.

Definition 1.7. A function f : T → X is called regulated if its right-sided limit exists

at right-dense points in T, and its left-sided limit exists at left-dense points in T.

Definition 1.8. A function f : T → X is called rd-continuous if it is continuous at

right-dense points in T, and its left-sided limit exists at left-dense points in T.

We denote the class of all rd-continuous functions f : T→ X by Crd = Crd(T, X).

To be able to remember the definition of ∆-derivative, we need to recall the concept of

the set Tκ, which is defined by:

Tκ =

{
T \ {m}, if T has a left-scattered maximum m,

T, otherwise.

Definition 1.9. For y : T → R and t ∈ Tκ, we define the delta derivative of y to

be the number (if it exists) y∆(t) with the following property: given ε > 0, there exists a

neighborhood U of t such that

|y(σT(t))− y(s)− y∆(t)(σT(t)− s)| ≤ ε|σT(t)− s|,

for all s ∈ U .
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The delta-integral on time scales satisfies the same basic properties as the classical Rie-

mann integral.

Theorem 1.10. [17, Theorem 1.75] If f ∈ Crd and t ∈ Tκ, then∫ σT(t)

t

f(s) ∆s = µT(t)f(t).

Theorem 1.11. [17, Theorem 1.77] If f, g ∈ Crd, then

(1)

∫ b

a

f(σT(t))g∆(t) ∆t = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(t) ∆t.

(2)

∫ b

a

f(t)g∆(t) ∆t = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(σT(t)) ∆t.

Next, we recall the notions and the results concerning Hilger complex plane and gene-

ralized exponential function. All the results can be found in [17].

Definition 1.12. For h > 0, we define the Hilger complex numbers, the Hilger real

axis, the Hilger alternating axis and the Hilger imaginary circle by:

Ch =

{
z ∈ C : z 6= −1

h

}
,

Rh =

{
z ∈ Ch : z ∈ R and z > −1

h

}
,

Ah =

{
z ∈ Ch : z ∈ R and z < −1

h

}
,

Ih =

{
z ∈ Ch :

∣∣∣∣z +
1

h

∣∣∣∣ =
1

h

}
,

respectively. For h = 0, let C0 = C, R0 = R, I0 = iR and A0 = ∅.

Definition 1.13. For h > 0 and z ∈ Ch, we define the Hilger real part of z by:

Reh(z) :=
|zh+ 1| − 1

h
.

We present the following notation used in Chapter 5:

Reµ(λ)(t) := ReµT(t)(λ),

and Re0(z) := Re(z) in the usual sense.

Theorem 1.14. If we define the circle plus addition ⊕ on Ch by:

z ⊕ w = z + w + zwh,

then (Ch,⊕) is an Abelian group.
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Definition 1.15. If z ∈ Ch, the additive inverse of z under the operation ⊕ is:

	z :=
−z

1 + zh
,

and we define the circle minus substraction 	 on Ch by:

z 	 w = z ⊕ (	w).

Definition 1.16. We say that a function p : T → R is regressive provided that 1 +

µT(t)p(t) 6= 0 for all t ∈ Tκ. The set of all regressive and rd-continuous functions f : T→ R
will be denoted by R = R(T,R).

Definition 1.17. For p ∈ R, we define the generalized exponential function by:

ep(t, s) = exp

(∫ t

s

ξµT(r)p(r) ∆r

)
for s, t ∈ T.

Here, the cylinder transformation ξh is defined by:

ξh(z) =
1

h
log(1 + zh),

where log denotes the principal logarithm function. For h = 0, we define ξ0(z) = z for all

z ∈ C.

Finally, we present properties of the generalized exponential function on time scales.

Theorem 1.18. [17, Theorem 2.36] If p, q ∈ R, then:

(1) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;

(2) eσp(t, s) = ep(σT(t), s) = (1 + µ(t)p(t))ep(t, s);

(3)
1

ep(t, s)
= e	p(t, s);

(4) ep(t, s) =
1

ep(s, t)
= e	p(s, t);

(5) ep(t, s)ep(s, r) = ep(t, r);

(6) ep(t, s)eq(t, s) = ep⊕q(t, s);

(7)
ep(t, s)

eq(t, s)
= ep	q(t, s)

(8)

(
1

ep(t, s)

)∆

= − p(t)

ep(σT(t), s)
.

Lemma 1.19. [54, Lemma 5.1] Let α > 0, then for any fixed s ∈ T, the following property

is fulfilled:

e	α(t, s)→ 0 as t→∞.





CHAPTER 2

Norm Continuity

One-parameter strongly continuous families {R(t)}t≥0 of bounded operators, defined on

a Banach space, are useful instruments in the study of wide classes of abstract evolution

equations, because of their important role in the determination of useful criteria for the

existence of solutions to nonlinear partial differential equations, modeled as an abstract

evolution equation on some vector-valued space of functions. In this Chapter, we give a

complete answer to the question raised by some authors, studying a wide class of families

of bounded operators named (a, k)-regularized resolvent families. We show conditions which

ensure the uniform continuity of (a, k)-regularized resolvent families R(t) for t ≥ 0. Namely, it

is shown that on certain Banach spaces (e.g., L∞(S,Σ, µ)), each exponentially bounded (a, k)-

regularized resolvent family is in fact uniformly continuous for t ≥ 0. Also, we characterize

families R(t) such that R(t) − k(t)I is a compact operator for all t > 0. Finally, we prove

that in Hilbert spaces the uniform continuity of R(t) for t > 0 (also called immediate norm

continuity) is equivalent to the decay to zero of k̂(λ)(I − â(λ)A)−1 along some imaginary

axis. Our results widely generalize known properties for strongly continuous semigroups and

cosine families of bounded operators.

1. (a, k)-regularized resolvent families

Let X be a Banach space, and A be a closed linear operator defined on X.

Definition 2.1. [57] Let k ∈ C(R+), k 6= 0 and a ∈ L1
loc(R+), a 6= 0 be given. A strongly

continuous family {R(t)}t≥0 ⊂ B(X) is called (a, k)-regularized resolvent family on X

having A as its generator, if the following properties hold:

(1) R(0) = k(0)I;

(2) R(t)x ∈ D(A) and R(t)Ax = AR(t)x, for all x ∈ D(A) and t ≥ 0;

(3) R(t)x = k(t)x+

∫ t

0

a(t− s)AR(s)x ds, for x ∈ D(A) and t ≥ 0.

This notion generalizes the notions of C0-semigroups, n-times integrated semigroups,

k-convoluted semigroups, n-times integrated cosine families , n-times resolvent families, α-

resolvent families, among others. For example, if a(t) = k(t) ≡ 1 for all t ≥ 0 and if

19



20 2. NORM CONTINUITY

a(t) = t, k(t) ≡ 1 for all t ≥ 0, then we obtain strongly continuous semigroups and cosine

operator functions, respectively [8]. If a(t) ≡ 1 and k(t) = tn

n!
for all t ≥ 0, then R(t) is an

n-times integrated semigroup [7]. Taking a ∈ L1
loc(R+) and k(t) ≡ 1 for all t ≥ 0 we have

that R(t) is a resolvent family, which are the central object to study in the theory of abstract

Volterra equations [79]. Finally, if a(t) = tα−1

Γ(α)
(α > 0) and k(t) ≡ 1 for all t ≥ 0, then R(t)

corresponds to an α-resolvent family [50].

It is well-known that if an (a, k)-regularized resolvent family exists, then it is unique [57].

Let {R(t)}t≥0 be an (a, k)-regularized resolvent family with generator A such that

‖R(t)‖ ≤Mk(t), t ≥ 0, (2.1)

for some constant M > 0. Then, under certain hypothesis on the kernels a and k (see [63,

Section 2] and references therein), we have

D(A) =

{
x ∈ X : lim

t→0+

R(t)x− k(t)x

(a ∗ k)(t)
exists

}
,

and

Ax = lim
t→0+

R(t)x− k(t)x

(a ∗ k)(t)
. (2.2)

We note that there is a one-to-one correspondence between (a, k)-regularized resolvent fam-

ilies and their generators.

For exponentially bounded (a, k)-regularized resolvent families, it is well known the fol-

lowing characterization.

Theorem 2.2. [57] Let X be a Banach space and A be a closed and densely defined

operator. The following assertions are equivalent:

(1) A is the generator of an (a, k)-regularized resolvent family of type (M,ω);

(2) For all λ > ω, the resolvent set ρ(A) contains the set
{

1
â(λ)

: λ > ω
}

and

k̂(λ) (I − â(λ)A)−1 x =

∫ ∞
0

e−λtR(t)x dt, x ∈ X,λ > ω.

Here, without loss of generality, we are assuming that a and k are Laplace transformable

for λ > ω.

We recall that a Banach space X is called a Grothendieck space if every weak∗ con-

vergent sequence in X ′ converges weakly, where X ′ denotes the dual space of X.

Definition 2.3. A Banach space X is said to have the Dunford-Pettis property if

for all sequence {xn}n≥0 in X such that xn → 0 weakly in X and x′n → 0 weakly in X ′, we

have 〈xn, x′n〉 → 0.
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For instance, the spaces L∞(X,Ω, µ) where (X,Ω, µ) is a positive measure space, and

C(X) (where X is a compact σ−Stonian space) are Grothendieck spaces with the Dunford-

Pettis property. Recall that X is Stonian if the closure of every open set is open, and it

is σ-Stonian if the closure of every open Fσ-set is open. On the other hand, a Banach

space E is injective if for every Banach space X and every subspace Y of X, each operator

T : Y → E admits an extension T̃ : X → E. Every injective Banach space is a Grothendieck

space with the Dunford-Pettis property. Finally, a reflexive space does not have the Dunford-

Pettis property, unless the space is finite dimensional.

Definition 2.4. [79] Let a ∈ L1
loc(R+) be Laplace transformable and n ∈ N. The kernel

a(t) is called n-regular if there exists a constant c > 0 such that

|λm â(m)(λ)| ≤ c|â(λ)|,

for all Re(λ) > 0 and 0 ≤ m ≤ n.

For example, for n ∈ N fixed and α > 0, the kernel a(t) = tα−1

Γ(α)
is n-regular. Also, for

a, b > 0 and n ∈ N fixed, the kernel a(t) = ebtta is n-regular.

We finally recall the following result due to Lotz [66].

Theorem 2.5. [66, Theorem 10] Let E be a Grothendieck space with the Dunford-Pettis

property and let (Tn) ⊂ B(E) with lim
n→∞

‖Tm(Tn − I)‖ = 0 for all m ∈ N. If (Tn) tends

to the identity in the strong operator topology, then lim
n→∞

‖Tn − I‖ = 0. If, in addition,

lim
n→∞

‖(Tn − I)Tm‖ = 0 for every m ∈ N, in particular, if all operators Tn commute, then it

suffices to assume that (Tn) converges to the identity in the weak operator topology.

Definition 2.6. Let X be a complex Banach space. A strongly continuous family of

bounded and linear operators {S(t)}t≥0 ⊂ B(X) is said to be uniformly continuous if for

all s ≥ 0,

lim
t→s
‖S(t)− S(s)‖B(X) = 0. (2.3)

This concept is also called norm-continuity for some authors ([21], [29], [33], [69]),

but also it sometimes refers to the case that (2.3) holds for all s > 0. To distinguish between

both cases, some authors say that {S(t)}t≥0 is immediate norm continuous when refers

to the continuity of {S(t)}t≥0 in the uniform operator topology for s > 0.

2. Uniform continuity in L∞ type spaces

In this section, we will assume that a and k are exponentially bounded functions, and

hence Laplace transformable. Moreover, we suppose that k̂(λ) 6= 0 and â(λ) 6= 0 for all λ
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sufficiently large. Our main result in this section shows that in certain classes of Banach

spaces, the uniform continuity for (a, k)-regularized resolvent families is automatic. This

result generalizes results of Lizama [55] and Lotz [66], and also provides new results. We

will need two preliminary lemmata.

Lemma 2.7. Let {R(t)}t≥0 be a uniformly continuous (a, k)-regularized resolvent family

with generator A. Assume that a and k are exponentially bounded functions, a is positive,

and |k(0)| ≥ 1. Then A must be a bounded operator and

R(t) = k(t) +
∞∑
n=1

An(a∗n ∗ k)(t), t ≥ 0. (2.4)

Proof. Fix t > 0 and define

f(t) :=
1

(1 ∗ a)(t)

∫ t

0

a(t− s)R(s) ds.

Since {R(t)}t≥0 is a uniformly continuous family, there exists δ > 0 such that for 0 < s < δ,

we have ‖R(s)− k(0)I‖ < 1. Let τ ∈ (0, δ) be fixed. Then,∥∥∥∥f(τ)

k(0)
− I
∥∥∥∥ ≤ ‖f(τ)− k(0)I‖

=

∥∥∥∥ 1

(1 ∗ a)(τ)

∫ τ

0

a(τ − s)
(
R(s)− k(0)

)
ds

∥∥∥∥
<

1

(1 ∗ a)(τ)

∫ τ

0

a(τ − s) ds = 1.

Therefore, 1
k(0)

f(τ) is invertible on X. Let x ∈ X be fixed. There exists y ∈ X such that

x = f(τ)y. But, according to [57, Lemma 2.2] for y ∈ X we have

f(τ)y =
1

(1 ∗ a)(τ)

∫ τ

0

a(τ − s)R(s)y ds ∈ D(A).

Then, D(A) = X. Since A is closed, it implies that A is a bounded operator, proving the

first assertion of the theorem.

From the hypothesis, we may assume that a(t) ≤ Meλt and |k(t)| ≤ Meλt for the same

constants M > 0 and λ > 0. Denote eλ(t) = eλt, t ≥ 0 and observe that e∗nλ (t) = tn−1

(n−1)!
eλ(t)

for n = 2, 3, ... Hence, |(a∗n ∗ k)(t)| ≤Mn+1 tn

n!
eλ(t) for all t ≥ 0 and n ∈ N, and therefore

∞∑
n=1

‖An(a∗n ∗ k)(t)‖ ≤ M

∞∑
n=1

‖A‖nMn t
n

n!
eλ(t) = Me‖A‖Mteλ(t).
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This proves that the series in the right hand side of (2.4) converges. Define

S(t) := k(t) +
∞∑
n=1

An(a∗n ∗ k)(t), t ≥ 0.

It is easy to show that S(t) = k(t) + A(a ∗ S)(t). Now, by uniqueness, we conclude that

S(t) = R(t). It proves the formula (2.4). �

The following Lemma provides a converse of the above property. It is also new in the

context of (a, k)-regularized resolvent families with k 6= 1.

Lemma 2.8. Let {R(t)}t≥0 be an strongly continuous (a, k)-regularized resolvent family

with generator A. Assume that a and k are exponentially bounded, a is positive and k ∈
C1(R). If A is bounded, then {R(t)}t≥0 is uniformly continuous.

Proof. In order to see that the resolvent family R(t) is uniformly continuous, we take

0 < t < s and observe that

‖R(t)−R(s)‖ ≤ ‖k(t)− k(s)‖+
∞∑
n=1

‖A‖n|(a∗n ∗ k)(t)− (a∗n ∗ k)(s)|.

Since k ∈ C1(R), there exists p ∈ C(R) such that k(t) =

∫ t

0

p(r) dr + k(0). Hence,

‖R(t)−R(s)‖ ≤ ‖k(t)− k(s)‖+
∞∑
n=1

‖A‖n
∣∣(a∗n ∗ (p ∗ 1)

)
(s)−

(
a∗n ∗ (p ∗ 1)

)
(t)
∣∣

+|k(0)|
∞∑
n=1

‖A‖n
∣∣(a∗n ∗ 1

)
(s)−

(
a∗n ∗ 1

)
(t)
∣∣

≤ ‖k(t)− k(s)‖+
∞∑
n=1

‖A‖n
∣∣∣∣∫ s

t

(a∗n ∗ p)(v) dv

∣∣∣∣
+|k(0)|

∞∑
n=1

‖A‖n
∣∣∣∣∫ s

t

a∗n(v) dv

∣∣∣∣
≤ ‖k(t)− k(s)‖+ |t− s|

∞∑
n=1

‖A‖n
(

sup
t≤v≤s

|(a∗n ∗ p)(v)|

+|k(0)| sup
t≤v≤s

|a∗n(v)|
)

≤ ‖k(t)− k(s)‖+ |t− s|
∞∑
n=1

‖A‖n sup
t≤v≤s

( ∣∣∣∣∫ v

0

a∗n(τ)p(v − τ) dτ

∣∣∣∣
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+|k(0)| · |a∗n(v)|
)
.

Note that |a∗n(τ)| ≤ Mnτn−1

(n− 1)!
for 0 ≤ τ ≤ s, where M := sup

0≤τ≤s
|a(τ)|. Hence, we obtain

‖R(t)−R(s)‖ ≤ ‖k(t)− k(s)‖+ |t− s|
∞∑
n=0

(‖A‖M)n+1sn

n!
sup
t≤v≤s

(
|k(v)|+ |k(0)|

)
≤ ‖k(t)− k(s)‖+ |t− s| · sup

t≤v≤s

(
|k(v)|+ |k(0)|

)
· ‖A‖M · e‖A‖Ms.

This proves the lemma. �

Our main result in this section is the following theorem. It shows an interesting general-

ization of a result of Lotz in case that the kernel a is dominated by the kernel k in the sense

of their Laplace transforms.

Theorem 2.9. Let X be a Grothendieck space with the Dunford-Pettis property. Suppose

that A generates an exponentially bounded (a, k)-regularized resolvent family {R(t)}t≥0 on X.

Assume that a and k are exponentially bounded, a is positive, k ∈ C1(R), and suppose that

there exists a constant M > 0 such that |â(λ)| ≤ M |k̂(λ)| for all λ large enough. Then,

{R(t)}t≥0 is uniformly continuous on X.

Proof. By hypothesis, there exists ω > 0 such that the functional equation

R̂(λ)R̂(µ) =
k̂(λ)

â(λ)

1
1

â(λ)
− 1

â(µ)

R̂(µ)− k̂(µ)

â(µ)

1
1

â(λ)
− 1

â(µ)

R̂(λ), λ, µ > ω

holds, see [63, Equation 3.8]. Here R̂(λ) = k̂(λ) (I − â(λ)A)−1 by Theorem 2.2. Then, we

get the formula(
â(µ)− â(λ)

)(
R̂(λ)− k̂(λ)

)
R̂(µ) = â(λ)k̂(λ)R̂(µ)− â(λ)k̂(µ)R̂(λ), (2.5)

for all λ, µ > ω. Let us define T (λ) := 1

k̂(λ)
R̂(λ) = (I − â(λ)A)−1, λ > ω. Replacing in (2.5),

we obtain the identity

â(µ)(T (λ)− I)T (µ) = â(λ)T (µ)− â(λ)

k̂(λ)
R̂(λ) +

â(λ)

k̂(λ)
R̂(λ)T (µ)− â(λ)T (µ).

Therefore,

‖â(µ)(T (λ)− I)T (µ)‖ ≤ ‖â(λ)T (µ)‖+

∣∣∣∣ â(λ)

k̂(λ)

∣∣∣∣‖R̂(λ)‖+

∣∣∣∣ â(λ)

k̂(λ)

∣∣∣∣‖R̂(λ)T (µ)‖+ ‖â(λ)T (µ)‖
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and, by hypothesis and the fact that |â(λ)| → 0 and ‖R̂(λ)‖ → 0 as λ→ +∞, we obtain for

each µ > ω fixed, that

lim
λ→+∞

‖â(µ)(T (λ)− I)T (µ)‖ = 0.

In particular, we have that

lim
λ→+∞

‖(T (λ)− I)T (µ)‖ = 0,

for µ fixed. From Theorem 2.5, there exists λ1 > ω such that T (λ1) is invertible on X, that

is, T (λ1)−1 ∈ B(X). Therefore, A is a bounded operator and, by Lemma 2.8, we conclude

that the family {R(t)}t≥0 is uniformly continuous. �

In case a(t) = k(t) = 1, we recover the following result due to Lotz [66].

Corollary 2.10. Let X be a Grothendieck space with the Dunford-Pettis property. Then,

every strongly continuous one-parameter semigroup of operators on X is uniformly continu-

ous.

In case k(t) = 1 and a ∈ L1
loc(R+) is a Laplace transformable kernel, we recover [55,

Theorem 3.2] as follows.

Corollary 2.11. Let X be a Grothendieck space with the Dunford-Pettis property. Then,

every strongly continuous resolvent family of operators on X is uniformly continuous.

We consider for α > 0 the function gα(t) (see Definition 1.2), whose Laplace transform is

ĝα(λ) = λ−α. Next, we consider the fractional abstract Cauchy problem

Dα
t u(t) = Au(t), t > 0, (2.6)

where A is a closed linear operator defined on a Banach space X, and Dα
t denotes the Caputo

fractional derivative (see Definition 1.4). Recall that if A generates a (gα,1)-resolvent family

{Sα(t)}t≥0, then the solution to (2.6) is given by u(t) = Sα(t)u0 whenever u0 ∈ D(A). See

[12].

Corollary 2.12. Let X be a Grothendieck space with the Dunford-Pettis property. Let α >

1 and suppose that A generates an exponentially bounded (gα, 1)-resolvent family {Sα(t)}t≥0

on X. Then, {Sα(t)}t≥0 is uniformly continuous on X.

Remark 2.13. It is known that the above result holds for α > 2 without restriction on

the Banach space X. See [12, Corollary 3.4].

It is interesting to observe that for integral resolvents, i.e. in case a = k, we also obtain

automatically uniform continuity for the class of Grothendieck spaces with the Dunford-Pettis

property. An special case is a(t) = k(t) = t corresponding to a sine family [8, Section 3.15].
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3. (a, k)-regularized families with compact generator

In Section 2, it was proved that if an operator A is bounded, then the (a, k)-resolvent

family generated by A is given by

R(t) = k(t)I +
∞∑
n=1

An(a∗n ∗ k)(t), t > 0.

In this section, we develop some aspects of (a, k)-regularized resolvent families of bounded

linear operators on a Banach space which have the property of being near k(t) times the

identity (i.e., R(t) − k(t)I is compact for some positive value of t). First results on such

property are due to Cuthbert [26], Henŕıquez [40], Lizama [55] and Lutz [67]. The following

result generalizes all the above mentioned papers.

Theorem 2.14. Let {R(t)}t≥0 be an strongly continuous (a, k)-resolvent family of type

(M,ω) with generator A. Suppose that the kernels a, k are exponentially bounded functions,

a is positive, and |k(0)| ≥ 1. Then, the following assertions are equivalent:

(1) R(t)− k(t)I is compact for all t > 0.

(2) A is a compact operator.

Proof. Suppose that A is compact. Since the set of compact operators is a closed

subspace of B(X), we have by (2.4) that

R(t)− k(t)I =
∞∑
n=1

k(t)∗nAn = lim
N→∞

N∑
n=1

k(t)∗nAn,

and hence, R(t)− k(t)I is a compact operator.

Conversely, suppose thatR(t)−k(t)I is compact for all t > 0. According to the hypothesis,

we have that for all Re(λ) > ω, the operator (I − â(λ)A) is invertible and∫ ∞
0

e−λtR(t) dt = R̂(λ) = k̂(λ)(I − â(λ)A)−1

for Re(λ) > ω. For x ∈ X, define H(λ)x := k̂(λ)(I − â(λ)A)−1x. We have

λH(λ)x− λk̂(λ)x =

∫ ∞
0

λe−λtR(t)x dt− λk̂(λ)x

=

∫ ∞
0

λe−λtR(t)x dt−
∫ ∞

0

λe−λtk(t)x dt

=

∫ ∞
0

λe−λt
(
R(t)− k(t)

)
x dt.
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Hence by [85, Corollary 2.3], we obtain that λH(λ)x− λk̂(λ)x is a compact operator. From

the identity

λH(λ)x− λk̂(λ) = −λk̂(λ)

(
I − H(λ)

k̂(λ)

)
,

we obtain that
(
I − H(λ)

k̂(λ)

)
is a compact operator, and this implies that ran

(
H(λ)

k̂(λ)

)
is closed.

On the other hand, ran
(
H(λ)

k̂(λ)

)
= D(A) is dense on X. Therefore D(A) = D(A) = X,

concluding that A is a bounded operator. Next, we observe that the following identity holds:

A =
(
λH(λ)x− λk̂(λ)I

)(I − â(λ)A)

λk̂(λ)â(λ)
,

and this implies that A is a compact operator. The proof is complete. �

4. Immediate norm continuity in Hilbert spaces

Since reflexive spaces do not have the Dunford-Pettis property, we cannot apply Theorem

2.9 to characterize the uniform continuity for t > 0 of (a, k)-regularized resolvent families in

general Banach spaces. Of course, in this case the generator A is not necessarily bounded.

This is one of the reasons why a characterization only in terms of the generator is desirable

but unfortunately it is difficult to obtain in general Banach spaces. However, we can obtain

a positive result extending an important result due to O. El Mennaoui and K.-J. Engel [29]

valid for the case a(t) ≡ k(t) ≡ 1 to the case of (a, k)-regularized resolvent families in Hilbert

spaces (see also [56] for the case of resolvent families).

Let A be a closed operator with domain D(A) densely defined, a ∈ L1
loc(R+) and k ∈

C(R+). Moreover, suppose a, k are 2-regular kernels.

Definition 2.15. Let k ∈ L1
loc(R+) be Laplace transformable. We say that k is an ad-

missible kernel if there exists lim
λ→iτ

k̂(λ) = k̂(iτ) for all |τ | ≥ 1, and satisfies the following

condition:

(H) There exists a constant M > 0 such that, for all |τ | ≥ 1,

1

|τ k̂(iτ)|
≤M.

Example 2.16. For instance, the function k(t) = gα(t) is an admissible kernel for 0 <

α ≤ 1, but fails to be admissible for α > 1. Moreover, is easy to check that k(t) is 2-regular

(see Definition 2.4).

To prove our main result in this section, we need the following lemmata. The first Lemma,

corresponds to a general result for strongly continuous families of bounded operators.
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Lemma 2.17. Let {R(t)}t≥0 be a strongly continuous family of type (M,σ) defined in a

Hilbert space H. Then for any x ∈ H and ω > σ, ‖R̂(ω + iu)x‖ and ‖R̂(ω + iu)∗x‖ are in

L2(R, H), viewed as functions of u ∈ R.

Proof. Without loss of generality, we can suppose that σ ≥ 0. Let ω > σ be given and

define R1(t) := e−ωtR(t). Then ‖R1(t)‖ ≤ Me−(ω−σ)t for t ≥ 0. Let x ∈ H be fixed, and

note that χ[0,∞)(·)R1(·)x is in L2(R, H), where χ[0,∞)(·) denotes the characteristic function.

In fact, we have

‖χ[0,∞)(·)R1(·)x‖2
2 ≤

∫ ∞
0

‖Me−(ω−σ)tx‖2 dt ≤ M2‖x‖2

2(ω − σ)
. (2.7)

On the other hand, because {R(t)}t≥0 is a family of type (M,σ), its Laplace transform R̂(λ)

is well-defined for all Re(λ) > σ and is holomorphic there. Hence, we have for all x ∈ H and

s ∈ R,

R̂(ω + is)x =

∫ ∞
0

e−(ω+is)tR(t)x dt =

∫ ∞
0

e−istR1(t)x dt

=

∫ ∞
−∞

e−istχ[0,∞)(t)R1(t)x dt = F
(
χ[0,∞)(·)R1(·)

)
(s).

It follows from (2.7) and the Plancherel Theorem that R̂(ω+ i(·))x ∈ L2(R, H). Analogously,

we can prove that R̂(ω + i(·))∗x ∈ L2(R, H). This proves the lemma. �

Lemma 2.18. Let a, k ∈ L1
loc(R+) be Laplace transformable and A be a closed linear

operator defined on a Banach space X. Assume that H(λ) := k̂(λ)(I − â(λ)A)−1 exists for

all Re(λ) > ω. Then, there exist functions fi(λ), i = 1, 2 and hj(λ), j = 1, 2, 3, such that:

(1) H ′(λ) = f1(λ)H(λ) + f2(λ)H(λ)2,

(2) H ′′(λ) = h1(λ)H(λ) + h2(λ)H(λ)2 + h3(λ)H(λ)3,

for all Re(λ) > ω.

Proof. A computation shows that for all Re(λ) > ω, we have

f1(λ) =
k̂′(λ)

k̂(λ)
− â′(λ)

â(λ)
, f2(λ) =

â′(λ)

k̂(λ)â(λ)
, (2.8)

and

h1(λ) =
k̂′′(λ)

k̂(λ)
− 2k̂′(λ)â′(λ)

k̂(λ)â(λ)
+

2â′(λ)2

â(λ)2
− â′′(λ)

â(λ)
, (2.9)

h2(λ) =
â′(λ)k̂′(λ)

k̂(λ)2â(λ)
− 4â′(λ)2

k̂(λ)â(λ)2
+

â′′(λ)

k̂(λ)â(λ)
, (2.10)
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h3(λ) =
2â′(λ)2

k̂(λ)2â(λ)2
. (2.11)

This proves the lemma. �

Lemma 2.19. Let a, k ∈ L1
loc(R+) be Laplace transformable and 2-regular, and suppose

that k is an admissible kernel. Then, there exists a constant M > 0 such that:

(1) |λf1(λ)| < M and |f2(λ)| < M for all Re(λ) > ω;

(2) sup
|τ |≥N

|h3(s+ iτ)| < M for all s > ω and N ≥ 1;

(3)

∫
|τ |≥N

|hj(s+ iτ)|j dτ < M for all s > ω and N ≥ 1, j = 1, 2.

Proof. It is a direct consequence of formulas (2.8) - (2.11). �

Lemma 2.20. [29] Let X be a Banach space and let R : [0,∞)→ X be a function which

is continuous for t > 0. If there exist M > 0, ω ∈ R such that ‖R(t)‖ ≤Meωt, then for every

µ > ω,

lim
|τ |→∞

‖R̂(µ+ iτ)‖ = 0.

Our main result in this section is the following characterization. It extends the main result

in [56, Theorem 2.2], proved in the case k(t) ≡ 1. See also [86] for the same characterization

in case of C0-semigroups, i.e., k(t) ≡ 1 and a(t) ≡ 1.

Theorem 2.21. Let A be a closed linear operator defined in a Hilbert space H with dense

domain D(A). Assume that A generates a strongly continuous (a, k)-regularized resolvent

R(t) of type (M,ω), with M > 0, ω ∈ R. Also, suppose that a ∈ L1
loc(R+) and k ∈ C(R+)

are Laplace transformable, 2-regular kernels, and that k is admissible. Then, the following

conditions are equivalent:

(1) {R(t)}t≥0 is continuous in B(H) for t > 0,

(2) lim
|τ |→∞

||k̂(s+ iτ) (I − â(s+ iτ)A)−1 || = 0 for some s > ω.

Proof. (1) =⇒ (2). It follows from Lemma 2.20.

(2) =⇒ (1). Let x ∈ H be fixed and µ > ω. Since ‖R(t)e−µtx‖ ≤ Me−(µ−ω)t‖x‖, the

function t 7→ χ[0,∞)(t)R(t)e−µt is in L2(R, H) for all µ > ω (compare with the inequality

(2.7)). Since H is a Hilbert space, by Plancherel theorem is well known that the Fourier

transform is an unitary operator on L2(R, H), thus we obtain

F
(
χ[0,∞)(·)R(·)e−µ·x

)
= R̂(µ+ iτ)x,
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and hence, for t > 0 and each x ∈ H,

R(t)e−µtx =
1

2π

∫ ∞
−∞

eiτtR̂(µ+ iτ)x dτ. (2.12)

Clearly, the resolvent R(t) is continuous in B(H) for t > 0 if and only if R(t)e−µt is continuous

in B(H) for t > 0. Next, note that for each x ∈ H we have

R̂(µ+ iτ)x = k̂(µ+ iτ) (I − â(µ+ iτ)A)−1 x,

and observe that if |τ | → ∞, then we get â(µ + iτ) → 0 and k̂(µ + iτ) → 0, whence

lim
|τ |→∞

R̂(µ+ iτ)x = 0. Applying this to (2.12) and integrating by parts, we have

R(t)e−µtx =
−1

2πt

∫ ∞
−∞

eiτtR̂′(µ+ iτ)x dτ.

for t > 0 and x ∈ H. Now, by Lemma 2.18 (1) and Lemma 2.19 (1) with H(λ) := R̂(λ), we

have lim
|τ |→∞

R̂′(µ+ iτ) = 0, whence, again integrating by parts, we get

R(t)e−µtx =
1

2πt2

∫ ∞
−∞

eiτtR̂′′(µ+ iτ)x dτ, x ∈ H, t > 0. (2.13)

Next, we show that the operator family {t2R(t)e−µt}t>0 is continuous in B(H) for t > 0:

Indeed, formula (2.13) shows

‖t2R(t)e−µtx− s2R(s)e−µsx‖ =
1

π

∥∥∥∥∫ ∞
−∞

(eiτt − eiτs)R̂′′(µ+ iτ)x dτ

∥∥∥∥
≤ 1

π

∥∥∥∥∫
|τ |≥N

(eiτt − eiτs)R̂′′(µ+ iτ)x dτ

∥∥∥∥
+

1

π

∫
|τ |≤N

|eiτt − eiτs|‖R̂′′(µ+ iτ)x‖ dτ

=: I1(N) + I2(N).

First, we estimate I1(N): Let ε > 0 and take x∗ ∈ H. Using Lemma 2.18 (2), and the

Cauchy-Schwarz and Hölder inequalities, we have

|〈I1(N), x∗〉| ≤ sup
|τ |≥N

‖R̂(µ+ iτ)‖ ·
(∫

|τ |≥N
|h1(µ+ iτ)| dτ · ‖x‖‖x∗‖

+
(∫
|τ |≥N

‖R̂(µ+ iτ)x‖2 dτ
)1/2(∫

|τ |≥N
‖h2(µ+ iτ)x∗‖2 dτ

)1/2

+ sup
|τ |≥N

‖h3(µ+ iτ)‖ ·

(∫
|τ |≥N

‖R̂(µ+ iτ)x‖2 dτ
)1/2(∫

|τ |≥N
‖R̂(µ+ iτ)∗x∗‖2 dτ

)1/2
)
.
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Next, by the Plancherel Theorem for the Hilbert space valued Fourier transform, and Lemma

2.19 (2)-(3), we get

|〈I1(N), x∗〉| ≤ sup
|τ |≥N

‖R̂(µ+ iτ)‖
(
M‖x‖‖x∗‖+

(
2π

∫ ∞
0

‖e−µtR(t)x‖2 dt
)1/2

M‖x∗‖

+M ·
(

2π

∫ ∞
0

‖e−µtR(t)x‖2 dt
)1/2(

2π

∫ ∞
0

‖e−µtR(t)∗x∗‖2 dt
)1/2

)
.

Since {R(t)}t≥0 is of type (M,ω), we have that {e−µtR(t)}t>0 and {e−µtR(t)∗}t>0 are expo-

nentially bounded families of type (M,ω−µ), and that there exists a positive constant C > 0

such that ∫ ∞
0

‖e−µtR(t)x‖2 dt ≤ C2‖x‖,
∫ ∞

0

‖e−µtR(t)∗x∗‖2 dt ≤ C2‖x‖,

for all x ∈ H. Combining the above with the Hahn-Banach Theorem, we obtain the existence

of a constant K > 0 such that

I1(N) = sup
‖x∗‖≤1

|〈
∫
|τ |≥N

(eiτt − eiτs)R̂′′(µ+ iτ)x dτ, x∗〉|

≤ K · sup
|τ |≥N

‖R̂(µ+ iτ)‖‖x‖.

Since lim
|τ |→∞

‖R̂(µ+ iτ)‖ = 0, there exists N > 0 such that

K · sup
|τ |≥N

‖R̂(µ+ iτ)‖ < ε

which yields the estimate I1(N) < ε‖x‖ for each x ∈ H.

To estimate I2(N), we observe that |eiα − 1|2 = 4 sin2(α/2), α ∈ R. Therefore, for the

above fixed N we have

I2(N) =

∫
|τ |≤N

|eiτt − eiτs|‖R̂′′(µ+ iτ)x‖ dτ

≤

(∫
|τ |≤N

|eiτ(t−s) − 1|2 dτ

)1/2(∫
|τ |≤N

‖R̂′′(µ+ iτ)x‖2 dτ

)1/2

=

(
4

∫
|τ |≤N

∣∣∣ sin2
((s− t)τ

2

)∣∣∣)1/2(∫
|τ |≤N

‖R̂′′(µ+ iτ)x‖2 dτ

)1/2

≤

(∫
|τ |≤N

|τ |2|s− t|2 dτ

)1/2(∫
|τ |≤N

‖R̂′′(µ+ iτ)x‖2 dτ

)1/2

≤ |s− t|
(2N3

3

)1/2
(∫

|τ |≤N
‖R̂′′(µ+ iτ)x‖2 dτ

)1/2

.
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Since R̂′′(µ + iτ) is a continuous function and the integral is defined over a compact subset

of R, there exists a constant C ′ > 0 such that ‖R̂′′(µ+ iτ)x‖ ≤ C ′‖x‖; this implies

I2(N) ≤ |s− t|
(2N3

3

)1/2

· (2N)1/2C ′‖x‖ ≤ |s− t|K ′N2‖x‖.

By using these estimates for I1(N), I2(N), we get

||t2R(t)e−µt − s2R(s)e−µs|| < 2ε,

for all |s− t| < δ. This completes the proof. �

We finish this chapter with a direct application to results of Fan [31].

Corollary 2.22. Let A be a closed linear operator defined in a Hilbert space H with dense

domain D(A). Assume that A generates an α-regularized resolvent Sα(t) of type (M,ω) for

some 0 < α < 1 and suppose

lim
|τ |→∞

‖(s+ iτ)α−1
(
(s+ iτ)α − A

)−1‖ = 0

for some s > ω. Then, Sα(t) is compact for t > 0, if and only if (λα − A)−1 is compact for

all λα ∈ ρ(A).

Remark 2.23. In a Hilbert space, all the results on Section 4 of [31] remain true when

the hypothesis on the given operator A, as generator of an analytic compact α-regularized

resolvent (0 < α < 1), is replaced by

lim
|τ |→∞

‖(s+ iτ)α−1
(
(s+ iτ)α − A

)−1‖ = 0

for some s > ω.

Remark 2.24. In the case a(t) = k(t) ≡ 1, it is known that the characterization obtained

in Theorem 2.21 cannot be extended to Banach spaces (see [21] and [69] for instance).

However, we can naturally ask: Does it exist a class of kernels (a, k) 6= (1, 1) where this

characterization remains true in general Banach spaces?



CHAPTER 3

Compactness

Fractional resolvent families are useful instruments in the study of abstract models for

partial differential equations describing anomalous diffusion. In this chapter, we study and

characterize the compactness of resolvent families of operators associated to fractional differ-

ential equations, for the case 0 < α ≤ 2. The compactness of {Sα(t)}t≥0 was studied by using

different methods, see Prüss [78, Corollary 2], Wang, Chen and Xiao [83, Theorem 3.5], and

Fan [31], under the hypothesis of continuity in the uniform operator topology. The objec-

tives of this chapter are: to provide a completely new approach to Fan’s result in the case

0 < α ≤ 1, and to provide a complete characterization in the complementary case 1 < α ≤ 2

for the associated family Rα(t) = (gα−1 ∗ Sα)(t), fractional counterpart of the sine functions

and not studied previously. Finally, we show a new application in the study of existence of

mild solutions for a class of semilinear fractional differential equations with non-local initial

conditions. The results of this Chapter were recently published in [60].

1. Fractional resolvent families

The following definition was first introduced in [13] although implicitly in [57] and [79].

Definition 3.1. Let A be a closed and linear operator with domain D(A) defined on a

Banach space X and α > 0. We call A the generator of an (α, 1)-resolvent family

if there exist ω ≥ 0 and a strongly continuous function Sα : R+ → B(X) such that {λα :

Re(λ) > ω} ⊆ ρ(A), and

λα−1(λα − A)−1x =

∫ ∞
0

e−λtSα(t)x dt, Re(λ) > ω, x ∈ X. (3.1)

In this case, the family {Sα(t)}t≥0 is called (α, 1)-resolvent family generated by A.

The next definition was introduced in [6] after previous work in [13].

Definition 3.2. Let A be a closed and linear operator with domain D(A) defined on a

Banach space X and α > 0. We call A the generator of an (α, α)-resolvent family

if there exist ω ≥ 0 and a strongly continuous function Rα : R+ → B(X) such that, {λα :

33
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Re(λ) > ω} ⊆ ρ(A) and

(λα − A)−1x =

∫ ∞
0

e−λtRα(t)x dt, Re(λ) > ω, x ∈ X. (3.2)

In this case the family {Rα(t)}t≥0 is called (α, α)-resolvent family generated by A.

Because of the uniqueness of the Laplace transform, an (1, 1)-resolvent family is a C0-

semigroup, a (2, 1)-resolvent family corresponds to a cosine family and a (2, 2)-resolvent

family is a sine family, see [8].

Remark 3.3. If A is the generator of an (α, 1)-resolvent family {Sα(t)}t≥0, then by [57,

Proposition 3.1 and Lemma 2.2], we have that the family {Sα(t)}t≥0 verifies the following

properties:

a) Sα(t) is strongly continuous for t ≥ 0 and Sα(0) = I;

b) Sα(t)A ⊂ ASα(t) for t ≥ 0;

c) for x ∈ D(A), the resolvent equation

Sα(t)x = x+

∫ t

0

gα(t− s)Sα(s)Axds

holds for all t ≥ 0.

Similarly, an (α, α)-resolvent family {Rα(t)}t≥0 verifies:

a) Rα(t) is strongly continuous for t ≥ 0 and Rα(0) = gα(0)I;

b) Rα(t)A ⊂ ARα(t) for t ≥ 0;

c) for x ∈ D(A), the resolvent equation

Rα(t)x = gα(t)x+

∫ t

0

gα(t− s)Rα(s)Axds

holds for all t ≥ 0.

Finally, we recall that a strongly continuous family {T (t)}t≥0 is exponentially bounded

if ‖T (t)‖ ≤Meωt for t ≥ 0, with M > 0 and ω ∈ R (Definition 1.3).

2. Characterization of compactness

Definition 3.4. Let X, Y be Banach spaces. We say that an operator T ∈ B(X, Y ) is

compact if T (BX) is a compact subset of Y , where BX = {x ∈ X : ‖x‖ ≤ 1}.

Definition 3.5. We say that the resolvent family {Sα(t)}t≥0 ⊂ B(X) is compact if for

every t > 0, the operator Sα(t) is a compact operator. In the same way, {Rα(t)}t≥0 ⊂ B(X)

is compact if Rα(t) is compact for every t > 0.
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The next Theorem was proved recently in [31, Theorem 3.6]. Unfortunately the proof in

[31] does not allow to obtain that the compactness of the resolvent (λα − A)−1 implies the

compactness of the (α, 1)-resolvent family {Sα(t)}t>0, because there is a logical flaw in the

proof (see Remark 3.10 below). Here we prove, by a completely different method, the desired

characterization.

Our method of proof relies on two main ingredients. The first of them is a theorem due to

Weis [85] that asserts, roughly speaking, that the integral of a family of compact operators

is a compact operator:

Lemma 3.6. [85, Corollary 2.3] Let (Ω, µ) be a measure space and Ω 3 t 7→ Tt ∈ B(X, Y )

be a strongly integrable function, i.e.,

Tx =

∫
Ω

Ttx dµ(t) (3.3)

exists for all x ∈ X as a Bochner integral and
∫

Ω
‖Tt‖ dµ(t) <∞. If µ-almost all Tt in (3.3)

are compact, then T is compact.

The second one is a theorem due to Haase [38]. This result gives direct inversion of the

Laplace transform for one-parameter families of operators, when the family is regularized by

finite convolution with a locally integrable kernel:

Lemma 3.7. [38, Proposition 2.1] Let X, Y be Banach spaces, let S : [0,∞)→ B(X, Y )

be strongly continuous, and let a ∈ L1
loc[0,∞) be a scalar function, both a and S of finite

exponential type. Then for every ω > ω0(S), ω0(a) one has

lim
N→∞

1

2πi

∫ ω+iN

ω−iN
eλt(̂a ∗ S)(λ) dλ = (a ∗ S)(t),

in B(X, Y ), uniformly in t from compact subsets of [0,∞).

Theorem 3.8. Let 0 < α ≤ 1 and {Sα(t)}t≥0 be an (α, 1)-resolvent family of type (M,ω)

generated by A. Suppose that Sα(t) is continuous in the uniform operator topology for all

t > 0. Then, the following assertions are equivalent:

(1) Sα(t) is a compact operator for all t > 0.

(2) (λ− A)−1 is a compact operator for all λ > ω1/α.

Proof. (1) =⇒ (2) Suppose that {Sα(t)}t>0 is compact and let λ > ω be fixed. Then,

by (3.1) we have

λα−1(λα − A)−1 =

∫ ∞
0

e−λtSα(t) dt,
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where the integral in the right-hand side exists in the Bochner sense, because {Sα(t)}t>0

is continuous in the uniform operator topology, by hypothesis. Then, by Lemma 3.6, we

conclude that (λα − A)−1 is a compact operator.

(2) =⇒ (1) The case α = 1 follows from [75].

For the case 0 < α < 1, let t > 0 be fixed. By (3.1) and (3.2), and the uniqueness of the

Laplace transform, we have the relation

Sα(t) = (g1−α ∗Rα)(t). (3.4)

It follows that g1−α ∈ L1
loc[0,∞), and therefore, by Lemma 3.7 and (3.4) we obtain

lim
N→∞

1

2πi

∫ ω+iN

ω−iN
eλt ̂(g1−α ∗Rα)(λ) dλ = (g1−α ∗Rα)(t) = Sα(t),

in B(X). Therefore,

1

2πi

∫
Γ

eλtλα−1(λα − A)−1 dλ = Sα(t),

where Γ is the path consisting of the vertical line {ω+ it : t ∈ R}. By hypothesis and Lemma

3.6, we conclude that Sα(t) is compact. �

Remark 3.9. Theorem 3.8 extends the compactness criterion for semigroup operator

functions, see e.g. [75], [30, Chapter II, Theorem 4.29] and [34].

Remark 3.10. The proof of [31, Theorem 3.6] in (2) =⇒ (1) uses [31, Lemma 3.4].

However, one of the hypothesis of such Lemma is precisely (1).

Remark 3.11. Useful criteria for continuity of Sα(t) in the uniform operator topology

can be found in the work of Fan [31]. For example, this property is true for the class of

analytic resolvents, see [31, Lemma 3.8].

Our second main result completely characterizes the compactness of (α, α)-resolvent families

in the range 1 < α ≤ 2. In contrast with the case 0 < α ≤ 1, it is remarkable that we obtain

here a characterization solely in terms of properties of the generator A.

Theorem 3.12. Let 1 < α ≤ 2 and A be the generator of an (α, 1)-resolvent family

{Sα(t)}t≥0 of type (M,ω). Then, A generates an (α, α)-resolvent family {Rα(t)}t≥0 of type(
M

ωα−1 , ω
)
, and the following assertions are equivalent:

(1) Rα(t) is a compact operator for all t > 0.

(2) (λ− A)−1 is a compact operator for all λ > ω1/α.
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Proof. We first prove that A generates an (α, α)-resolvent family {Rα(t)}t≥0 of type(
M

ωα−1 , ω
)
. By hypothesis, we have ‖Sα(t)‖ ≤Meωt for all t ≥ 0, and define

Rα(t) := (gα−1 ∗ Sα)(t), (3.5)

for all t ≥ 0. We obtain

‖Rα(t)‖ ≤ M

∫ t

0

gα−1(s)eω(t−s) ds

≤ Meωt

Γ(α− 1)

∫ ∞
0

sα−2e−ωs ds ≤ Meωt

ωα−1
.

In particular, we conclude that Rα(t) is Laplace transformable and, for λ > ω, we have

R̂α(λ) =
1

λα−1
Ŝα(λ) = (λα − A)−1.

Therefore, by definition, A is generator of Rα(t) and it is an (α, α)-resolvent family. This

proves the first claim.

(1) =⇒ (2) Suppose that {Rα(t)}t>0 is compact. First, we prove that Rα(t) is continuous

in the uniform operator topology for t > 0. We can assume that ω > 0, and observe that for

t > s, by (3.5) we have

Rα(t)−Rα(s) =

∫ t

s

gα−1(t− r)Sα(r) dr +

∫ s

0

(
gα−1(t− r)− gα−1(s− r)

)
Sα(r) dr

=: I1 + I2. (3.6)

Observe that

‖I1‖ ≤
∫ t

s

gα−1(t− r)‖Sα(r)‖ dr ≤ Meωt
∫ t

s

gα−1(t− r) dr.

Because α > 1, we have gα(0) = 0, and we obtain

‖I1‖ ≤ Meωtgα(t− s). (3.7)

On the other hand,

‖I2‖ ≤
∫ s

0

|gα−1(t− r)− gα−1(s− r)|‖Sα(r)‖ dr

≤ Meωs
∫ s

0

|gα−1(t− r)− gα−1(s− r)| dr

= Meωs
∫ s

0

|gα−1(t− s+ r)− gα−1(r)| dr.

Note that gα−1 is decreasing for α < 2, we have gα−1(r)− gα−1(t− s+ r) > 0, obtaining

‖I2‖ ≤ Meωs
∫ s

0

(
gα−1(r)− gα−1(t− s+ r)

)
dr
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= Meωs
(
gα(s)− gα(t) + gα(t− s)

)
. (3.8)

Observe that in the case α = 2 we have I2 ≡ 0 because g1(t) ≡ 1. Combining (3.7) with (3.8),

and replacing in (3.6), we obtain the assertion. Then, by Definition 3.2 for λ > ω, we have

(λα − A)−1 =

∫ ∞
0

e−λtRα(t) dt,

and the integral in the right-hand side exists in the Bochner sense, because {Rα(t)}t>0 is

continuous in the uniform operator topology. Therefore, by Lemma 3.6 and the compactness

of {Rα(t)}t>0, we conclude that (λα − A)−1 is a compact operator.

(2) =⇒ (1) Let t > 0 be fixed. Since α > 1, it follows that gα−1 ∈ L1
loc[0,∞) and hence,

by Lemma 3.7 and (3.5), we obtain

lim
N→∞

1

2πi

∫ ω+iN

ω−iN
eλt ̂(gα−1 ∗ Sα)(λ) dλ = (gα−1 ∗ Sα)(t) = Rα(t),

in B(X). Therefore,

1

2πi

∫
Γ

eλt(λα − A)−1 dλ = Rα(t)

where Γ is the path consisting of the vertical line {ω+ it : t ∈ R}. By hypothesis and Lemma

3.6, we conclude that Rα(t) is a compact operator. �

Remark 3.13. In the case α = 2, the preceding Theorem extends the compactness

criterion for sine operator functions in [80]. See also [82, Theorem 10.1.1].

3. Example: A problem with non-local initial condition

In this section, we present one example which does not aim at generality, but indicate

how our theorems can be applied to more concrete problems. For other examples, see [31,

Theorem 4.1] and [83, Theorem 5.3].

Example 3.14. Let T > 0 be given. We study the semilinear problem

Dα
t u(t) = Au(t) + J1−α

t f(t, u(t)), 0 < α < 1, t ∈ T := [0, T ], (3.9)

with nonlocal initial condition

u(0) + g(u) = u0, (3.10)

where f : [0, T ]×X → X and g : C(I,X)→ C(I,X) are continuous. Here, Dα
t denotes the

Caputo fractional derivative (see Definition 1.4).
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The concept of nonlocal initial condition has been introduced to extend the study of

classical initial value problems. This notion is more precise for describing nature phenomena

than the classical notion because additional information is taken into account. For the

importance of nonlocal conditions in different fields, the reader is referred to [64] and the

references therein.

Let A be the generator of an (α, 1) - resolvent family Sα(t). Then it is known that the

mild solution of (3.9) is defined by means of the variation of constants formula:

u(t) = Sα(t)
(
u0 − g(u)

)
+

∫ t

0

Sα(t− s)f(s, u(s)) ds, t ∈ I.

See, for instance, [31, Section 4]. We will make the following assumptions:

(H1) f satisfies the Carathéodory condition, that is f(·, u) is strongly measurable for each

u ∈ X and f(t, ·) is continuous for each t ∈ I.

(H2) There exists a continuous function µ : I → R+ such that

‖f(t, u)‖ ≤ µ(t)‖u‖, ∀ t ∈ I, u ∈ C(I,X).

(H3) g : C(I,X)→ C(I,X) is continuous and there exists Lg > 0 such that

‖g(u)− g(v)‖ < Lg‖u− v‖, ∀u, v ∈ C(I,X).

We prove the following existence theorem. The method of proof combines ideas from [31]

and [59].

Theorem 3.15. Let A be the generator of an (α, 1)-resolvent family Sα(t) of type (M,ω).

Suppose that (λα − A)−1 is compact for all λ > ω, and that Sα(t) is continuous in the

uniform operator topology for all t > 0. Then, under assumptions (H1)− (H3), the system

(3.9)− (3.10) has at least one mild solution.

Proof. Define the operator G : C(I,X)→ C(I,X) by

(Gu)(t) := Sα(t)
(
u0 − g(u)

)
+

∫ t

0

Sα(t− s)f(s, u(s)) ds.

Let Br := {u ∈ C(I,X) : ‖u‖ ≤ r}. The proof will be conducted into several steps.

Step 1. First, we show that Γ sends bounded sets of C(I,X) into bounded sets of C(I,X).

In other words, for any given r > 0, there exists ξ > 0 such that GBr ⊂ Bξ. Let

u ∈ Br and N := sup
u∈Br
‖g(u)‖, then

‖Gu(t)‖ ≤ M‖Sα(t)‖(‖u0‖+ ‖g(u)‖) +M

∫ t

0

‖Sα(t− s)‖‖f(s, u(s))‖ ds
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≤ Meωt(‖u0‖+N) +M

∫ t

0

eω(t−s)µ(s)‖u(s)‖ ds

≤ MeωT (‖u0‖+N) +Mr‖µ‖e
ωT

ω
=: ξ.

Thus, GBr ⊂ Bξ.

Step 2. Next, we show that G is a continuous operator: Let un, u ∈ Br such that un → u in

C(I,X). Then, we have

‖Gun(t)−Gu(t)‖ ≤ ‖Sα(t)‖(‖g(un)− g(u)‖) +∫ t

0

‖Sα(t− s)‖‖f(s, un(s))− f(s, u(s))‖ ds

≤ MeωtLg‖un − u‖+M

∫ t

0

eω(t−s)‖f(s, un(s))− f(s, u(s))‖ ds

≤ MeωTLg‖un − u‖+M

∫ t

0

eω(t−s)µ(s)(‖un(s)‖+ ‖u(s)‖) ds

≤ MeωTLg‖un − u‖+ 2rM

∫ t

0

eω(t−s)µ(s) ds.

Choose n large enough such that ‖un−u‖ < ε. Also note that eω(t−s)µ(s) is integrable

on I. So, by the dominated convergence theorem,∫ t

0

eω(t−s)‖f(s, un(s))− f(s, u(s))‖ ds→ 0 as n→∞;

which shows that G is continuous.

Step 3. Now, we show that G sends bounded sets of C(I,X) into equicontinuous sets of

C(I,X): Let u ∈ Br with r > 0, and take t2 < t1 ∈ I. Then, we have

‖Gu(t1)−Gu(t2)‖ ≤ ‖(Sα(t1)− Sα(t2))(u0 − g(u))‖+

∫ t1

t2

‖Sα(t1 − s)f(s, u(s))‖ ds

+

∫ t2

0

‖(Sα(t1 − s)− Sα(t2 − s))f(s, u(s))‖ ds

=: I1 + I2 + I3.

We have

I1 ≤ ‖Sα(t1)− Sα(t2)‖‖(u0 − g(u))‖,

and because of the uniform continuity of Sα(t) for t > 0, we obtain lim
t1→t2

I1 = 0.
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Next, we have

I2 ≤
∫ t1

t2

eω(t1−s)µ(s)‖u(s)‖ ds

≤ r‖µ‖eωT (t1 − t2),

therefore, lim
t1→t2

I2 = 0.

Finally, we have

I3 ≤
∫ t2

0

‖Sα(t1 − s)− Sα(t2 − s)‖‖f(s, u(s))‖ ds

≤
∫ t2

0

‖Sα(t1 − s)− Sα(t2 − s)‖µ(s)‖u(s)‖ ds

≤ r

∫ t2

0

‖Sα(t1 − s)− Sα(t2 − s)‖µ(s) ds.

Now observe that

‖Sα(t1 − ·)− Sα(t2 − ·)‖µ(s) ≤ 2MeωTµ(·) ∈ L1(I,R),

and Sα(t1 − s) − Sα(t2 − s) → 0 in B(X), as t1 → t2. Thus lim
t1→t2

I3 = 0 by the

dominated convergence theorem.

Step 4. G maps Br into relatively compact sets in X: In view of the hypothesis and Theorem

3.8, we have that Sα(t) is compact for all t > 0, and hence, we deduce that the set

K = {Sα(t− s)f(s, u(s)) : u ∈ C(I,X), 0 ≤ s ≤ t}

is relatively compact for each t ∈ I (see the proof of [31, Theorem 4.1] for details).

Then, the set conv(K) is compact. Moreover, for u ∈ Br, using the Mean-Value

Theorem for Bochner integrals, we obtain

G(u(t)) ∈ t conv(K), for all t ∈ [0, T ].

Therefore, the set {Gu(t);u ∈ Br} is relatively compact in X for every t ∈ [0, T ].

From Steps 1-4, we deduce that G is continuous and compact by the Arzela-Ascoli’s

Theorem.

Step 5. Consider the set

Ω := {u ∈ Br : u = λGu, 0 < λ < 1}.

Clearly, Ω 6= ∅ since 0 ∈ Ω, so let u ∈ Ω. Then, we have

‖u(t)‖ ≤ λ

(
Meαt(‖u0‖+ ‖g(u)‖) +M

∫ t

0

eω(t−s)‖f(s, u(s)‖ ds
)
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≤ λ

(
Meαt(‖u0‖+N) +Mr

∫ t

0

eω(t−s)µ(s) ds

)
≤ Meαt(‖u0‖+N) +Mr‖µ‖e

ωT

ω
.

Thus, Ω is bounded.

So, by the Leray-Schauder theorem, G has a fixed point. The proof is complete. �



CHAPTER 4

Spectral Mapping Theorem

In this chapter, we prove the spectral mapping theorem for the point spectrum of a k-

convoluted semigroup {R(t)}t≥0, and a version of the spectral mapping theorem for approx-

imate point spectrum and residual spectrum of R(t) under the hypothesis that its generator

also generates a C0-semigroup.

1. k-convoluted semigroups

This section is devoted to preliminaries and some properties of k-convoluted semigroups.

Definition 4.1. Let A be a closed linear operator and k ∈ L1
loc(R+). A strongly contin-

uous family {R(t)}t≥0 ⊂ B(X) is called a k-convoluted semigroup generated by A if the

following properties hold:

(1) R(t)x ∈ D(A) and R(t)Ax = AR(t)x for all x ∈ D(A) and t ≥ 0;

(2)

∫ t

0

R(s)x ds ∈ D(A) for all t ≥ 0 and x ∈ X, and

R(t)x =

∫ t

0

k(s)x ds+ A

∫ t

0

R(s)x ds, x ∈ X, t ≥ 0. (4.1)

We notice that if k(t) = tn−1

n!
, n ∈ N, the k-convoluted semigroup corresponds to the

n-times integrated semigroup introduced by Arendt [7], and a 0-times integrated semigroup

is the same as a C0-semigroup. If A generates a C0-semigroup, then A generates an n-times

integrated semigroup for all n ∈ N. If k(t) = gα(t), α ≥ 0, the k-convoluted semigroup is

an α-times integrated semigroup (see [71]). The concept of k-convoluted semigroups was

introduced by I. Cioranescu in [24]. On the other hand, we notice that a k-convoluted

semigroup also corresponds to an (1, 1 ∗ k)-regularized family (see [57] and Definition 2.1).

Proposition 4.2. [65, Theorem 5.3] Let k ∈ L1
loc(R+). If {R(t)}t≥0 is a k-convoluted

semigroup with generator A on a Banach space X, then∫ t

0

eλ(t−s)R(s)x ds ∈ D(A)

43
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and

(λ− A)

∫ t

0

eλ(t−s)R(s)x ds =

∫ t

0

k(t− s)eλsx ds−R(t)x, (4.2)

for all x ∈ X.

For further use, we quote below the following lemma which is a direct consequence of

Definition 4.1 (2).

Lemma 4.3. Let k ∈ L1
loc(R+). If {R(t)}t≥0 is a k-convoluted semigroup with generator

A on a Banach space X, then for all t ≥ 0, R(t)X ⊆ D(A).

A k-convoluted semigroup verifies the functional equation given in the following result.

Theorem 4.4. [44, Remark 4.3 and Proposition 5.3] If {R(t)}t≥0 is a k-convoluted semi-

group with generator A on a Banach space X, then for s, t ≥ 0 and x ∈ X we have

R(t)R(s)x =

∫ t+s

t

k(t+ s− r)R(r)x dr −
∫ s

0

k(t+ s− r)R(r)x dr. (4.3)

2. Spectral Mapping Theorem

Definition 4.5. Let X be a Banach space, and A ∈ B(X) a closed operator. We de-

fine the point spectrum, approximate point spectrum, and residual spectrum of A

respectively, as follows:

σp(A) =
{
λ ∈ C : ker(λI − A) 6= {0}

}
,

σa(A) =
{
λ ∈ C : (λI − A) is not injective, or ran(λI − A) is not closed in X

}
,

σr(A) =
{
λ ∈ C : ker(λI − A) = {0} and ran(λI − A) 6= X

}
.

In this section we shall prove that for a k-convoluted semigroup {R(t)}t≥0 whose gen-

erator A generates also a C0-semigroup the spectral mapping theorem holds for the point,

approximate point and residual spectrum, that is, we have the following equalities:

σp(R(t)) ∪ {0} =

{∫ t

0

k(t− s)eλs ds : λ ∈ σp(A)

}
∪ {0},

σa(R(t)) ∪ {0} =

{∫ t

0

k(t− s)eλs ds : λ ∈ σa(A)

}
∪ {0},

σr(R(t)) ∪ {0} =

{∫ t

0

k(t− s)eλs ds : λ ∈ σr(A)

}
∪ {0}.

In the sequel, we consider the following characterization of σa(A).
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Lemma 4.6. [30, Lemma 4.1.9] For a closed operator A : D(A) ⊂ X → X, and a number

λ ∈ C, one has λ ∈ σa(A), if and only if, there exists a sequence {xn}n∈N ⊂ D(A), such that

‖xn‖ = 1 and lim
n→∞

‖Axn − λxn‖ = 0.

From [65, Theorems 5.3 and 5.5-5.7], we have the following result.

Lemma 4.7. Let {R(t)}t≥0 be a k-convoluted semigroup with generator A on a Banach

space X. Then, we have

σ(R(t)) ∪ {0} ⊇
{∫ t

0

k(t− s)eλs ds : λ ∈ σ(A)

}
∪ {0}, (4.4)

and the following inclusions hold:

σp(R(t)) ∪ {0} ⊇
{∫ t

0

k(t− s)eλs ds : λ ∈ σp(A)

}
∪ {0} (4.5)

σa(R(t)) ∪ {0} ⊇
{∫ t

0

k(t− s)eλs ds : λ ∈ σa(A)

}
∪ {0}. (4.6)

Moreover, if A is densely defined, then

σr(R(t)) ∪ {0} ⊇
{∫ t

0

k(t− s)eλs ds : λ ∈ σr(A)

}
∪ {0}. (4.7)

Lemma 4.8. Let A be a closed linear operator with ρ(A) 6= ∅, k ∈ C1(R+), and let

{R(t)}t≥0 be a k-convoluted semigroup generated by A. If {xn}n∈N ⊂ X is a bounded sequence

such that R(λ,A)xn → 0 for λ ∈ ρ(A), then R2(t)xn → 0 for all t ≥ 0.

Proof. By (4.1), we have

(λ− A)

∫ t

0

R(r)x dr = λ

∫ t

0

R(r)x dr −R(t)x+ (1 ∗ k)(t)x, x ∈ X, t ≥ 0.

Observe that the operator T1 : X → X defined by

T1(t)x := (λ− A)

∫ t

0

k(t− r)R(r)x dr,

is bounded for each x ∈ X. In fact, by integration by parts, we obtain

T1(t)x = λ

∫ t

0

k(t− r)R(r)x dr − A
∫ t

0

k(t− r)R(r)x dr

= λ

∫ t

0

k(t− r)R(r)x dr − A
(

(1 ∗R)(r)k(t− r)
∣∣∣r=t
r=0

+

∫ t

0

k′(t− r)(1 ∗R)(r)x dr

)
= λ

∫ t

0

k(t− r)R(r)x dr − A(1 ∗R)(t)k(0)x−
∫ t

0

k′(t− r)A(1 ∗R)(r)x dr
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= λ

∫ t

0

k(t− r)R(r)x dr − k(0)R(t)x+ k(t)(1 ∗ k)(t)x

−
∫ t

0

k′(t− r)R(r)x dr +

∫ t

0

k′(t− r)(1 ∗ k)(r)x dr,

where we have used (4.1) in the last identity. Hence, it shows that T1 is a bounded operator.

Similarly, the operator T2(·), T3(·) : X → X defined by

T2(t)x := (λ− A)

∫ t

0

k(t+ s− r)R(r)x dr, for s ≥ 0 fixed,

T3(s)x := (λ− A)

∫ s

0

k(t+ r)R(s− r)x dr

= (λ− A)

∫ s

0

k(t+ s− r)R(r)x dr, for t ≥ 0 fixed,

for t, s ≥ 0, are bounded operators, since in this case we obtain by using (4.1) that

T2(t)x = λ

∫ t

0

k(t+ s− r)R(r)x dr − k(s)R(t)x+ k(s)(1 ∗ k)(t)x

−
∫ t

0

k′(t+ s− r)R(r)x dr +

∫ t

0

k′(t+ s− r)(1 ∗ k)(r)x dr,

T3(s)x = λ

∫ s

0

k(t+ r)R(s− r)x dr − k(t)R(s)x+ k(t)(1 ∗ k)(s)x

−
∫ s

0

k′(t+ r)R(s− r)x dr +

∫ s

0

k′(t+ r)(1 ∗ k)(s− r)x dr.

On the other hand, since k′ is continuous on R+, we get that

x 7→ (λ− A)

(∫ t+s

t

k(t+ s− r)R(r)x dr −
∫ s

0

k(t+ s− r)R(r)x dr

)
, x ∈ X, (4.8)

is a bounded operator on X because (4.8) can be written as

T1(t+ s)x− T2(t)x− T3(s)x, x ∈ X.

We notice that (4.8) is precisely (λ− A)R(s)R(t)x by Theorem 4.4, and therefore, since

R(t) commutes with A, it follows that if R(λ,A)xn → 0, then R(s)R(t)xn → 0. �

Lemma 4.9. Let {R(t)}t≥0 be a k-convoluted semigroup with generator A. Then, for

µ 6= 0 and any t0 ≥ 0, A is bounded on ker(R(t0)− µ).

Proof. The closed subspace K := ker(R(t0)−µ) is both R(t) and A invariant, so we may

restrict this family to K. By the Corollary 4.3, we have R(λ,A)K = D(A|K) = R(t0)K = K.

We need to show that there exists c > 0 such that for all x ∈ K we have ‖R(λ,A)x‖ ≥
c‖x‖. Suppose that this is not true, and there is a norm one sequence {xn} ⊂ K such
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that R(λ,A)xn → 0. By Lemma 4.8 we have R2(t)xn → 0 for all t ≥ 0, which contradicts

(R(t0)− µ)xn → 0. Therefore, there is c > 0 such that

‖R(λ,A)x‖ ≥ c‖x‖, x ∈ K. (4.9)

Now, we claim that R(λ,A) ker(R(t0) − µ) is closed. For this, we consider x ∈ R(λ,A)K,

then there exists a sequence {zn} ⊂ K such that R(λ,A)zn → x. From (4.9) we have

‖zi − zj‖ ≤
1

c
‖R(λ,A)zi −R(λ,A)zj‖

which goes to 0 as i, j → ∞, thus {zn} is a Cauchy sequence, and so there exists x0 ∈ K
such that zn → z0. Then, we have

‖R(λ,A)z0 − x‖ = ‖R(λ,A)z0 −R(λ,A)zn +R(λ,A)zn − x‖

≤ ‖R(λ,A)z0 −R(λ,A)zn‖+ ‖R(λ,A)zn − x‖

≤ ‖R(λ,A)‖‖z0 − zn‖+ ‖R(λ,A)zn − x‖,

and taking n→∞, we obtain R(λ,A)z0 = x, therefore R(λ,A) ker(R(t0)− µ) is closed, and

so R(λ,A) is surjective. Hence, for x in K, y = R(λ,A)x and from (4.9) we get

‖y‖ ≥ c‖(λI − A)y‖ = c‖λy − Ay‖,

which implies

‖Ay‖ = ‖Ay − λy + λy‖ ≤ ‖Ay − λy‖+ ‖λy‖.

Therefore, ‖Ax‖ ≤ (|λ|+ 1
c
)‖x‖, concluding the proof. �

We notice that in the following result, we have the spectral mapping theorem for the

point spectrum without the assumption that A generates also a C0-semigroup.

Theorem 4.10. For {R(t)}t≥0 a k-convoluted semigroup with generator A, we have

σp(R(t)) ∪ {0} =

{∫ t

0

k(t− s)eλs ds : λ ∈ σp(A)

}
∪ {0}. (4.10)

Proof. The ⊇ inclusion holds by Lemma 4.7.

To obtain the ⊆ inclusion, let µ ∈ σp(R(t0)) \ {0} ⊂ σ(R(t0)) \ {0}, and set K =

ker(R(t0)−µ). By the proof of Lemma 4.9, we can restrict R(t) toK = ker(R(t0)−µ); also, we

have that A|K is bounded on K. Hence, A|K has a nonempty spectrum. Take ν ∈ σ(A|K). We

also have that σ(R(t0)|K) = {µ}, so by (4.4) we have
∫ t0

0
k(t0− s)eνs ds ∈ σ(R(t0)|K) = {µ},

and therefore

µ =

∫ t0

0

k(t0 − s)eνs ds.
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Let 0 6= x0 ∈ K. From the identity (4.2) and evaluating at λ = ν we have

(ν − A)

∫ t0

0

eν(t0−s)R(t0)x0 ds =

∫ t0

0

k(t0 − s)eνsx0 ds−R(t0)x0

=

∫ t0

0

k(t0 − s)eνsx0 ds− µx0

= 0,

therefore ν ∈ σp(A) and thus µ ∈
{∫ t0

0

k(t0 − s)eλs ds : λ ∈ σp(A)

}
. �

Remark 4.11. We can obtain an alternative proof of (4.10) (see [28, Theorem 2.6]),

without considering equation (4.2), as follows: we define an analytic function f : σ(A|K)→ C
as

λ 7→
∫ t0

0

k(t0 − s)eλs ds.

Since A is bounded, we have σ(A|K) ⊂ B(0, ‖A|K‖), where

B(0, ‖A|K‖) = {x ∈ X : ‖x‖ ≤ ‖A|K‖},

and thus f is defined over a compact subset of C. Hence, by properties of analytic functions,

σ(A|K) is a finite set of isolated points. Moreover, for x ∈ K we have

R(t0)
∣∣
K
x = µx =

∫ t0

0

k(t0 − s)eνsx ds.

By the spectral theorem, we only need to prove that g(λ) = f(λ) − µ has a zero of finite

multiplicity at λ = ν. For this, by differentiation we get

g′′(λ) = g(λ) + λg′(λ) + µ,

and, as µ 6= 0, we conclude that at least one of g′(ν), g′′(ν) is not zero. Hence, the multiplicity

of the zero of g at λ = ν is at most two, and, we have:

g(λ) =

{
λ2h(λ), h(0) 6= 0, ν = 0

(λ− ν)h(λ), h(ν) 6= 0, ν 6= 0.

We conclude that ν ∈ σp(A).

Theorem 4.12. For {R(t)}t≥0 a k-convoluted semigroup on a Banach space X whose

generator A generates a C0-semigroup, we have

σa(R(t)) ∪ {0} =

{∫ t

0

k(t− s)eλs ds : λ ∈ σa(A)

}
∪ {0}. (4.11)
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Proof. Since A generates a C0-semigroup, we can follow the construction in [73, A-I,

Section 3.6]. For t0 ≥ 0 fixed and µ ∈ σa(R(t0)), let

m(X) :=
{
{xn}n∈N : sup

n
‖xn‖ <∞

}
,

p(X) :=
{
{xn} ∈ m(X) : (R(t0)− µ)xn → 0

}
,

D(A1) :=
{
{R(λ,A)xn} : {xn} ∈ p(X)

}
,

where in m(X) we have ‖xn‖m(X) = supn ‖xn‖X . Because of the resolvent equation, the last

set is independent of λ ∈ ρ(A). Also, set

R1(t){xn} := {R(t)xn} for {xn} ∈ p(X),

A1{xn} := {Axn} for {xn} ∈ D(A1);

we have that p(X) is both R1(t)-invariant and A1-invariant; also, we note that R1(t) is

uniformly continuous because of the uniform continuity of R(t). Thus, we have

‖R1(t){xn}‖p(X) = sup
n
‖R(t)xn‖X , ‖R(t)xn‖X ≤ ‖R(t)‖B(X) sup

n
‖xn‖X ,

therefore, ‖R1(t)‖B(p(X)) ≤ ‖R(t)‖B(X) and R1(t) is exponentially bounded. Moreover, as a

consequence of the definition, the resolvent equation holds for R1(t). Consequently, R1(t) is

a k-convoluted semigroup with generator A1. Moreover, for {xn} such that (R(t0)−µ)xn → 0

on X, we take {xn}r = {xn+r} and we obtain (R1(t0)−µ)(xn)r → 0 as r →∞ on p(X), and

µ ∈ σa(R1(t0)).

Next, we take

F =
{
{xn} ∈ p(X) : xn → 0 on X

}
and let c(X) = p(X)/F ; so, F is R1(t)-invariant. We have to show that F is A1-invariant and

closed in p(X). Let {xn} ∈ D(A1) with xn → 0 on X. We have that R(λ,A)A is a bounded

operator on X and, as A1{xn} ∈ p(X) and the fact that A and R(t) commute, we obtain

R(λ,A)Axn → 0 and (R(t0)−µ)Axn → 0 on X, and therefore Axn → 0 on X, obtaining the

first part of the claim. Now, let {xn}r ∈ F with {xn}r → {xn} on p(E); we want to show

that xn → 0 on X. In fact, for arbitrary ε > 0, let rε and nε such that

sup
n
‖(xn)r − xn‖X < ε/2 for r > rε,

‖(xn)rε‖X < ε/2 for n > nε,

and thus ‖xn‖X < ε, obtaining the second part of the claim.

Therefore, for {x̃n} = {xn}/F , we have R̃1(t){x̃n} = R1(t){x̃n} and Ã1{x̃n} = A1{x̃n}
which means that R̃1(t) is a k-convoluted semigroup with generator Ã1. Moreover, if (R1(t)−
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µ){xn}r → 0 as r →∞ on p(X), then (R̃1(t)− µ){x̃n} → 0 on c(X), and by Theorem 4.10,

there exist λ ∈ σp(Ã) and {ỹn} 6= 0 such that (λ − Ã1){ỹn} → 0; hence, (λ − A)yn → 0 on

X. Also, ‖{ỹn}‖c(X) 6= 0, which implies that there is a subsequence {yns} on X and c > 0

such that ‖yns‖X > c for all s and thus λ ∈ σa(A), concluding the proof. �

For a Banach space X, we define the sun dual of X by X� := D(A′)
X′

. If A is a closed

and linear operator defined on X we define A� as the part of A′ in X�, where A′ denotes the

adjoint operator of A. Let {R(t)}t≥0 be a k-convoluted semigroup generated by A, and we

denote its dual by {R(t)′}t≥0. Since that in general, {R(t)′}t≥0 may not be strongly continuous

on X ′, we restrict it to X� to obtain a strongly continuous family {R�(t)}t≥0 called the sun

dual resolvent family, which is defined by R�(t) = R(t)′|X� , t ≥ 0.

By the Hahn-Banach theorem, we recall that σr(A) = σp(A
′), provided the adjoint A′ of

A is well defined, i.e. A is densely defined.

Theorem 4.13. For {R(t)}t≥0 a k-convoluted semigroup on a Banach space X such that

‖R(t)‖ ≤M(1 ∗ k)(t) and whose generator A generates a C0-semigroup, we have

σr(R(t)) ∪ {0} =

{∫ t

0

k(t− s)eλs ds : λ ∈ σr(A)

}
∪ {0}. (4.12)

Proof. By hypothesis over A, this operator is densely defined, and so we may apply

[65, Theorem 4.1] to obtain that the sun dual operator R(t)� is strongly continuous with

generator A�. Moreover, by definition of the sun dual, R(t)� = R(t)′
∣∣
X�

, where R(t)′

denotes the dual of R(t), and by [65, Proposition 5.1], we have σp(R(t)�) = σp(R(t)′) and

σp(A
�) = σp(A

′), where A′ denotes the adjoint operator of A. Now, µ ∈ σr(R(t0)) \ {0}
implies µ ∈ σp(R(t0)′)\{0}, and by Theorem 4.10, there exists λ ∈ σp(A′) = σr(A) such that

µ =

∫ t0

0

k(t0 − s)eλs ds,

concluding the proof. �

Remark 4.14. We notice that if A generates a k-convoluted semigroup {R(t)}t≥0 on a

Banach space X and A has dense domain in X, then the Theorem 4.13 is also true without

the assumption that A is the generator of a C0-semigroup.



CHAPTER 5

Abstract cosine and sine functions on time scales

Abstract cosine and sine functions defined on a Banach space, are useful tools in the study

of wide classes of abstract evolution equations. In this Chapter, we introduce a definition of

cosine and sine functions on time scales, which unify the continuous, discrete and cases which

are between these ones, by means of using Laplace transforms on time scales. This approach

is much more general and encompasses all time scales T0 satisfying 0 ∈ T0 and supT0 = +∞.

Further, using such approach, we are able to deal with several different types of time scales.

We study the relationship between the cosine function on time scales and its infinitesimal

generator, proving several properties concerning it. Next, we prove several properties of the

time scales which have the semigroup property and show how it is restrictive. More precisely,

we prove that a definition by means of the functional equation is not possible for a wide class

of time scales (see Lemma 5.23), and for a wide class of graininess functions (see Theorem

5.29). For instance, the obtained results to this type of problem would be very restrictive, and

it would not include hybrid time scales. Moreover, it would not include even the quantum

scale, which has several applications in quantum physics. Also, we study the sine functions

on time scales, presenting their main properties. Finally, we apply our theory to study the

homogeneous and inhomogeneous abstract Cauchy problem on time scales in Banach spaces.

1. Laplace transform on time scales

Let T0 be a time scale such that 0 ∈ T and supT0 = +∞, and let us denote by T+
0 =

T0 ∩ R+. Also, note that if λ ∈ R is constant, then 	λ ∈ R and e	λ(t, 0) is well defined on

T0 (see [17]). Now, we recall the notion of Laplace transform on time scales and we present

important properties which will be essential to our purposes.

Definition 5.1. Assume x : T0 → R is a regulated function. Then, the Laplace trans-

form on time scales of x is defined by

x̂(λ) = L{x}(λ) :=

∫ ∞
0

x(t)eσ	λ(t, 0) ∆t,

51
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for λ ∈ D{x}, where

D{x} =

{
λ ∈ C :

∫ ∞
0

x(t)eσ	λ(t, 0) ∆t exists

}
.

Theorem 5.2. [17, Theorem 3.84] Assume f and g are regulated functions on T0, and

α and β are constants. Then

L{αx+ βy}(λ) = αL{x}(λ) + βL{y}(λ)

for λ ∈ D{x} ∩D{y}.

Theorem 5.3. [17, Lemma 3.85] If λ ∈ C is regressive, then

eσ	λ(t, 0) =
e	λ(t, 0)

1 + µ(t)λ
= −(	λ)(t)

λ
e	λ(t, 0).

Theorem 5.4. [41, Theorem 3.12] Let f : T+
0 → X be an rd-continuous and delta-

differentiable function. If λ ∈ C is such that

lim
t→∞

f(t)e	λ(t, 0) = 0

when Reµ(λ)(t) > 0 for all t ∈ T+
0 and f̂∆(λ) exists, then f̂(λ) exists and f̂∆(λ) = λf̂(λ)−

f(0).

Corollary 5.5. [41, Corollary 3.13] Let f ∈ Crd(T+
0 , X) and F (t) =

∫ t
0
f(s) ∆s. Let λ ∈

C \ {0} for all t ∈ T+
0 such that f̂(λ) exists and lim

t→∞
f(t)e	λ(t, 0) = 0, then F̂ (λ) = f̂(λ)/λ.

In the sequel, we recall the notion of strongly rd-continuous functions, and C0-semigroups

on time scales and its infinitesimal generator A. We denote by B(X) the space consisting

of all bounded operators from X into itself, endowed with the strong topology. See [41] for

more details.

Definition 5.6. A function T : T+
0 → B(X) is strongly rd-continuous if one of the

following conditions are satisfied:

(1) If 0 is right-dense, then ‖T (t)x− x‖ → 0 as t→ 0+.

(2) If 0 is right-scattered, then ‖T (0)x− x‖ = 0.

Definition 5.7. We say that T : T+
0 → B(X) is a C0-semigroup with infinitesimal

generator A if the following conditions are satisfied:

(1) T (0) = I, and for every x ∈ X, the function t 7→ T (t)x is strongly rd-continuous.
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(2) There exists λ0 such that (λ0,∞)T ⊂ ρ(A), λ ∈ D{T}, and

T̂ (λ)x =

∫ ∞
0

eσ	λ(t, 0)T (t)x∆t = (λ− A)−1x, x ∈ X,

for all Reµ(λ)(t) > λ0 and t ∈ T+
0 .

Definition 5.8. Given an abstract C0-semigroup T : T+
0 → B(X) on time scales, we

define the infinitesimal generator A by means of:

D(A) =


x ∈ X : lim

t→0

T (t)x− x
t

exists, if 0 is right-dense

x ∈ X :
T (σ(0))x− x

µ(0)
exists, if 0 is right-scattered

and

Ax =


lim
t→0

T (t)x− x
t

, if 0 is right-dense

T (σ(0))x− x
µ(0)

, if 0 is right-scattered

In what follows, we present some properties of abstract C0-semigroups on time scales.

Theorem 5.9. [41, Theorem 3.15] Let A be a closed linear operator in X, and f, g ∈
L1
loc(T

+
0 , X) such that ω ∈ D{f} ∩D{g}. Then, the following assertions are equivalent:

(1) f(t) ∈ D(A) and Af(t) = g(t) a.e. on T+
0 .

(2) f̂(λ) ∈ D(A) and Af̂(λ) = ĝ(λ) whenever Reµ(λ)(t) > Reµ(ω)(t) for all t ∈ T+
0 .

Theorem 5.10. [41, Corollary 3.16] Let A be a linear operator in X with nonempty

resolvent set, and let T (t) ∈ B(X). The following assertions are equivalent:

(1) (λ− A)−1T (t) = T (t)(λ− A)−1 for all λ ∈ ρ(A).

(2) (λ− A)−1T (t) = T (t)(λ− A)−1 for some λ ∈ ρ(A).

(3) For all x ∈ D(A), T (t)x ∈ D(A) and AT (t)x = T (t)Ax.

Theorem 5.11. [41, Theorem 4.9] Let T be a C0-semigroup with infinitesimal generator

A. Let Reµ(c)(t) ∈ D{T} for every t ∈ T+
0 . Then, the following conditions hold:

(1) Let B ∈ B(X) such that BT̂ (λ) = T̂ (λ)B whenever Reµ(λ)(t) > Reµ(c)(t) for every

t ∈ T+
0 . Then BT (t) = T (t)B for all t ∈ T+

0 .

(2) In particular, T (t)T (s) = T (s)T (t) for all t, s ∈ T+
0 .
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2. Abstract cosine function on time scales

Let T0 be a time scale such that 0 ∈ T and supT0 = +∞, and A be a closed linear

operator in a Banach space X. In this section, our goal is to study the following abstract

Cauchy second order problem on time scales:
u∆∆(t) = Au(t), t ∈ T+

0 ,

u(0) = x,

u∆(0) = y,

(5.1)

where x, y ∈ X. We denote the class of functions f : T→ X that are twice delta-differentiable

and the second delta-derivative is rd-continuous by C2
rd = C2

rd(T, X).

Remark 5.12. A big deal when one is studying a second-order dynamic equation on time

scales is to choose the appropriate formulation of the problem, because it is a known fact

that there are several ways to formulate a second order dynamic equation on time scales. For

instance, a very usual way to define the problem (5.1) is through the following formulation:
u∆∆(t) = Auσ(t), t ∈ T+

0 ,

u(0) = x,

u∆(0) = y,

(5.2)

but we will show here that this formulation is not appropriate in the case of abstract co-

sine function on time scales (see Remark 5.17). Moreover, if we look into the definition of

hyperbolic cosine and sine functions, and cosine and sine functions, they are considered by

problem with a formulation similar to the equation (5.1), not using the one described by

equation (5.2) (see [17]). Therefore, the most natural is to consider the problem using the

formulation (5.1) instead of (5.2), since here we are interested in the study of abstract cosine

and sine functions on time scales. Also, another natural question which appears when we are

dealing with second order dynamic equations on time scales concerns about the possibility

to consider the problem using nabla and delta derivatives, instead of only delta-derivatives

or only nabla-derivatives. In this case, our problem would have the following formulation
u∇∆(t) = Auσ(t), t ∈ T+

0 ,

u(0) = x,

u∇(0) = y.

(5.3)

The formulation given by equation (5.3) is not appropriate in our case again, because the

well-known property described in Corollary 5.5 does not remain true if we define F (t) =
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0

f(s)∇s instead of F (t) =

∫ t

0

f(s) ∆s. This fact makes that the usual and classical pro-

perties of abstract cosine function on time scales do not coincide in the case T = R, which

is not interesting for our purpose of generalization and extension of the continuous, discrete,

hybrid results, among others. Finally, the other motivation for not to consider the equation

(5.1) follows from the fact that neither the hyperbolic cosine and sine on time scales, nor

cosine and sine functions on time scales are considered through equations of this type. See

[17], for details.

Definition 5.13. A classical solution is a function u ∈ C2
rd(T

+
0 , X) such that u(t) ∈

D(A) for every t ∈ T+
0 and satisfies the problem (5.1).

In the sequel, we introduce a more general definition of the solution for the problem (5.1).

Definition 5.14. A mild solution is a function u ∈ Crd(T+
0 , X) such that∫ t

0

∫ s

0

u(r) ∆r∆s =

∫ t

0

(t− σ(s))u(s) ∆s ∈ D(A)

and for all t ∈ T+
0 ,

u(t) = x+ ty + A

∫ t

0

(t− σ(s))u(s) ∆s. (5.4)

In what follows, we present a strong connection between a mild solution and a classical

solution of the problem (5.1).

Theorem 5.15. A mild solution u of the problem (5.1) is a classical solution if, and only

if, u ∈ C2
rd(T

+
0 , X).

Proof. If u is a classical solution of (5.1), then by the definition, it follows directly that

u ∈ C2
rd(T

+
0 , X), obtaining the desired result. Conversely, assume that u ∈ C2

rd(T
+
0 , X) is a

mild solution of (5.1) and let t ∈ T+
0 . Integrating and applying the Fundamental Theorem

of Calculus for ∆-integrals [18, Theorem 5.34] in the equation (5.1), we have

u∆(t)− y = A

∫ t

0

u(s) ∆s, (5.5)

and then, integrating and applying [18, Theorem 5.34] again in (5.5), we obtain

u(t)− x− ty = A

∫ t

0

∫ s

0

u(r) ∆r∆s

= A

∫ t

0

∫ t

σ(r)

u(r) ∆s∆r
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= A

∫ t

0

(t− σ(r))u(r) ∆r,

where in the second equality, we use the change of order of integration (see [16] for details),

concluding the proof. �

Now, we present a result which brings an important property of a mild solution of (5.1).

Theorem 5.16. Let u ∈ Crd(T+
0 , X), ω ∈ D{u}. Assume that λ ∈ C is such that

lim
t→∞

u(t)e	λ(t, 0) = 0, lim
t→∞

e	λ(t, 0)

∫ t

0

u(s) ∆s = 0, (5.6)

for every λ with Reµ(λ)(t) > Reµ(ω)(t) for all t ∈ T+
0 . Then, u is a mild solution of (5.1)

if, and only if,

û(λ) ∈ D(A) and λx+ y = (λ2 − A)û(λ).

for all λ which satisfies (5.6).

Proof. Define v(t) :=

∫ t

0

u(s) ∆s and w(t) =

∫ t

0

v(s) ∆s, for every t ∈ T+
0 . Therefore,

by hypothesis and by Corollary 5.5, we get

v̂(λ) =
û(λ)

λ
and ŵ(λ) =

v̂(λ)

λ
;

It implies that

ŵ(λ) =
û(λ)

λ2
.

On the other hand, we have

û(λ)

λ2
=

∫ ∞
0

eσ	λ(t, 0)

∫ t

0

v(s) ∆s∆t. (5.7)

Then, by hypothesis and by Theorem 5.9, we get

û(λ)

λ2
=

∫ ∞
0

eσ	λ(t, 0)

∫ t

0

v(s) ∆s∆t ∈ D(A).

Also, if u is a mild solution of (5.1) and applying Theorem 5.9 again, we have

û(λ) =

∫ ∞
0

eσ	λ(t, 0)u(t) ∆t

=

∫ ∞
0

eσ	λ(t, 0)x∆t+

∫ ∞
0

eσ	λ(t, 0)ty∆t

+A

∫ ∞
0

eσ	λ(t, 0)

∫ t

0

(t− σ(s))u(s) ∆s∆t. (5.8)
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Now, note that by properties of the exponential function (Theorem 1.18 and Lemma 1.19),∫ ∞
0

eσ	λ(t, 0)x∆t =

∫ ∞
0

−	λ
λ
e	λ(t, 0)x∆t = −1

λ

(
e	λ(t, 0)x

)t→+∞
t=0

=
x

λ
. (5.9)

Next, using integration by parts (Theorem 1.11), we have∫ ∞
0

eσ	λ(t, 0)ty∆t =

∫ ∞
0

−	λ
λ
e	λ(t, 0)ty∆t =

∫ ∞
0

−1

λ
e∆
	λ(t, 0)ty∆t

= −1

λ

(
e	λ(t, 0)ty

)t→+∞
t=0

+
1

λ

∫ ∞
0

eσ	λ(t, 0)y∆t

=
1

λ

∫ ∞
0

−	λ
λ
e	λ(t, 0)y∆t

= − 1

λ2

(
e	λ(t, 0)y

)t→+∞
t=0

=
y

λ2
. (5.10)

Finally, we have

A

∫ ∞
0

eσ	λ(t, 0)

∫ t

0

(t− s)u(s) ∆s∆t = A

∫ ∞
0

eσ	λ(t, 0)

∫ t

0

∫ s

0

u(r)∇r∆s∆t

= A

∫ ∞
0

eσ	λ(t, 0)

∫ t

0

v(s) ∆s∆t

= A
û(λ)

λ2
. (5.11)

Combining (5.8) with (5.9), (5.10) and (5.11), we get

û(λ) =
x

λ
+

y

λ2
+ A

û(λ)

λ2
, (5.12)

obtaining the result. To prove the converse, we follow the same idea. �

Remark 5.17. If we consider equation (5.2) instead of (5.1) then we do not get the

equation (5.12), but we obtain

û(λ) =
x

λ
+

y

λ2
+ A

ûσ(λ)

λ2
. (5.13)

In the case of T = Z using this property ûσ(λ) = λ(û(λ)− u(0)), (by [17, p. 122]) we have

û(λ) =
x

λ
+

y

λ2
+ A

λ(û(λ)− u(0))

λ2
,

= (I − A)
x

λ
+

y

λ2
+ A

(û(λ))

λ
.

Therefore, if y = 0, then we have

(λ− A)û(λ) = (I − A)x,
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hence û(λ) = (λ − A)−1(I − A)x instead of û(λ) = (λ2 − A)−1x, which is the expected

solution to the second order Cauchy problem. Thus, it does not make sense to consider the

formulation of the problem by equation (5.2).

As an immediate consequence, we have the following result.

Corollary 5.18. Let u ∈ Crd(T+
0 , X), ω ∈ D{u} and suppose that the conditions (5.6)

hold for every λ with Reµ(λ)(t) > Reµ(ω)(t) for all t ∈ T+
0 . Then, u is a mild solution of

the problem (5.1), if and only if,

û(λ) ∈ D(A) and û(λ) = λ(λ2 − A)−1x+ (λ2 − A)−1y. (5.14)

Now, let us present the definition of cosine function on time scales. From now on, we

assume u ∈ Crd(T+
0 , X), ω ∈ D{u}, and Reµ(λ)(t) > Reµ(ω)(t).

Definition 5.19. We say that a strongly rd-continuous function C : T+
0 → B(X) is a

cosine function with infinitesimal generator A if the following condition is satisfied:

there exists ω such that (ω,∞)T ⊂ ρ(A), λ2 ∈ D{C}, and

Ĉ(λ)x =

∫ ∞
0

eσ	λ(t, 0)C(t)x∆t = λ(λ2 − A)−1x, x ∈ X,

for all Reµ(λ2)(t) > ω and t ∈ T0.

Next, we present some fundamental properties of a cosine function C on time scales, and

their relations with the generator A.

Proposition 5.20. Let C : T+
0 → B(X) be a cosine function on X and let A be its

generator. Then the following assertions hold:

a)
∫ t

0
(t − σ(s))C(s)x∆s ∈ D(A) and A

∫ t
0
(t − σ(s))C(s)x∆s = C(t)x − x for all

x ∈ X, t ∈ T+
0 .

b) Let x ∈ D(A), Reµ(c)(t) ∈ D{C} and suppose AĈ(λ) = Ĉ(λ)A when

Reµ(λ2)(t) > Reµ(c)(t), then C(t)x ∈ D(A) and AC(t)x = C(t)Ax for all t ∈ T+
0 .

c) Let x, y ∈ X, then x ∈ D(A) and Ax = y if, and only if,
∫ t

0
(t − σ(s))C(s)y∆s =

C(t)x− x for all t ∈ T+
0 .

d) If 0 is right-dense, then D(A) =

{
x ∈ X : lim

h→0+

2(C(h)x− x)

h2
exists

}
, and

Ax = lim
h→0+

2(C(h)x− x)

h2
.
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e) If 0 and σ(0) are right-scattered, then

D(A) =
{
x ∈ X :

(
C(σ(σ(0)))− C(σ(0))

)
x

µ(σ(0))µ(0)
+

(
C(0)− C(σ(0))

)
x

µ(0)2
is well− defined

}
,

and

Ax =

(
C(σ(σ(0)))− C(σ(0))

)
x

µ(σ(0))µ(0)
+

(
C(0)− C(σ(0))

)
x

µ(0)2
.

f) If 0 is right-scattered and σ(0) is right-dense, then

D(A) =
{
x ∈ X : lim

h→0+

(
C(σ(0) + h)− C(σ(0))

)
x

µ(0)h
+

(
C(0)− C(σ(0)

)
x

µ(0)
exists

}
,

and

Ax = lim
h→0+

(
C(σ(0) + h)− C(σ(0))

)
x

µ(0)h
+

(C(0)− C(σ(0))x

µ(0)
.

Proof. a) Let λ ∈ C such that the condition (5.6) is satisfied, Reµ(λ)(t) >

Reµ(c)(t) and Reµ(λ2)(t) > Reµ(c)(t) for all t ∈ T+
0 . Considering y = 0 in the

equation (5.14), it follows by the definition of the abstract cosine function that C

satisfies the equation (5.14). Then by Corollary 5.18, it follows that C is a mild

solution of (5.1) for y = 0. Therefore, the result follows by applying the definition

of a mild solution.

b) For x ∈ X and Reµ(λ)(t) > Reµ(c)(t) for t ∈ T+
0 , we have∫ ∞

0

eσ	λ(t, 0)C(t)Ax∆t = Ĉ(λ)Ax = AĈ(λ)x =

∫ ∞
0

eσ	λ(t, 0)AC(t)x∆t,

which implies by the uniqueness of Laplace transform [41, Theorem 3.14], that

AC(t)x = C(t)Ax for all t ∈ T+
0 .

c) Define C1(t) =
∫ t

0
C(s)∇s, and also C2(t) =

∫ t
0
C1(s) ∆s. Let λ ∈ C such that the

condition (5.6) is satisfied, Reµ(λ)(t) > Reµ(c)(t) and Reµ(λ2)(t) > Reµ(c)(t) for

all t ∈ T+
0 . By hypothesis and by Corollary 5.5, we get:

Ĉ1(λ) =
Ĉ(λ)

λ
, Ĉ2(λ) =

Ĉ1(λ)

λ
, and Ĉ2(λ) =

Ĉ(λ)

λ2
. (5.15)

Assume that
∫ t

0
(t− σ(s))C(s)y∆s = C(t)x− x. Using Laplace transform, we get∫ ∞

0

eσ	λ(t, 0)

∫ t

0

(t− σ(s))C(s)y∆s∆t =

∫ ∞
0

eσ	λ(t, 0)

∫ t

0

∫ s

0

C(r)y∆r∆s∆t

=

∫ ∞
0

eσ	λ(t, 0)

∫ t

0

C1(s)y∆s∆t

=

∫ ∞
0

eσ	λ(t, 0)C2(t)y∆t
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=
1

λ
(λ2 − A)−1y, (5.16)

by (5.15) and the definition of cosine function. On the other hand, applying again

the definition of cosine function and using (5.9), we have∫ ∞
0

eσ	λ(t, 0)
(
C(t)x− x

)
∆t = λ(λ2 − A)−1x− x

λ
,

which implies, by (5.16) and by the uniqueness of the Laplace transform [41, Theo-

rem 3.14],

1

λ
(λ2 − A)−1y = λ(λ2 − A)−1x− x

λ

(λ2 − A)−1y = λ2(λ2 − A)−1x− x

(λ2 − A)(λ2 − A)−1y = (λ2 − A)λ2(λ2 − A)−1x− (λ2 − A)x

y = λ2x− (λ2 − A)x = Ax

for Reµ(λ2)(t) > Reµ(ω)(t), proving the first part of the claim.

Conversely, let x, y ∈ X be such that x ∈ D(A) and Ax = y. Notice that

AĈ(λ)x = Aλ(λ2 − A)−1x = λ(λ2 − A)−1Ax = λ(λ2 − A)−1y

=

∫ ∞
0

eσ	λ(t, 0)C(t)y∆t =

∫ ∞
0

eσ	λ(t, 0)C(t)Ax∆t = Ĉ(λ)Ax,

and by part a), we have

C(t)x− x = A

∫ t

0

(t− σ(s))C(s)x∆s =

∫ t

0

(t− σ(s))AC(s)x∆s

=

∫ t

0

(t− σ(s))C(s)Ax∆s =

∫ t

0

(t− σ(s))C(s)y∆s

where we used assertion b).

d) Let x ∈ D(A) and Ax = y. From assertion c), it follows that

2

t2
(C(t)x− x)− y =

2

t2

∫ t

0

(t− σ(s))C(s)y∆s− y (5.17)

=
2

t2

∫ t

0

(t− σ(s))
(
C(s)y − y

)
∆s.

Since 0 is right-dense, then it is possible to find a sequence {δn} ⊂ T+
0 such that

δn → 0+ as n → ∞. Since σ is rd-continuous and 0 is right-dense, it follows that

limn→∞ σ(δn) = σ(0) = 0. Hence, by (5.17) and by applying L’Hopital, we have

lim
n→+∞

2(C(σ(δn))x− x)

(σ(δn))2
− y = lim

n→+∞

2

(σ(δn))2

∫ σ(δn)

0

(σ(δn)− σ(s))(C(s)y − y) ∆s
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= lim
n→+∞

2

(σ(δn))2

∫ δn

0

(σ(δn)− σ(s))(C(s)y − y) ∆s

+ lim
n→+∞

2

(σ(δn))2

∫ σ(δn)

δn

(σ(δn)− σ(s))(C(s)y − y) ∆s

= lim
n→+∞

1

σ(δn)
(σ(δn)− σ(δn))(C(σ(δn)y − y)

+ lim
n→+∞

1

(σ(δn))2
(σ(δn)− σ(δn))(C(δn)y − y)µ(δn)

= 0.

Therefore,

lim
δ→0+

2

t2
(C(t)x− x) = y. (5.18)

Conversely, let x, y ∈ X be such that (5.18) holds. From part a), we have

A
2

t2

∫ t

0

(t− s)C(s)x∆s =
2

t2
(
C(t)x− x

)
→ y as t→ 0+.

Therefore, by (5.18) and since A is closed, it follows that x ∈ D(A) and Ax = y.

e) Let x ∈ D(A), and Ax = y. From assertion c), it follows that(
C(σ(σ(0)))− C(σ(0))

)
x

µ(σ(0))µ(0)
+

(C(0)− C(σ(0)))x

µ(0)2

=
1

µ(σ(0))µ(0)

[∫ σ(σ(0))

0

(σ(σ(0))− σ(s))C(s)y∆s−
∫ σ(0)

0

(σ(0)− σ(s))C(s)y∆s

]

+
1

µ(0)2

∫ σ(0)

0

(σ(0)− σ(s))C(s)y∆s

=
1

µ(σ(0))µ(0)

[∫ σ(0)

0

(σ(σ(0))− σ(s))C(s)y∆s+

∫ σ(σ(0))

σ(0)

(σ(σ(0))− σ(s))C(s)y∆s

−
∫ σ(0)

0

(σ(0)− σ(s))C(s)y∆s

]
+

1

µ(0)2
(σ(0)− σ(0))C(0)µ(0)y

=
1

µ(σ(0))µ(0)

[(
σ(σ(0))− σ(0)

)
µ(0)C(0)y +

(
σ(σ(0))− σ(σ(0))

)
µ(σ(0))C(σ(0))y

− 1

µ(σ(0))µ(0)
(σ(0)− σ(0))µ(0)C(0)y

]
=

1

µ(σ(0))µ(0)
µ(σ(0))µ(0)C(0)y = y,

proving the claim.
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Conversely, let x, y ∈ X be such that(
C(σ(σ(0)))− C(σ(0))

)
x

µ(σ(0))µ(0)
+

(C(0)− C(σ(0)))x

µ(0)2
= y.

From part a), we have

A
1

µ(σ(0))µ(0)

[∫ σ(σ(0))

0

(σ(σ(0))− σ(s))C(s)y∆s−
∫ σ(0)

0

(σ(0)− σ(s))C(s)y∆s

]

−A 1

µ(0)2

∫ σ(0)

0

(σ(0)− σ(s))C(s)y∆s

=
(C(σ(σ(0)))− C(σ(0)))x

µ(σ(0))µ(0)
+

(C(0)− C(σ(0)))x

µ(0)2
= y,

getting the desired result. Therefore, x ∈ D(A) and Ax = y.

f) Let x ∈ D(A), and Ax = y. From part c) and using Theorem 1.11 (citar), it follows

that

C(σ(0) + h)x− C(σ(0))x

µ(0)h
=

1

µ(0)h

(
C(σ(0) + h)x− x− C(σ(0))x+ x

)
=

1

µ(0)h

(∫ σ(0)+h

0

(σ(0) + h− σ(s))C(s)y∆s

−
∫ σ(0)

0

(σ(0)− σ(s))C(s)y∆s

)
=

1

µ(0)h

(∫ σ(0)

0

hC(s)y∆s+

∫ σ(0)+h

σ(0)

(σ(0) + h− σ(s))C(s)y∆s

)
=

1

µ(0)h

(
hµ(0)C(0)y +

∫ σ(0)+h

σ(0)

(σ(0) + h− σ(s))C(s)y∆s

)
= y +

1

µ(0)h

(∫ σ(0)+h

σ(0)

(σ(0) + h− σ(s))C(s)y∆s

)
,

from which, applying limit when h→ 0+ and using L’Hopital theorem, we get

lim
h→0+

C(σ(0) + h)x− C(σ(0))x

µ(0)h
= lim

h→0+

[
y +

∫ σ(0)+h

σ(0)

(σ(0) + h− σ(s))C(s)y∆s

]

= y + lim
h→0+

1

µ(0)
(σ(0) + h− σ(σ(0)))C(σ(0))y

= y + lim
h→0+

1

µ(0)
(σ(0) + h− σ(0))C(σ(0))y

= y + lim
h→0+

1

µ(0)
hC(σ(0))y = y, (5.19)
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since σ(0) is right-dense. On the other hand, we get

−(C(σ(0))− C(0))x

µ(0)2
= − 1

µ(0)2

∫ σ(0)

0

(σ(0)− σ(s))C(s)y∆s

= − 1

µ(0)2
(σ(0)− σ(0))µ(0)C(0)y

= 0.

Therefore, we have

lim
h→0+

(C(σ(0) + h)− C(σ(0)))x

µ(0)h
+

(C(0)− C(σ(0))x

µ(0)
= y, (5.20)

obtaining the result. Conversely, suppose that x, y satisfy (5.20). From part a), we

have

A

[
1

µ(0)h

(∫ σ(0)

0

hC(s)y∆s+

∫ σ(0)+h

σ(0)

(σ(0) + h− σ(s))C(s)y∆s

)]

−A

[
1

µ(0)2

∫ σ(0)

0

(σ(0)− σ(s))C(s)y∆s

]

=
(C(σ(0) + h)− C(σ(0)))x

µ(0)h
+

(C(0)− C(σ(0))x

µ(0)
→ y as t→ 0+.

Therefore, by (5.19) and since A is closed, it follows that x ∈ D(A) and Ax = y. �

Remark 5.21. Notice that the Theorem 5.16 describes all the possibilities for the defi-

nition of the generator A, since the case where 0 is right-dense and σ(0) is right-scattered at

the same time is not possible. Indeed, if 0 is right-dense, then σ(0) = 0 and, therefore, σ(0)

has to be right-dense.

3. Time scales with the semigroup property

In this section, let us show that to require that the time scales have the group property

restricts a lot the class of time scales, which we can deal.

Among others, we will prove in this section that if the time scale has the group property,

then it cannot be hybrid for instance, because the only possibilities for the time scale with

this property are to have only right-dense points or to have only right-scattered points. Also,

in this section, we show that if 0 is right-dense, then the unique possibility for T is R.
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Notice that the classical definition of cosine function is very strong and restrictive by

means of the theory of time scales. More precisely, the abstract cosine function is defined by:{
2C(t)C(s) = C(t+ s) + C(t− s), t, s ∈ R,

C(0) = I,
(5.21)

Notice that if we define the cosine functions on time scales as (5.21), then in order to

ensure that the abstract cosine function is well defined, it is necessary to require that the

time scale has the group property, which means that the following conditions are satisfied:

(1) 0 ∈ T;

(2) If a, b ∈ T, then a− b ∈ T.

These properties on the time scales are too strong and restricts the class of time scales

as we will see in the next results.

Theorem 5.22. If T has the group property, then for every a, b ∈ T, we have a+ b ∈ T.

Proof. In fact, since 0 ∈ T and a, b ∈ T implies that a−b ∈ T. Then, clearly −a,−b ∈ T
and therefore, a− (−b) = a+ b ∈ T. �

Theorem 5.23. If T has the group property, then every point in T is right-dense or every

point in T is right-scattered.

Proof. Suppose that there exist a, b ∈ T such that a is right-dense and b is right-

scattered. Since a is right-dense, there exists a sequence {tn} ⊂ T such that tn → a+ as

n → ∞. It implies that the sequence sn := tn − a ∈ T for each n ∈ N and converges to

zero. Therefore, sn + b ∈ T for each n ∈ N and converges to b+ as n → ∞. Therefore, b is

right-dense, which is a contradiction, proving the Theorem. �

Notice that the last property is very restrictive. For example, it shows that time scales

which fulfill the group property cannot be hybrid. It excludes the time scale T =
+∞⋃

k=−∞

[ak, bk],

for ak < bk for each k ∈ Z, which is very important to study population models, for instance.

See [17], [23], for more details.

Lemma 5.24. If T has the group property, and there exists 0 6= a ∈ T, then

supT = +∞ and inf T = −∞.

Proof. It follows directly from the definition. �
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Remark 5.25. Notice that if T has the group property and a 6= 0 ∈ T is right-dense,

then by Theorem 5.23 and Lemma 5.24, we have that T = R.

In the sequel, we prove a property of the forward jump operator when T has the group

property.

Theorem 5.26. Suppose that T has the group property. Then

σ(a+ b) = σ(a) + b and σ(a+ b) = σ(b) + a (5.22)

for every a, b ∈ T.

Proof. If a is right-dense, then by Theorem 5.23, a+b is also right-dense. Therefore, the

equality (5.22) follows. If a is right-scattered, then a + b is also right-scattered by Theorem

5.23. Also, notice that

a+ b < σ(a) + b (5.23)

and σ(a) + b ∈ T. Then, we have

σ(a+ b) ≤ σ(a) + b, (5.24)

by (5.23) and by the definition of the forward jump operator. On the other hand, notice that

a = a+ b− b < σ(a+ b)− b. (5.25)

Since σ(a+ b)− b ∈ T, σ(a) ≤ σ(a+ b)− b by (5.25). Therefore, we have

σ(a) + b ≤ σ(a+ b). (5.26)

Combining (5.24) and (5.26), we get

σ(a+ b) = σ(a) + b,

concluding the result. The other equality is proved analogously. �

Analogously, we prove the equality ρ(a + b) = ρ(b) + a, for every a, b ∈ T, whenever T
has the group property. By the results above, we conclude that the graininess function is

constant.

Corollary 5.27. Suppose that T has the group property, then for every a, b ∈ T, we have

µ(a) = µ(b).
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Proof. By Lemma 5.26, we have:

σ(a+ b) = σ(a) + b = σ(b) + a.

Therefore,

µ(a) = σ(a)− a = σ(b)− b = µ(b),

obtaining the result. �

The next result follows the same way as Corollary 5.27. Therefore, we omit its proof.

Corollary 5.28. Suppose T has the group property, then for every a, b ∈ T, we have

ν(a) = ν(b).

Finally, we prove a property of exponential function on time scales when T has the

semigroup property.

Theorem 5.29. Let T be a time scale with the group property. If p ∈ R is constant,

then:

ep(t+ a, a) = ep(t, 0), for all t, a ∈ T.

Proof. By the definition,

ep(t+ a, a) = exp

(∫ t+a

a

ξµ(r)(p) ∆r

)
.

Let us consider two cases: if T has only right-dense points or T has only right-scattered

points. Notice that by Lemma 5.23, these are the only cases to consider. If T has only

right-dense points, then,

ep(t+ a, a) = exp

(∫ t+a

a

ξµ(r)(p) ∆r

)
= exp

(∫ t+a

a

p∆r

)
= exp

(
p · (t+ a− a)

)
= exp(pt)

= ep(t, 0).

If T has only right-scattered points, then,

ep(t+ a, a) = exp

(∫ t+a

a

ξµ(r)(p) ∆r

)
= exp

(∫ t+a

a

1

µ(r)
log(1 + pµ(r)) ∆r

)
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= exp

(∫ t

0

1

µ(r + a)
log(1 + pµ(r + a)) ∆r

)
= exp

(∫ t

0

1

µ(r)
log(1 + pµ(r)) ∆r

)
= ep(t, 0),

by Corollary 5.27, achieving the result. �

Corollary 5.30. If T has the group property, and p ∈ R is constant, then

e	p(t+ a, a) = e	p(t, 0),

for every a, t ∈ T.

Corollary 5.31. If T has the group property, and p ∈ R is constant, then

eσ	p(t+ a, a) = eσ	p(t, 0),

for every a, t ∈ T.

Proof. Notice that, by Corollaries 5.27 and 5.30,

eσ	p(t+ a, a) =
(
1 + µ(t+ a)	 p

)
e	p(t+ a, a)

=
(
1 + µ(t)	 p

)
e	p(t, 0)

= eσ	p(t, 0),

concluding the proof. �

4. Abstract sine function on time scales

This section is devoted to study the abstract sine function on time scales.

Definition 5.32. We say that a strongly rd-continuous function S : T+
0 → B(X) is a

sine function with infinitesimal generator A if the following condition is satisfied:

there exists ω such that (ω,∞)T ⊂ ρ(A), λ2 ∈ D{S}, and

Ŝ(λ)x =

∫ ∞
0

eσ	λ(t, 0)S(t)x∆t = (λ2 − A)−1x, x ∈ X,

for all Reµ(λ2)(t) > ω and t ∈ T0.

If A generates a cosine function C, then:

(λ2 − A)−1 =
1

λ

∫ ∞
0

eσ	λ(t, 0)C(t) ∆t =

∫ ∞
0

eσ	λ(t, 0)

∫ t

0

C(s) ∆s∆t,
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for Reµ(λ2)(t) > ω. Thus, A generates the abstract sine function S given by S(t)x :=∫ t
0
C(s)x∆s. It implies that this definition is consistent with Definition 5.19.

Next, we establish some relations between a sine function and its generator.

Proposition 5.33. Let S : T+
0 → B(X) be a sine function on X and let A be its generator.

Then, the following assertions hold:

a)
∫ t

0
(t − σ(s))S(s)x∆s ∈ D(A) and A

∫ t
0
(t − σ(s))S(s)x∆s = S(t)x − tx for all

x ∈ X, t ∈ T+
0 .

b) Let x ∈ D(A), Reµ(c)(t) ∈ D{S} and suppose that AŜ(λ) = Ŝ(λ)A when

Reµ(λ2)(t) > Reµ(c)(t), then, S(t)x ∈ D(A) and AS(t)x = S(t)Ax for all t ∈ T+
0 .

c) Let x, y ∈ X, then x ∈ D(A) and Ax = y, if and only if,
∫ t

0
(t − σ(s))S(s)y∆s =

S(t)x− tx for all t ∈ T+
0 .

Proof. a) Notice that the abstract sine function satisfies the equation (5.14) for

the case that x = 0. Therefore, by Corollary 5.18, we have that S(·)x is a mild

solution of the problem (5.1) when x = 0, obtaining the desired result.

b) For x ∈ X and Reµ(λ)(t) > Reµ(c)(t) for t ∈ T+
0 , we have∫ ∞

0

eσ	λ(t, 0)S(t)Ax∆t = Ŝ(λ)Ax = AŜ(λ)x =

∫ ∞
0

eσ	λ(t, 0)AS(t)x∆t,

which implies by the uniqueness of Laplace transform [41, Theorem 3.14], that

AS(t)x = S(t)Ax for all t ∈ T+
0 .

c) Define S1(t) =
∫ t

0
S(s)∇s and S2(t) =

∫ t
0
S1(s) ∆s. By hypothesis and by Corollary

5.5, we get:

Ŝ1(λ) =
Ŝ(λ)

λ
, Ŝ2(λ) =

Ŝ1(λ)

λ
, and Ŝ2(λ) =

Ŝ(λ)

λ2
. (5.27)

Assume that
∫ t

0
(t− s)S(s)y∆s = S(t)x− tx. Taking Laplace transform, we get∫ ∞

0

eσ	λ(t, 0)

∫ t

0

(t− σ(s))S(s)y∆s∆t =

∫ ∞
0

eσ	λ(t, 0)

∫ t

0

∫ s

0

S(r)y∆r∆s∆t

=

∫ ∞
0

eσ	λ(t, 0)

∫ t

0

S1(s)y∆s∆t

=

∫ ∞
0

eσ	λ(t, 0)S2(t)y∆t

=
1

λ2
(λ2 − A)−1y,



4. ABSTRACT SINE FUNCTION ON TIME SCALES 69

by (5.27) and by definition. Also, by definition and (5.10), we have∫ ∞
0

eσ	λ(t, 0)
(
S(t)x− tx

)
∆t = (λ2 − A)−1x− x

λ2
,

which implies

1

λ2
(λ2 − A)−1y = (λ2 − A)−1x− x

λ2

(λ2 − A)−1y = λ2(λ2 − A)−1x− x

(λ2 − A)(λ2 − A)−1y = (λ2 − A)λ2(λ2 − A)−1x− (λ2 − A)x

y = λ2x− (λ2 − A)x = Ax

for Reµ(λ2)(t) > Reµ(ω)(t).

Conversely, let x, y ∈ X such that x ∈ D(A) and Ax = y. By part a), we have:

S(t)x− tx = A

∫ t

0

(t− σ(s))S(s)x∆s =

∫ t

0

(t− σ(s))AS(s)x∆s

=

∫ t

0

(t− σ(s))S(s)Ax∆s =

∫ t

0

(t− σ(s))S(s)y∆s

where we used part b), finishing the proof. �

Our definitions of abstract sine and cosine functions on time scales are directly related

with the existence of mild solutions to the problem (5.1). Because of this, we now discuss

the existence of mild solutions to problem (5.1).

Theorem 5.34. Let A ∈ B(X). Then, the problem (5.1) has a unique classical solution.

Proof. We fix a ∈ T+
0 , and define the operator Γ : Crd([0, a], X)→ Crd([0, a], X) by

(Γu)(t) = x+ ty +

∫ t

0

(t− σ(s))u(s) ∆s, t ∈ T+
0 .

For t ≤ a ∈ T+
0 , it is not difficult to prove that Γ has a unique fixed point u(·), which is the

solution to (5.1). Moreover, since

u(t) = x+ ty +

∫ t

0

(t− σ(s))u(s) ∆s, t ∈ T+
0

for such fixed point u(·), we have that u∆∆(t) = Au(t) and u(0) = x. Therefore, u(·) is a

classical solution of (5.1). �

Remark 5.35. For the case µ(0) = 0, the group property combined with the Lemma

5.23, show that the only time scale that satisfies such conditions is T = R (see Lemma 5.24);

consequently, C(·) is a cosine function in the classical sense. Also, this result shows what
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strong the semigroup property is. For instance, this result does not allow include the hybrid

continuous-discrete time scales such that 0 ∈ T and 0 is right-dense, and the quantum time

scale T = qZ ∪ {0}, q > 1, because this time scale does not satisfy the property.

We finish this section with an example. Let us assume that A generates a cosine family

C : T+
0 → B(X) with associated sine family S : T+

0 → B(X), and let λ ∈ R be an eigenvalue

of A.

Example 5.36. If λ ∈ R, then

C(t)x = cosh√λ(t, 0)x, S(t)y =
1√
λ

sinh√λ(t, 0)y, t ∈ T+
0 .

Indeed, let u(t) = cosh√λ(t, 0)x + 1√
λ

sinh√λ(t, 0)y. From the definition of hyperbolic

functions on time scales [17, Definition 3.17], it is immediate that u(0) = x. Applying delta

derivative, we get

u∆(t) =
√
λ sinh√λ(t, 0)x+ cosh√λ(t, 0)y,

and from this formula we obtain u∆(0) = y. Applying delta derivative again, we get

u∆∆(t) = λ cosh√λ(t, 0)x+
√
λ sinh√λ(t, 0)y

= λu(t).

Therefore, from the uniqueness of solutions of the problem (5.1) for the case A := λ, we

conclude that u(t) = C(t)x+ S(t)y, and the result is proved.

5. Inhomogeneous second order abstract Cauchy problem

In this section, we investigate the existence of solutions of the following inhomogeneous

abstract Cauchy problem on time scales:
u∆∆(t) = Au(t) + f(t), t ∈ T+

0 ,

u(0) = x,

u∆(0) = y,

(5.28)

where x, y ∈ X and T+
0 . We assume that the values u(t) ∈ X and f : T+

0 → X is an

rd-continuous function. Also, we assume that A generates a cosine function C : T+
0 → X and

a sine function S : T+
0 → X, and that there exists an rd-continuous function g such that:

(λ2I − A)ĝ(λ) = f̂(λ), λ > ω.

We start by introducing the definition of a mild solution of problem (5.28).
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Definition 5.37. We say that an rd-continuous function u : T+
0 → X is a mild solution

of (5.28) if

u(t) = x+ ty + A

∫ t

0

(t− σ(s))u(s) ∆s+

∫ t

0

(t− σ(s))f(s) ∆s (5.29)

for all t ∈ T+
0 .

We restrict us to consider the operator A ∈ B(X). In this case, for each s ∈ T+
0 , we

consider the abstract Cauchy problem given by:
u∆∆(t) = Au(t), t ∈ T+

0 ,

u(s) = x,

u∆(s) = y.

(5.30)

Definition 5.38. We say that an rd-continuous function u : [s,∞)T → X is a mild

solution of (5.30) if

u(t) = x+ ty + A

∫ t

s

(t− σ(r))u(r) ∆r,

for all t ≥ s ∈ T+
0 .

We can show that problem (5.30) has a unique solution u(t, s) for all x, y ∈ X. We

define C(t, s)x + S(t, s)y = u(t, s). Also, C : {(t, s) : t ≥ s, t, s ∈ T+
0 } → B(X) and

S : {(t, s) : t ≥ s, t, s ∈ T+
0 } → B(X) are strongly rd-continuous maps.

Theorem 5.39. Let A ∈ B(X) and assume that f : T+
0 → X is an rd-continuous

function. Then, the mild solution u(t) of the problem (5.28) is given by

u(t) = C(t, t0)x+ S(t, t0)y +

∫ t

t0

S(t, σ(r))f(r) ∆r. (5.31)

Remark 5.40. In the following proof, we only seek the solution for the case t ≥ t0.

Hence, C(t, t0) and S(t, t0) are only defined for t ≥ t0. On the other hand, by the definition

of abstract sine function, let us consider

S(t) := S(t, 0) =

∫ t

0

C(s) ∆s. (5.32)

Based on (5.32), we can denote it by

S(t, s) =

∫ t

s

C(r) ∆r. (5.33)

By (5.33), it is clear that S(t, s) = 0 whenever t = s.
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Proof of Theorem 6.35. We define the following function:

u(t) := C(t)x+ S(t)y +

∫ t

0

S(t, σ(r))f(r) ∆r, t ∈ T+
0 . (5.34)

On the other hand, by Proposition 5.33 a), we have

A

∫ t

0

(t− s)
∫ s

0

S(s, σ(r))f(r) ∆r∆s = A

∫ t

0

∫ s

0

(t− σ(s))S(s, σ(r))f(r) ∆r∆s

= A

∫ t

0

∫ t

r

(t− σ(s))S(s, σ(r))f(r) ∆s∆r

=

∫ t

0

A

∫ t

r

(t− σ(s))S(s, σ(r))f(r) ∆s∆r

=

∫ t

0

(
S(t, σ(r))− t

)
f(r) ∆r −∫ t

0

(
S(σ(r), σ(r))− σ(r)

)
f(r) ∆r

=

∫ t

0

(
S(t, σ(r))− (t− σ(r))

)
f(r) ∆r. (5.35)

where in the second equality, we used the change of order of the integration (see [16] for

details). Combining (5.34) with (5.35), and replacing in (5.29), we obtain

u(t) = x+ ty + A

∫ t

0

(t− σ(r))u(r) ∆r +

∫ t

0

(t− σ(r))f(r) ∆r

= x+ ty + A

∫ t

0

(t− σ(s))C(s)x∆s+ A

∫ t

0

(t− σ(s))S(s)y∆s

+A

∫ t

0

(t− σ(s))

∫ s

0

S(s, σ(r))f(r) ∆r∆s+

∫ t

0

(t− σ(r))f(r) ∆r

= C(t)x+ S(t)y + A

∫ t

0

(t− σ(s))

∫ s

0

S(s, σ(r))f(r) ∆r∆s+

∫ t

0

(t− σ(r))f(r) ∆r

= C(t)x+ S(t)y +

∫ t

0

(
S(t, σ(r))− (t− σ(r))

)
f(r) ∆r +

∫ t

0

(t− σ(r))f(r) ∆r

= C(t)x+ S(t)y +

∫ t

0

S(t, σ(r))f(r) ∆r,

concluding the proof. �
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6. Nonlinear second order abstract Cauchy problem

In this section, we investigate the existence of solutions of the following nonlinear abstract

Cauchy problem on time scales
u∆∆(t) = Au(t) + f(t, u(t)), t ∈ T+

0 ,

u(0) = x,

u∆(0) = y,

(5.36)

where x, y ∈ X and T+
0 = T0∩R+. We assume that the values u(t) ∈ X and f : T+

0 ×X → X

is an rd-continuous function with respect to the first variable. Also, we assume that A

generates a cosine function C : T+
0 → X and a sine function S : T+

0 → X.

We start by introducing the definition of a mild solution of problem (5.36).

Definition 5.41. We say that an rd-continuous function u : T+
0 → X is a mild solution

of (5.36) if

u(t) = x+ ty + A

∫ t

0

(t− σ(s))u(s) ∆s+

∫ t

0

(t− σ(s))f(s, u(s)) ∆s (5.37)

for all t ∈ T+
0 .

The next theorem is the main result of this section and it will be very important to

study nonlinear second order abstract Cauchy problem on time scales. The proof of the next

theorem follows very similar to the proof of Theorem 5.39, but we will repeat it here for

reader’s convenience.

Theorem 5.42. Let A ∈ B(X) and assume that f : T+
0 × X → X is an rd-continuous

function. Then, the mild solution u(t) of the problem (5.36) is given by

u(t) = C(t, t0)x+ S(t, t0)y +

∫ t

t0

S(t, σ(r))f(r, u(r)) ∆r. (5.38)

Proof. We define the following function

u(t) := C(t)x+ S(t)y +

∫ t

0

S(t, σ(r))f(r, u(r)) ∆r, t ∈ T+
0 . (5.39)

On the other hand, by Proposition 5.33 a), we have

A

∫ t

0
(t− σ(s))

∫ s

0
S(s, σ(r))f(r, u(r)) ∆r∆s = A

∫ t

0

∫ s

0
(t− σ(s))S(s, σ(r))f(r, u(r)) ∆r∆s

= A

∫ t

0

∫ t

σ(r)
(t− σ(s))S(s, σ(r))f(r, u(r)) ∆s∆r
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=

∫ t

0
A

∫ t

σ(r)
(t− σ(s))S(s, σ(r))f(r, u(r)) ∆s∆r

=

∫ t

0

(
S(t, σ(r))− t

)
f(r, u(r)) ∆r

−
∫ t

0

(
S(σ(r), σ(r))− σ(r)

)
f(r, u(r)) ∆r

=

∫ t

0

(
S(t, σ(r))− (t− σ(r))

)
f(r, u(r)) ∆r. (5.40)

where in the second equality, we used the change of order of the integration (see [16]).

Combining (5.39) with (5.40), and replacing in (5.37), we obtain

u(t) = x+ ty + A

∫ t

0

(t− σ(r))u(r) ∆r +

∫ t

0

(t− σ(r))f(r, u(r)) ∆r

= x+ ty + A

∫ t

0

(t− σ(s))C(s)x∆s+ A

∫ t

0

(t− σ(s))S(s)y∆s

+A

∫ t

0

(t− σ(s))

∫ s

0

S(s, σ(r))f(r, u(r)) ∆r∆s+

∫ t

0

(t− σ(r))f(r, u(r)) ∆r

= C(t)x+ S(t)y + A

∫ t

0

(t− σ(s))

∫ s

0

S(s, σ(r))f(r, u(r)) ∆r∆s

+

∫ t

0

(t− σ(r))f(r, u(r)) ∆r

= C(t)x+ S(t)y +

∫ t

0

(
S(t, σ(r))− (t− σ(r))

)
f(r, u(r)) ∆r

+

∫ t

0

(t− σ(r))f(r, u(r)) ∆r

= C(t)x+ S(t)y +

∫ t

0

S(t, σ(r))f(r, u(r)) ∆r,

concluding the proof. �
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