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RESUMEN

En esta tesis vamos a estudiar dos tipos de polinomios en N variables con
simetria prescrita: los polinomios de Jack con simetria prescrita y los polinomios

de Macdonald con simetria prescrita.

Los polinomios de Jack con simetria prescrita, se obtienen de los polinomios
de Jack no simétricos (indexados por composiciones formadas por dos parti-
ciones) mediante una antisimetrizacién o simetrizacién con respecto a dos con-
juntos disjuntos de variables. Mostraremos las propiedades que caracterizan estos
polinomios, tales como: triangularidad en ciertas bases monomiales y su unicidad
como funciones propias de operadores diferenciales de tipo Calogero-Sutherland.
Ademds, mostraremos algunos resultados obtenidos sobre las propiedades de
agrupacién bajo la especializacién del parametro alpha de estos polinomios, las
cuales corresponden a la factorizacién que resulta tras considerar un conjunto de

variables e igualarlas a un parametro adicional.

Similarmente, los polinomios de Macdonald con simetria prescrita, se ob-
tienen de los polinomios de Macdonald no simétricos, mediante un proceso de
t-antisimetrizacion o t-simetrizacién con respecto a dos conjuntos disjuntos de
variables. Los polinomios de Macdonald son una generalizaciéon de los poli-
nomios de Jack y es por esto que algunas propiedades de los polinomios de
Jack con simetria prescrita se obtienen como consecuencia de propiedades de los
Macdonald con simetria prescrita. En el dltimo capitulo mostraremos algunos
resultados obtenidos sobre las propiedades de agrupacion bajo la especializacion
de los pardmetros ¢ y t de estos polinomios, las cuales estdn basadas en las

condiciones de ceros de los polinomios de Macdonald no simétricos.






CHAPTER 1

INTRODUCTION

This thesis is mainly concerned with two families of orthogonal polynomials in N
variables: the Jack polynomials with prescribed symmetry and the Macdonald

polynomials with prescribed symmetry.

In this introduction, we define these mathematical objects and explain why
they are so important to mathematical physics. We pay particular attention to
new algebraic properties of the Jack and Macdonald polynomials with prescribed
symmetry, known as clustering properties, that were obtained in the course of

the doctorate.

1.1  QUANTUM SUTHERLAND SYSTEM

We study properties of polynomials in many variables that provide the wave func-
tions for the Sutherland model with exchange term, which is a famous quantum
mechanical many-body problem in mathematical physics. This model describes

the evolution of N particles interacting on the unit circle.

To be more explicit, let ¢; € T = [0,27) be the variable that describes the
position of the jth particle in the system. Let also the operator K;; act on
any multivariate function of ¢1,...,¢xN by interchanging the variables ¢; and
¢;j. Finally, suppose that g is some positive real number. Then, the Sutherland
model, with coupling constant g and exchange terms K;;, is defined via the

following Schrodinger operator acting on L*(TV) [59, 12]:

Za¢2 +5 Z ¢>2 ¢] (Q*Ki,j)- (1.1.1)

275 s1n

1



2 CHAPTER 1. Introduction

When acting on symmetric functions, the operators K; ; can be replaced by
the identity and the standard Sutherland model is recovered [64]. The latter is
intimately related to Random Matrix Theory [33]. For K; ; # 1, the operator H
was used for describing systems of particles with spin (see for instance [42, 60]).

Up to a multiplicative constant, there is a unique eigenfunction Vg of H with

1

minimal eigenvalue Ey [41]. Explicitly, defining o = ¢g=! and z; = €!%/, where

i=+/—1, we have

Uy = H ’$i—9€j|l/a, Ey =

1<i<j<N

N(N? —-1)

52 (1.1.2)

The operator H admits eigenfunctions of the form W(z) = W¥o(z)P(z), where

P(z) is a polynomial eigenfunction of the operator D = \Ilal o (H — Ey) o ¥y,
that is,

N 2
0 2 ;% 0 0
D_Z<18:EZ> +E Z xz—x-<8:vl_8x)

i= 1<i<j<N J J
N

2 Ti%j N -1 0

_ = I Ki)+ —— Y mie— (1.1.3)
@ 1§z‘%‘:§N (@i — ;)* ’ @ ; O

1.2 SYMMETRIC JACK POLYNOMIALS AND THEIR CLUSTERING

Let (1N} denote the ring of symmetric polynomials in N variables with
coefficients in the field of rational functions in the formal parameter «, denoted
by C(a). Any homogeneous element of degree n in .%; ) can be indexed by a
partition of n, which is sequence A = (A1,...,An) such that \y > ... > Ay >0
and A\ + ...+ Ay = n. In general, we only write the non-zero elements of the
partition. Partitions are often sorted with the help of the following partial order,

called the dominance order:

where it is assumed that both partitions have the same degree n. A convenient
way to write a symmetric polynomial consists in giving its linear expansion in

the basis of monomial symmetric functions {my},, where

my = xil e x?‘v’\’ + distinct permutations.
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Since Stanley’s seminal work [62], we know that the symmetric Jack polyno-
mial associated to the partition A, denoted P\ = Py(x;«), is the unique sym-
metric eigenfunction of (1.1.3) that is monic and triangular in the monomial
basis, where the triangularity is taken with respect to the dominance ordering.
In symbols, Py is the unique element of .f;  n} that satisfies the following two

properties:

(Al) Py =m) + Z C)\”u(a)m;u

pn<A

(A2)  DPy\=cex(a)Py,

where e, () is the eigenvalue and will be given later in Lemma 2.1.1.

It is worth stressing that uniqueness of the polynomial satisfying (A1) and
(A2) remains valid if we suppose that « is a positive real or an irrational (see
Section 2.1). However, when « is a negative rational number, the uniqueness
is generally lost, and moreover the polynomials could have poles in this case.
Nevertheless, Feigin, Jimbo, Miwa, and Mukhin [31] showed that for k and r — 1
positive integers with ged(k + 1,7 — 1) = 1, and for a given partition A =
(A1, ..., An) satistying

Ni—Aigp>r  V1<i<N-—k (1.2.1)

the Jack polynomial indexed by the partition A is not only regular at certain
negative fractional values of a but also exhibits remarkable vanishing properties
when some variables coincide. Those partitions were called (k,r, N)-admissible

partitions.

Proposition 4.1 in [31] states that if A is (k,r, N)-admissible and « is equal

to
k+1

r—1’

then Py(z;«) is regular and vanishes when k + 1 variables coincide, that is,

gy = (1.2.2)

Py(z;00)|zn_p=..=2zx = 0. Bernevig and Haldane [13] later used the above van-
ishing property for modelling fractional quantum Hall states with Jack polynomi-
als. They moreover conjectured that the Jack polynomials indexed by (k,r, N)-
admissible partitions satisfy the following clustering property, which gives a more

precise statement about how the polynomials vanish.
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In general, we say that a symmetric polynomial P admits a cluster of size
k and order r (k,r € Z4), if it vanishes to order at least » when k + 1 of the

variables are equal, that is,

k times N—-k
P(xy,...,eN—k,2...,2) = H (xj —2)"Q(z1,...,TN—F, 2) (1.2.3)
j=1

for some polynomial @ in N — k + 1 variables.

Baratta and Forrester [8] proved that the Jack polynomials (along with other
symmetric polynomials such as Hermite and Laguerre) indexed with (1,r, NV)-
admissible partitions satisfy equation (1.2.3) at aq,. The same authors also
proved clustering properties for £ > 1 in the case of partitions associated to
translationally invariant Jack polynomials [37]. Very recently, Berkesch, Griffeth,
and Sam proved the general k£ > 1 clustering property for Jack polynomials [11].
Their method was based on the representation theory of the rational Cherednik
algebra. In fact, reference [11] also contains the proof for more general vanishing
properties in the case of many clusters, some of them having been conjectured

earlier in [13] .

1.3 JACK POLYNOMIALS WITH PRESCRIBED SYMMETRY

The operator D has polynomial eigenfunctions of different symmetry classes.
As we have mentioned above, the symmetric Jack polynomials P)(x;«) are
eigenfunctions of D, as well the non-symmetric Jack polynomials, which were
introduced by Opdam [58]. The non-symmetric Jack polynomials, denoted by

E,(z; ), where n is a composition, can be defined as the common eigenfunctions

N

of the commuting set {£;} j=1, where each &; is a first order differential operator,

often called a Cherednik operator (see eq. (2.3.1)).

However, as first shown by Baker and Forrester [4], one can use the latter
polynomials to construct orthogonal eigenfunctions of D whose symmetry prop-
erty interpolates between the completely symmetric Jack polynomials, Py(x; «),
and the completely antisymmetric ones, sometimes denoted by Sy(z; «). In other
words, there exist eigenfunctions that are symmetric in some given subsets of

{z1,...,2zn} and antisymmetric in other subsets, all subsets of variables being
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mutually disjoint. Such eigenfunctions are called Jack polynomials with pre-
scribed symmetry and were considered in [4, 43, 27, 1, 34]. In this thesis, we
study systematically the Jack polynomials with prescribed symmetry for two

sets of variables.

Before given the precise definition of the Jack polynomials with prescribed
symmetry, let us introduce some more notation. For a given set K = {ki, ..., ka}
C{1,...,N}, let Asymy and Symy respectively denote the antisymmetrization
and the symmetrization operators with respect to the variables xy,, ..., zg,,. If
f(z) is an element of ¥ = C(a)[z1,...,2xn], then Symy f(z) belongs to .Yk,
the submodule of ¥ whose elements are polynomials symmetric in xg,, ..., Tk,,-
Similarly, Asym f(x) belongs to <k, the submodule of polynomials antisym-

metric in Ty, ..., Tk, -

So, for a given positive integer m < N, set I = {1,...,m} and J = {m +
1,...,N}. ' Let A\ = (At,..., \m) and g = (p1,...,4N_m) be partitions.
The monic Jack polynomial with prescribed symmetry of type antisymmetric-

symmetric (AS for short) and indexed by the ordered set
A= ()\b"'a/\m;ﬂla"'vﬂN—m)
is defined as follows:

PS(a;a) = ¢ AsymySym, B, (x; ),

where 7 is a composition equal to (A, ..., A1, UN—m,- - -, 1) while the normal-
ization factor c{> is such that the coefficient of w?l . -':c%mxﬂﬂ R A

P{S(z; ) is equal to one. Other types of Jack polynomials are defined similarly:

Pz ) = e Asym;Asym B, (z; a),
P}y a) = ¢ Sym Asym (3 ),

P (x;0) = ¢y Sym;Sym, B, (z; ) .

The coefficients cp will be given in equations (2.4.12)—(2.4.15).

'The above definition could be obviously generalized by considering I = {i1,...,im} and
J = {j1,...,jN—m} as two general disjoint sets such that I UJ = {1,..., N}. However, this
would make the presentation more intricate. One easily goes from one definition to the other

by permuting the variables.
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The above polynomials belong to & ® .y, &1 Q@ 5, 1 Q Ay, LT Ly
respectively, which are all vector spaces over C(«). These spaces are spanned
by monomials, denoted by my, each of them being indexed by an ordered pair
of partitions A = (A1,..., Am; 1, -+, UN—m). Analogously to the Jack poly-
nomials with prescribed symmetry, the monomials are defined by the action of
Asymy and Symp, where K is either I or J, on the non-symmetric monomial

A1 A b1 HN—m . .
it apr g oy . See Section 2.4 for more details.

The case AS is very special since the polynomials P{5(z; ) can be used to
solve the supersymmetric Sutherland model [22], which is a generalization of the
model (1.1.1), and that moreover involves Grassmann variables. In this context,
the indexing set A = (A1,..., A (41, - - -, LN—m ) is called a superpartition — while
that in [19] it could be called an overpartition — where A = (A1,...,Ay,) is also
strictly decreasing. The correct diagrammatic representation of superpartitions,
first given in [24], proved to be very useful. It allowed, for instance, the derivation
of a very simple evaluation formula for P{S(z; ) [25], which in turn lead to the
first results regarding the clustering properties of these polynomials [26]. We

adopt here a slightly more general point of view for superpartitions.

For us, a superpartition is an ordered set of positive integers
A= (Al,...,Am;Aerl,...,AN).

We say that A has bi-degree (n|m), if it satisfies the following conditions:

N
ALz 2 A 20 Appr > 2Av 20 ) Ai=n
=1

1.4 NON-SYMMETRIC MACDONALD POLYNOMIALS AND MACDONALD

POLYNOMIALS WITH PRESCRIBED SYMMETRY

The non-symmetric Macdonald polynomials were introduced two decades ago by
Opdam [58], Macdonald [54] and Cherednik [17] in the context of the study of
Affine Hecke algebras and orthogonal polynomials.

We denote the monic non-symmetric Macdonald polynomial indexed by the

composition n = (n1,...,7y) € N) as E,(x;q,t), where © = x1,...,xN are
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the variables, and g and ¢ are formal parameters. The non-symmetric Macdon-
ald polynomials are considered the g-generalization of the non-symmetric Jack
polynomials, due to the fact that they can be recovered from the non-symmetric

Macdonald polynomials through the specialization ¢ = t* whit ¢t — 1, i.e.
E,(z;q,t)|g=te — Ey(x;0), when t— 1.

The non-symmetric Macdonald polynomials were extensively studied in sev-
eral articles, including [6, 35, 55, 56]. On the contrary, their clustering properties
were only studied in [8], [28] and [39)].

The Macdonald polynomials with prescribed symmetry were introduced re-
cently by Baker, Dunkl and Forrester [1]. These polynomials were later studied
by Baratta in [7] and [9] (Doctoral Thesis).

By using the Demazure-Lusztig operators, we generalize the symmetriza-
tion and anti-simmetrization operators to new operators, called t-symmetrization
and t-antisymmetrization. Acting with the operators t-symmetrization and t-
antisymme-
trization on disjoint subsets of variables on non-symmetric Macdonald polyno-
mials, we build the Macdonald polynomials with prescribed symmetry. The
construction method of the Macdonald polynomials with prescribed symmetry
is thus similar to that of the Jack polynomials with prescribed symmetry. In
fact, both families of polynomials can be characterized as eigenfunctions of gen-

eralizations of the CSM.

Particular families of Macdonald polynomials with prescribed symmetry are:
the symmetric Macdonald polynomial (they are obtained through a process of t-

symmetrization on non-symmetric Macdonald polynomials), and the t-antisymme-

tric Macdonald polynomial (obtained through a process of t-antisymmetrization

on non-symmetric Macdonald polynomials).

In this thesis, we restrict our study to two sets of variables. For a given
positive integer m < N,set I = {1,...,m}and J = {m+1,...,N}. Let also A =
(M, -y Am) and g = (p1, . . ., uN—m) be partitions. For us, the monic Macdonald

polynomial with prescribed symmetry of type t-antisymmetric - t-symmetric
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(denoted AS) and indexed by the ordered set A = (A1,..., Apj f1y .oy UN—m) 1S
defined as

PS(z1q,t) = cx U UT B34, 1),

where 7 is a composition equal to (A1,..., Ay fi1y -+ s AN—m)5 cﬁs is the factor

of normalization and

1)\ @)
Uf=> T, U= > <t1> T,. (1.4.1)

UESm UESN_m
Other types of Macdonald polynomials are defined similarly:

P (a5q,t) = ) U UT By (230, 8),
P zq,t) = A UFUS By (339, 1),
P3(z;q,t) = ¢y UFUT Ey(a39,1)

with
_ -1 (o) "
Uy = > <t) T, and Ul= Y T, (1.4.2)
0€Sm oESN_—m
The AS case is special, because it can be also obtained from Macdonald super-

polynomials (see [15]).

Baker, Dunkl and Forrester showed that the Macdonald polynomials with
prescribed symmetry can be expressed as a linear combination of non-symmetric
Macdonald polynomials. They gave the explicit formula for each one of the fam-
ilies of polynomials mentioned in the preceding paragraph. They proved their
formulas for the cases AA and SA (see [1, Corollary 1]). Moreover, they proved
a clustering property of the Macdonald polynomials with prescribed of type AS,
which will be recalled in Proposition 5.3.10. Baratta conjetured a generalization
of this property and proved a particular case: that of the Macdonald polyno-
mial with prescribed symmetry whose indexing composition is formed by the

concatenation of the partition (0,...,0) and ¢ a staircase partition (see [7]).

1.5 MAIN RESULTS

Our first aim in this thesis is to give a very simple characterization of Jack poly-

nomials with prescribed symmetry that generalizes Properties (Al) and (A2).
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To this end, we use the differential operators of Sekiguchi type:

N m N
s'w) =[Jw+&) and %) =[[w+&+a) [T w+&), 151
i=1 i=1 i=m+1

where u and v are formal parameters. We often set v = u, since this case leads
to simpler eigenvalues. It is a simple exercise to show that the symmetric Jack
polynomial Py(zx;«) is an eigenfunction of S*(u), with eigenvalue

N

ex(o,u) = H(u—i—a)\z- —i+1). (1.5.2)
i=1

The same polynomial cannot be an eigenfunction of S®(u, v), since the latter
does not preserve .y  ny- In fact, S* and S® together preserve the spaces
1Ry, A1y, 1R, and ST Q.Fy. They moreover serve as generating

series for the conserved quantities of the Sutherland model with exchange terms:

N

m N—m
_ _ _ A
S*(u) = E uN "M, S®(u,v) = g E um N,
d=0 d=0 d’'=0

where all the operators Hy and Z; 4 commute among themselves and preserve

the spaces mentioned above. They are given by

N m N
Ha = Zﬁz‘d, Loa = Zﬁid Z &%
i—1 i=1

i=m+1
Amongst them, the most important are

N

m
H=H=) & I=DLi=) &
1=1

=1

A simple computation shows that the operator D introduced in (1.1.3) is

related to the operators H; and Ho via

N(N-1)(2N -1
7‘[2—!—(]\7—1)7‘[1:&21)—}— ( é( )

For a generic «, the differential operators H and Z allow us to characterize
the Jack polynomial with prescribed symmetry in a unique way. This can be

achieved proving that Jack polynomials with prescribed symmetry are monic



10 CHAPTER 1. Introduction

and triangular with respect to the natural generalization of the monomial basis
(where the triangularity is taken with respect to the dominance ordering of
superpartitions), and also that they are eigenfunctions of the operators H and

7 simultaneously. This result is proved in Theorem 2.4.10 (see 2.4).

Our second aim is to prove clustering properties for Jack polynomials with
prescribed symmetry. This properties hold only for negative fractional values
of a. However, as is shown in Theorem 2.4.10, considering these values of «
is not sufficient to get clustering properties, so we also have to restrict the set
of possible polynomials to those that are indexed by admissible superpartitions
(see definition 1.2.1).

Despite the difficulties mentioned above, we prove the uniqueness and the
regularity of the Jack polynomials with prescribed symmetry under the special-
ization o = oy . These properties are given in Proposition 3.3.4 and Theorem

3.4.4 respectively.

For the non-symmetric Jack polynomials indexed by special compositions
formed by the concatenation of two partitions, we get similar results about the
uniqueness under the specialization o = oy, with & = 1 and r even. These
results dependent on the admisibility condition satisfied by the indexing com-
position (see Theorems 3.5.2 and 3.5.3). The combination of these facts with
Definition 1.3 allow us to prove the general clustering property in case k = 1 for
Jack polynomials with prescribed symmetry. For the AS case, this property was
first conjectured in [26]. More specifically (see Proposition 4.2.6), we prove that

for a (1,7, N)-admissible superpartition and r € Z even,

Py(zsan,) = [] (@i —2;)"Q(x),
ijeK
1<)
where the set K depends on the type of symmetry considered, AS, SS, or SA

respectively. While for the symmetry type AA,

Py(wson,) = [ (@i—2)"'Q).

1<i<j<N

However, we have not been able to prove the following natural generalization

of the above result: All Jack polynomials with prescribed symmetry, indexed
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by (k,r, N)-admissible superpartitions, admit a cluster of size k and order r at
a = ay,r. Nevertheless, following an idea of Baratta and Forrester [8], we know
that if a polynomial is invariant under translation and satisfies basic factorization
and stability properties (see Lemma 2.4.4 and Proposition 2.4.6 ), then the poly-
nomial can admit clusters of size £ > 1. In the last part of Chapter 4.3 we turn
our attention to the translationally invariant Jack polynomials with prescribed
symmetry. Exploiting a result obtained in the context of the supersymmetric
Sutherland model, only valid for the AS case, we find all strict and admissible

superpartitions that lead to invariant polynomials (see Theorem 4.3.13).

Finally, Theorem 4.3.13 allows us to prove the k£ > 1 clustering property for
translationally invariant Jack polynomials of type AS. This clustering property

say that if P/fs is invariant under translation, then

k times N—k
—
PJ\AS("L'l,...,iEN_k,Z...,Z;aka) = H (:Uj 7’2)74@(5617"'71:]\[—1{;52)
j=m+1

for some polynomial @ (see Proposition 4.4.1).

Our third aim is to prove some algebraic properties of the Macdonald poly-
nomials with prescribed symmetry, such as stability, regularity and clustering
properties. To this end, we prove the result given in [1] according to which the
Macdonald polynomials with prescribed symmetry can be expressed as a linear
combination of non-symmetric Macdonald polynomials (see Proposition 5.2.3).
These formulas allow us easily prove the regularity of each family of Macdonald
polynomials with prescribed symmetry at the specialization ¢"~1t¢+1 = 1 (see

Proposition 5.2.5).

Finally, we show some clustering properties for Macdonald polynomials with
prescribed symmetry. We show these properties for Macdonald polynomials
indexed by admissible superpartitions and specialized at ¢"~'t**! = 1 with k and
r positive integers and ged(k + 1,7 — 1) = 1. Indeed, as explained in Subsection
5.3.3 and remark 5.3.13, it is not sufficient to consider only this specialization
of the parameters, so we have to require an admisibility condition. In Theorems
5.3.6 and 5.3.9, we show that if £ = 1 and if the superpartitions are weakly
(k,r, N)-admissible for symmetry of type AS and AA or moderately (k,r, N)-
admissible for symmetry of type SS and SA, then the corresponding Macdonald
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admit clusters of order r.

However, for the case k£ > 1, we show that if we restrict the polynomials
to those indexed by moderately (k,r, N)-admissible superpartitions, then these
polynomials admit a cluster of size k and order r—1 at ¢"1t**t1 =1 (see Proposi-
tion 5.3.14). As a direct consequence, we establish a ”"weak clustering property”
for the Jack case: if A is any moderately (k,r, N)-admissible superpartition,
then the Jack polynomial with prescribed symmetry Pa(x; oy ) vanishes to or-
der r —1 when k + 1 variables among x,11, . ..,ZN coincide. We believe that for
the Macdonald polynomials with prescribed symmetry (considering moderately
admissible superpartitions), the vanishing order of the polynomials should be
improved to reach r rather than » — 1. We intend to prove this claim by using
arguments from Representation Theory (in a similar way to the non-symmetric
Jack polynomials, see [11]) or getting a characterization of the translationally

invariant Macdonald polynomials with prescribed symmetry.

Other subjects of study closely related to the clustering properties studied
here are the multiwheel conditions for non-symmetric Macdonald polynomials.
We expect that these conditions can be generalized to the case of polynomials
with prescribed symmetry, through the expansion of the Macdonald polynomials

with prescribed symmetry in terms of non-symmetric Macdonald polynomials.






CHAPTER 2

PRELIMINARIES

In this chapter we give the definitions of compositions, partitions and super-
partitions and some quantities associated to their diagrams. Also, we provide
basic properties related to the order of partitions and superpartitions, which are

required to characterize the Jack polynomials with prescribed symmetry.

The polynomials with prescribed symmetry studied in this chapter are called
Jack polynomials with prescribed symmetry and were introduced by Baker,
Dunkl and Forrester in [1]. However, the notation here used to define these
polynomials, like the concept of superpartition and the order for superparti-
tions, were introduced in [22]. The algebraic properties of the Jack polynomials
with prescribed symmetry (stability and regularity) are based on the properties
of the non-symmetric Jack polynomials, which were given in [47]. Most of the
results contained in this chapter have been published for the first time in [20,

Section 2].

2.1 COMPOSITIONS, PARTITIONS, AND SUPERPARTITIONS

A composition is an ordered tuple n = (71, ...,ny) of non-negative integers. We

define the degree of 1 as

N
n=|n|:= Zm
i=1

and we say also that n is a composition of the integer n. The length of a
composition is defined as the maximum ¢ such that 7; > 0, and it is denoted
by ¢(n). To each composition is associated a diagram that contains ¢(n) rows.

The highest row, which is considered as the first one, contains 7; boxes, the

14
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second row, which is just below the first one, contains 72 boxes, and so on, all
boxes being left justified. The box located in the ith row and jth column of this
diagram is called a cell and is denoted by (i,7). Given a cell s = (i,7) in the

diagram associated to 7, we let

an(s)=mi—j  ly(s)=#{k <ilj <mp+1<n}+#{k>ilj <m <mn}
an(s) =7 —1  1(s) = #{k <ilm > ni} + #{k > ilm > mi} (2.1.1)

For example, for the composition n = (6,1,4,4,2,3) and the box s = (4,2) in

the diagram

[ ] .|.|.|.|.‘

*
| x| ®»w| e

%]

we have a,(s) = 2, a;(s) = 1, I;(s) =3 y [,(s) = 2.

In particular, a partition A = (A1,...,An) of n is a composition of n whose
elements are decreasing: A\; > -+ > Ay > 0. The number of non-zero elements
in a partition A is called the length and it is usually denoted by ¢ or ¢(\). To
each partition is associated a diagram that contains ¢ rows. The diagrams of
partitions are defined as the same diagrams for compositions. Given a partition
A, its conjugate )\ is obtained by reflecting \’s diagram in the main diagonal.

For instance, for A = (5, 3,3, 1) the diagrams of A and )" are given by

n |

Given a cell s = (4,7) in the diagram associated to A, we set
ax(s) =Xi—7J a\(s)=j—1 IN(s) =X\j—i Ih(s)=1i—1.

For example, for the partition A = (8,6,4,3,3,3,1) and the box s = (2,3) we
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have the diagram

Ih(s) =1

[ | [ ® | %

The quantities ay(s), @) (s), 1x(s), 14 (s) are respectively called the arm-length,

arm-colength, leg-length and leg-colength of s in A’s diagram.

For two partitions we write p C X if u; < A; for all i (i.e. the diagram of
is contained in the diagram of A). If © C X we have a skew diagram \/u which
consists of those boxes of A which are not in u. A skew diagram is said to be a
vertical m-strip if A\/u consists of m boxes, all of which are in distinct rows. For
example, given A = (5,3,3,1) and p = (4,3,2,1) then \/p is a vertical 2-strip.
Diagrammatically we have

[ ] | []

A= H= = Ap= = D

The first ordering we define on partitions is the lexicographic ordering <. The
lexicographic ordering compares partitions of the same degree and is defined by
@ << A if the first non-vanishing difference \; — p; is positive. The lexicographic
ordering is a total ordering, meaning that all partitions of a fixed degree are

comparable. For example, the partitions of degree 4 are ordered as

(47 0?070)7 (37 ]‘107 0)7 (27 27 07 0)7 (2? 17 170)7 (]‘?]‘7]‘7]‘)'

The second ordering we define on partitions is the dominance order >. The

dominance ordering compares partitions of the same degree and is defined by

k k
A>p = Y N> o, VE
i=1 =1
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The dominance order is just a partial order, in fact the first incomparable
partitions have degree 6: (4,1,1) and (3, 3,0). However, generalizing this order,
we can compare compositions of the same degree. First, we note that to each
composition 7 corresponds a unique partition 7™, which is obtained from n by

reordering the elements of n in decreasing order:

nt=Mmf,....n%) = nf:na(i) for some o € Sy such that n” > ... > ny.

The above comments allows to define the dominance order between compo-

sitions of the same degree, as follows:
k k
n-p o= nt>pt oo gt =ptand Y ni =D VE,
i=1 i=1

where it is also assumed that n # u.

The following result will be used later in the proof of some propositions and
lemmas and it was first stated without proof in Stanley’s article [62] for a a

formal parameter.

Lemma 2.1.1. For any partition X, let

¢
BA) =D _(i— 1) and ex(e) = ab(N) — b(A).

i=1

Suppose that o is generic. Then,
A>p = ey(a) #eula).
Proof. Let us first define the lowering operators as follows:

=1L+ 1L ifi<jand A\ — Ay > 1
J J

(G D V| otherwise.
(2.1.2)

Note that in general, if A is a partition, then L; ;) is a composition. However,

from [53, Result (1.16)], one easily deduces that

W< A — :U’:Lik,jko"'oLil,jj)\ (2.1.3)



18 CHAPTER 2. Preliminaries

for some sequence ((i1,j1), - - -, (i, jx)) such that L; , j ,o---oL; j; A is a partition

for all 1 < k' < k. Now, let us suppose that A = L; ;A is a partition for some

i < j. Then, b(A\) — b(\) = j —4 > 0. This last result together with equation
(2.1.3) prove the following:

p<A = blu)>bN.

Moreover, it is well known [53, Result (1.11)], A\ > p if and only if 4/ > X.

Consequently,
(@) — £u(@) = a(b(N) = b)) + b{u) — bA) = ap + 4

where p and ¢ are positive integers. Therefore, e)(a) — g,(o) = 0 only if « is a

negative rational, and the lemma follows. O

Definition 2.1.2 (Superpartitions and diagrams). The ordered set
A= (A1, ., A A1, - AN) of integers is a superpartition A of bi-degree

(n|m) if it satisfies the following conditions:
N
Az 2020 Appr>-->Ay>0 ) Aj=n
i=1

If (A1, ..., An) is moreover strictly decreasing, then A is called a strict super-

partition. Equivalently, we can write the superpartition A as a pair of partitions
(A®, A*) such that

A® = (A1+1, v AL A, - ,AN)+, A= (Al, v Ny A1, - - 7AN)—i_,

where + indicates the operation that reorder the elements of a composition in
decreasing order. The diagram of A is obtained from that of A® by replacing the

bozes belonging to the skew diagram A®/A* by circles.

For instance, the ordered set A = (4,3,0;4) is a strict superpartitions of bi-
degree (11|3). It can be written as a pair (A®, A*), where A® = (4+1,3+ 1,0+
1,4)" = (5,4,4,1) and A* = (4,4,3,0). The diagram associated to A is obtained
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as follows:

A® = A*

[] O

= A®/A* = = A=
[] O
[] O

The dominance order for superpartitions is defined as follows

A>Q «— A*>Q° or AN*=Q and A® > Q°.

For example, we consider Q = (5,3,1;2) and I" = (3, 1,0; 5, 2) superpartitions
of the same bi-degree. The associated diagrams are respectively

1O -

O -
One easily verifies that 2 > I", while A as above is comparable with neither 2

nor I'.

As we will see in the present and the following chapters we will use properties
of the non-symmetric Jack polynomials to prove properties and conjectures about
the Jack polynomials with prescribed symmetry. To this end we introduce below

a way to compare compositions and superpartitions.

Let v = (71,...,7n) be a composition of n. Fix a positive integer m < N.
We define now the map ¢, which associate to any composition v a superpartition

T as follows

SDm(W) = (F*7F®)? F* = (717 cee 7’7N)+7 F® - (’Yl_‘_l; ce. 7’7m+17'7m+1; cee 7’7N)+'

In other words, ¢,, maps the composition 7 to the superpartition I' = (I'*,T'®)

of bi-degree (n|m), which as mentioned before, it is given by

I'= ((VL .. a’Ym)+; (’Ym-‘rlv ... 7’YN)+) .
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Lemma 2.1.3. Let A = ¢, (N\) and T = @, (), where X and v are compositions
of the same degree. If X = =y, then A > T.

Proof. There are two possible cases.
(1) Suppose that At > 4+, Then, obviously, A* > I'*.

(2) Suppose that (i) At =~ and (i) SF, A > % 4, VE. Equation (i)
implies that A* = I'*. Equation (ii) implies that ~ is a permutation of A

that can be written as
Y = Sig OO S A
where each s; ; is a transposition such that
‘,...,Ai,...) ifi<jand)\i>)\j

ire--3Aj,...) otherwise.

(2.1.4)

Now, if 1 <i<j<morm+1<i<j<N,then @n(s;jA) = A.
This means that s; ; induces, via the map ¢,,, a nontrivial action on the
superpartition A only if i € I ={1,...,m}and j€ J={m+1,...,N}.
To be more explicit, let i and j' be such that ¢,, maps A; to Ay and \;
to Ay, respectively. Then,

Pm(8ijA) = S jrom(A) = 8y A,
where 55 A is equal to
((Al, e ,Ajl, e ,Am)+; (Am+1, ceey AZ'/, ey AN)+)

whenever if ¢/ € I,/ € Jand Ay > Aj, while §y A = A otherwise.
Therefore, A* = I'* and

I'=om(7) = om(Sij 00 8i,jA) = Sipgp 0 © Si/pjiA’

which implies that I'® < A®, as required.
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Lemma 2.1.4. For any superpartition A, let
€A = Z (aaﬂ\@(s) — l;@(s)).
SEA® JA*

Suppose that o is generic. Then,
A =QF and A¥ >0 = erla)#eq(a).

Proof. Let € be a superpartition be such that Q* = A* and Q% = L; jA® for
some i < j, where L; ; is the lowering operator defined in equation (2.1.2). Note
that this assumption makes sense only if A7 > A7. Then, the diagram of O®

differs from that of A® only in the rows ¢ and 7, so that

S dhels) - X dhe(s) = AT - A5 >0,

SEA® /A* SEQ® /O

and

o He(s)— Y lhe(s)=i—j<0.

SEA® /A* SEQ® /O

Finally, recalling equation (2.1.3), we find that
eala) —eq(a) =ap+gq, where p,q€Z,.

Clearly, if « is not a negative rational, then ej () — eq(a) # 0, as required. [J

2.2  SYMMETRIC POLYNOMIALS

In this section we consider the polynomial ring Q [z1,...,zN] over Q in the
variables x1,...,zy with the natural action of the symmetric group Sy over

polynomials, given by
Ki’jf(l‘l,...,.’L’i,...,wj,...,l‘N) :f(l'l,...,xj,...,.%'i,...,l']v) (221)

for f(x1,...,24...,25,...,2N) € Q[z1,...,2n] and K; ; € Sy the permutation
that exchanges ¢ and j. In particular we will use the shorthand notation for

transpositions: K; = Kj; ;1.

A polynomial is called symmetric if it is invariant under the action of any

permutation, i.e.

Kif(x)= f(z) foral i=1,...,N—1.
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It is well known that any symmetric polynomial can be expressed as a linear
combination of the elementary symmetric functions, which are denoted by e) :=

ex, ---exy for A= (A1,...,A\n) a partition, and where

er(x) = Z Tiy oo T

1<i1<...<ip<N

Another important basis consists in the monomial symmetric functions, de-

noted by my, where for a given partition A = (A1,...,An),
ma(x) =23t - :C}\VN + distinct permutations.

Other classes of symmetric polynomials associated to the partition A =

(A1,...,An) are the complete symmetric function
h)\(.%') = h)q e h)\N s

where

hr(gp) = Z Tiy oo Ty s

1<i1<..<in <N
as well as the power sum

p)\(x) = p)\l .. ‘p)\N )

where

Example 2.2.1. For the partition A\ = (3,1,0) with the number of variables N =

3 fixed, we show below the corresponding element in each of the basis mentioned

above:
e(3,1,0)(T1, 2, 3) = e3(z1, 72, 73) - €1(w1, ¥2, T3) - €o(T1, T2, T3)
= 12223 - (X1 + 22+ 23) - 1
_ .2 2 2
= X1T2x3 + T1T503 + T1X2x3
while

3 3 3 3 3 3
m3.1,0)(T1, T2, ¥3) = T1T2 + 1175 + ¥1T3 + 1175 + 1573 + T2
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and

hs1,0) (21, T2, 73) = h3(21, ¥2,23) - hi (1, T2, 23) - ho(w1, T2, T3)
= (2} + a3 +as+ izt a1 a5 +ates+ o 23+ 23w+ roni+2120w3) (1 + 22 +a3) 1

2 2 2 2 2 2
= (2} + a3 +ai+atza+ar a3+ atus+ o123 +ad ey +weai+miwoxs) (21 + 22+ 23)
and

P(3,1,0) (71, T2, 73) = p3(71, T2, T3) - P1(T1, T2, T3) - po(T1, T2, 73)
=@+ a3 +a3) (w1 +a2+m33)- 1

= x‘ll + :E‘rfxg + xi’xg + xlxg + x% + x%xg + aclxg + :L‘gxg + x%.

One special type of symmetric polynomials are the symmetric Jack polyno-
mials. They can be defined in various ways: by using combinatorial formulas
in terms of certain generalized tableaux (see [47]), by symmetrizing the non-
symmetric Jack polynomials or as an orthogonal family of functions which is
compatible with the canonical filtration of the ring of symmetric functions. How-
ever, as we have mentioned in the introduction, the most natural way for us is
to characterize them as triangular eigenfunctions of the differential operator D
given by (1.1.3). They are uniquely determined by the properties of being monic
and triangular in the monomial basis, where the triangularity is taken with re-
spect to the dominance ordering. Thus P, is the unique element of %y

that satisfies the following two properties:

(A1) Py, =m) + Z explo)my,
n<A

(AQ) DP)\ = 6)\(04)P)\,

where £, () is the eigenvalue given in Lemma 2.1.1.

For instance,

and if N = 3, then

Puoy(x1, 22, 73;0) = 2+ xl+ x§ + (129 + T1203 + T223)

a+1
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and
6

2a+ D(a+1) &Y

3
Py =me) +ogmen *

and if N = 3, then

3, .3, 3
Py(z1, 22, 135 00) = 27 + 75 + 205 + T1T2T3

2a+1)(a+1)
3

+ m(a}%l'g + z123 + 2223 + 2123 + 2irs + 2023).

Remark 2.2.2. More examples of symmetric Jack polynomials will be given in

the first part of the table in Appendiz B.

2.3 NON-SYMMETRIC JACK POLYNOMIALS

We introduce the counterpart of the symmetric Jack polynomials, the non-
symmetric Jack polynomials. After their definition, we recall their stability
property, which will be used in the next section to prove the stability property
of the Jack polynomials with prescribed symmetry. At the end of this section
we prove that the non-symmetric Jack polynomials are eigenfunctions of the

Sekiguchi operators.

As we have mentioned earlier, there are many ways to define the non-symmetric
Jack polynomials [58] (see also [47]). However, the most natural way for us
is to characterize them as triangular eigenfunctions of commuting difference-
differential operators, first introduced in physics in [12], and later generalized to

general root systems by Cherednik. We define these operators as follows:

& = owOe, + Y (1-Kij)+ >

1<j i>]

x T

(1-K;5)—(—1), (23.1)

J
Tj— T Lj — T

where the operators K; ; were given in (2.2.1).

Let 1 be a composition and let o be formal parameter or a non-zero com-
plex number not equal to a negative rational. Then, the non-symmetric Jack

polynomial E,(z;«) is the unique polynomial satisfying

(A1) Ey(z;0) = 2" + Z cppx’ cpp € Cla),
v<n

(A2)  &EB,=T7,B, Vi=1,... N,
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where the eigenvalues are given by
n; = anj — #{i < jlni > n;} — #{i > jlni > 05} (2.3.2)

One important property of the non-symmetric Jack polynomials is their sta-
bility with respect to the number of variables (see [47, Corollary 3.3]). To be
more precise, let n = (n1,...,nn) and n— = (n1,...,Mn—1) be compositions.
Then,

0 if ny > 0,
Ey(x1,...,2N)]| = (2.3.3)

En,(l'h . ,(L'N_l) if nN = 0.

Remark 2.3.1. The recursion formula for non-symmetric Jack polynomials will

be given in Appendix A.

We now prove a closely related property that will help us to establish the
stability of the Jack polynomials with prescribed symmetry.

Lemma 2.3.2. Let A = (A1,...,\p) and g = (m+1,-. ., uN—1) be partitions.
Let also

77:(A’mu"'7)‘1707/*LN—17"'7IU'7TZ+1) and 77—:(A’mu"'7A17/’LN—17"'7IU'7TL+1)~

Finally assume that pmy1 > 0. Then,

E,(x1,. . Tmy TN, T, - - - ,xN_l)}mNZO =FE, (z1,...,Zm, Tmt1s- -, TN-1)-
Proof. We first remark that
En(xlv"'7$maxN7xm+1>-"7xN—l)
= KN,1 .. 'Km+1E77(551a e s Ty Tm4-1y - - - ,l’N,l,l'N).

Now, the action of the symmetric group on the non-symmetric Jack polynomials
is (see [4, Eq. (2.21)])

51{71 Ey+(1- J%W)EKi(n)v i > Mit1

KiEr] = E

) i = Ni+1 (2.3.4)

ﬁEn + Ex(n) ni < Mit1
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where 6;,, = 7; — 7;,1. In our case, given that we are using a composition in

increasing order, we can use successively the third line of (2.3.4) and we get

En(xla v s Ty TNy Tm4-1, - - - )'TNfl) = EKN,lA..Kerl(n)(xlv v ,I'N)

+ Z C,\,,yEy(xl, c TN
¥
In the last equation, the sum is taken over the compositions v of the form

Y= (Ama s ,)\1,&)(0,/1]\[_1, s 7:um+1))7

where w is a permutation of the composition formed by a strict subsequence
of the transpositions Ky_1,..., K41 and the coefficients c) , are obtained as
products of 1/§; ;. The important point here is that for any such v, we have

vn # 0. Moreover,

KN—l .- Km+1(77) = ()\m7 .. '7)\17MN—1a s 7Mm+170)'

Then, applying the stability property (2.3.3), we find E,(z1,... ’xN)‘:ero =0
and  Egy Ky (@1, ,a:N)‘xN:O = E, (x1,...,2xn-1), which completes
the proof. O
Lemma 2.3.3. Let v = (71,...,7n) be a composition and let us fix a positive

integer m with m < N. Then, E,(x;a) is an eigenfunction of the operators
S*(u) and S®(u,v) defined in (1.5.1). Moreover, let T' = p,,(7) be the associated

superpartition to . Then,
S*(u) By = er«(a,u) By S (u,u) Ey = ere (o, u) E,,
where the eigenvalue €y (o, u) is defined in (1.5.2).

Proof. The fact that the non-symmetric Jack polynomials are eigenfunctions of

the Sekiguchi operators immediately follows from §; F, = 7; E,. Explicitly,

N m N
S*(w) By =[[w+%) By, S%(u0) By =[Jw+v+a) [[ (v+%)E,.
i=1 =1 i=m+1

In order to express the eigenvalues in terms of partitions rather than compo-

sitions, we need to consider permutations on words with IV symbols. Amongst all
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the permutations w such that v = w(y1), there exists a unique one, denoted by

w,, of minimal length. Equivalently, w., is the smallest element of Sy satisfying
Vewon (i) = ’yj for eachi=1,... N. (2.3.5)

Now, let = = (0,1,...,N —1). As is well known, the eigenvalue #; is equal to

the ith element of the composition (ay — w~0~), which means that

or equivalently
Y@ = @i — (i —1).

In our case, v+ = I'*, so that

N N
[TCw+3) =Juw+er; —i+1),
=1 =1

which is the first expected eigenvalue. For the second Sekiguchi operator, we
note that the shifted composition (y1 +1,...,%m + 1, Ym+1,---,7n) is equal to
w~(I'®). Consequently,

m N N
[Te+3+a) JI w+3) =]J(u+aly —i+1),
i=1 i=m+1 i=1
and the lemma follows. O

2.4 JACK POLYNOMIALS WITH PRESCRIBED SYMMETRY

All along this section we introduce different types of polynomials with prescribed
symmetry (monomial polynomials and Jack polynomials). Also for generic a we
prove the regularity and triangularity properties independent the type of sym-
metry of the Jack polynomials. Moreover, we show the stability property for
each family of Jack polynomials with prescribed symmetry and we give a char-
acterization of the Jack polynomials with prescribed symmetry as eigenfunctions

of the Sekiguchi operators (Theorem 2.4.10).

For any subset K of {1,..., N}, let Sk denote the subgroup of the permuta-

tion group of {1,..., N} that leaves the complement of K invariant. The anti-
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symmetrization and symmetrization operators for K are defined as follows:

Asymp f(x) = Y (=17 f(@o(1),- - To(n)) and (2.4.1)
oESK

Syme(l') = Z f(:EO'(l)a s 7:BO'(N))' (242)
o€SK

for any pair (7, j) of elements of K, we have

K; jAsympg f(z) = —Asympg f(x) and K Sympg f(z) = Sympg f(z).
Notice that in the following paragraphs, the set K will be either I = {1,...,m}
or J={m+1,...,N}.

The vector space @71 ® 7|, consists of all polynomials of total degree n that
are antisymmetric with respect to the set of variables {z1,..., 2z}, and sym-
metric with respect to {z,,+1,...,2x}. This space is spanned by all polynomials
of the form Asym;Sym ;z", where n runs over all compositions of n. However,
by considering the symmetry of the polynomials, we see that o/ ® .|, is also

spanned by the following set of linearly independent polynomials:
{mAS | A is a strict superpartition of bi-degree (n|m)},
where the monomial mﬁs is defined as
mﬁs(az) =ax(z1,. .., Tm)Mu(Tmg1, -, TN),

)‘:(Ala"'7Am)a M:(Aerl’"'?AN)'

We recall that in the last equation, a) and m, denote the antisymmetric and

symmetric monomial functions respectively.
Similarly, the following sets provide bases for the vector spaces o7 ® ;|
S1Q Aln s L1 Fsln,
{mAY | A is a strict superpartition of bi-degree (n|m) such that A, 11 > --- > Ay},
(2.4.3)

{m3| A is a superpartition of bi-degree (n|m) such that Ay, > --- > Ay},
(2.4.4)

{m’>| A is a superpartition of bi-degree (n|m)}, (2.4.5)
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where

mAM () = ax(w1, -, )@ (Tmtt, - - TN, (2.4.6)

mi*(x) = ma(T1, - Tn) @ (Ting 1, - - - TN, (2.4.7)

my () = mA(T1, - T) (Tt 1 - -+ TN)- (2.4.8)

(2.4.9)

Example 2.4.1. Monomials polynomzials with prescribed symmetry.

A ax 1 my, mﬁs

(1,0) x1—z2 (1,1) x324 (x1 — @) w3y

(1,0) a1 —x2 (2,1) 23wg+a32] (21 — 22)(23m4 + 2327)
(2,0) 2f—23 (2,0) 23+a] (2f — 3)(af + )

A ax 1 ay, mﬁA

(1,0) x1—z9 (1,1) O 0

(1,0) @1 —x2 (2,1) 23wq— w322 (1 — 22)(232y — 2322)
(2,0) 2f—23 (2,0) 232} (2f — 3) (2 — «3)

A my 1 a, m/S\A

(1,0) x14+z2 (1,1) 0 0

(1,0) @1 +x2 (2,1) 23wq— w302 (21 + 22) (2304 — 2322)
(2,0) 2f+a23 (2,0) 23—a2] (xf + 3)(f — 23)

A my 1 my, m%

(1,0) x14+z2 (1,1) =x324 (x1 + @) w324

(1,0) z1+z2 (2,1) 23wq+z32] (21 + 22) (2324 + 2327)
(2,0) 2f+23 (2,0) 23+a] (xf + 23)(f + )

We recall that the Jack polynomials with prescribed symmetry AS, AA, SA,

SS have been introduced in Definition 1.3. They are indexed by a superpartition

A= (Al,...,Am;Am+1,..

Pp(z;00) = cA Or g Ey,

.,An) and are defined as follows:

(2.4.10)
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where Oy, j stands for the appropriate composition of antisymmetrization and/or

symmetrization operators, and

’I’]:(Am,...,Al,AN,...,Am+1). (2411)

Moreover, the coefficient cp is chosen such that the polynomial P, is monic,
i.e., the coefficient of mp in Py is exactly one. Since, our definition is such that
only the non-symmetric monomial O; jz" contributes to the coefficient of my ,

it is an easy exercise to extract the normalization coeflicient:

(_1)m(m—1)/2

oS = T (2.4.12)

AN (Lq)mOm1)/2(_ 1y (N=m)(N=m—1)/2 (2.4.13)

S (—1)(Nm;(Nm1)/ 27 (2.4.14)
A

&5 fklh (2.4.15)

where A = (A1,...,Ap), it = (Amg1,-. -, AN), fr =[[;7a(9)! and ny(4) is the
multiplicity of 7 in .

As an example, the following polynomial
1 2 6
AS _ . AS AS AS AS
Plizoo = Moo T 37 Mo210 T 5370010 1 59y (@ 1) 0L
shows us the triangular structure of the Jack polynomials with prescribed sym-
metry with respect to prescribed monomials, and the existence of singularities
for some negative values of a. These properties, that immediately follow from
their Definition (2.4.10), will be proved in general for Jack polynomials with
prescribed symmetry independently of the type of symmetry.

Remark 2.4.2. More examples of Jack polynomials will be given in Appendiz
B.
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Lemma 2.4.3 (Regularity for generic a). Pp(x; ) is singular only if « is zero

or a negative rational.

Proof. All the dependence upon « comes from the non-symmetric Jack polyno-
mials, so it is sufficient to consider the possible singularities of the latter. Let us
now recall a fundamental result of Knop and Sahi [47]: There is a v,(a) € N[a]
such that all the coefficients in v,(a)E,(z; o) belong to N[a]. Thus, the only
singularities of E,(z;«) are poles, which can occurs only at a = 0 or for some
aeQ_. O

Lemma 2.4.4 (Simple product). For any superpartition

A= (A17--~7Am;Am+17"'7AN)7

let
Ar=AM1+1,. A+ LA+ 1, ., A+ 1).

Then,

x1--xn Pr(z;0) = Py (25 0).

Proof. By using the known property of non-symmetric Jack polynomials,
z1 - N Ep(ra) = B4, ne+1)(T; @), the definition given in 2.4.10 and the

fact that x1---xx commutes with any Oy, ;, we conclude that

CA
x1--xN Pa(z;a) = cp (’)LJE(ermeNH)(x; a) = szu (25 0).
+

Finally, one easily verifies from equations (2.4.12)-(2.4.15), that cy =cp,. [

Proposition 2.4.5 (Triangularity). Py = ma + ) pp carmr.

Proof. By definition, Py = cpOr s E;), where 7 is given by (2.4.11) and E, = 2"+
an cpp”. We already know that ¢y guarantees the monocity, i.e., cAOy jz" =
mp. It remains to check that if v < 7, then Oy jz¥ is proportional to mg for
some 2 < A. Now, Oy jz¥ is proportional to mgq, where = ¢,,(r). Moreover,
we know from Lemma 2.1.3 that v < 7, then ¢, () < ¢n(A). This completes
the proof. O
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Proposition 2.4.6 (Stability for types AS and SS). Let

A=A, ., A Aty - -+, AN) be a superparttion and let

A=Ay, .., A Ay, -, An—1). Then, the Jack polynomial with prescribed
symmetry AS or S satisfies

0, Axy >0,

PA(:L'l, c.o.y TN, a)|mN:0 =

Py (z1,...,2y-1;0), An=0.
Proof. The cases AS and SS being similar, we only give the proof for AS.
Let A= (A1,...,An), p=ANmt1,-- -, AN), A7 = (A, ..., A1),
wo = (An,...,Apt1). Let alson = (A", pu7) and n— = (A", u”), where p~ =
(AN-1,...,Amt1). By definition,
(_1)m(m—1)/2
Fu

The symmetrization operator can be decomposed as

PS5 () = Asym;Sym ;E,(x; a).

Sme = Sme7 (1+Km+1,N+Km+2,N+' . .+KN_17N), J_ = {m—i—l, N ,N—l}.

It is more convenient to rewrite the transpositions on the LHS in terms of the

elementary transpositions:
Kin=KKit1... KN oKN 1KN_2... Ki11K;

By making use of the stability property (2.3.3) and the action of the symmetric

group on the non-symmetric Jack polynomials given in (2.3.4), we then find that

0, n; > 0,
Ky 1Ky_a... Ki+1KiEn’xN:0 =

E, (z1,...,2Ny-1), 1;=0.

Thus, Sym ;E,(x1, ... ,a:N)’ =0 when Ay > 0, while

xn=0

SmeEn($1, s 7$N)}IL'N:0

:SymL( Z K,-Ki_H...KN_Q)Enf(xl,...,xN_l)

ic{m+1,....N—1}
w; =0

= n#(o) Sme,En7 (xla e 7xN—1)

when Ay = 0, and the proposition follows. ]



2.4. JACK POLYNOMIALS WITH PRESCRIBED SYMMETRY 33

Proposition 2.4.7 (Stability for types SA and SS). Let

A= (A1, ., A Mg,y -, AN) be a superpartition and let

A =(A1, ..., Ap—1; Mgty - -, AN). Then, the Jack polynomial with prescribed
symmetry SA or S satisfies

0, Ay >0,

Pr(z1, . oy Ty o - TN a)‘zm:O =
Py (z1,.. oy Tm—1, Tmt1,s - TN @), Ay = 0.

Proof. The cases SA and SS are almost identical, so we only prove the first. Be-

low, we essentially follow the method used for proving Proposition 2.4.6, except

that we use Lemma 2.3.2 rather than equation (2.3.3).

Let A= (A1,...,An), p=RNmt1,---,AN), A7 = (A, ..., A1),

p= = (An,...,Amt1). Let alson = (A ,p7) and n— = (A7, u”), where

u_ = (AN—1,...,Apmy1). By definition,

(—1)N=m)(N=m=1)/2
I

Notice that Sym; and Asym; commute. The symmetrization operator can be

PYA(z) = SymjAsym ; E,(z; o)

decomposed as
Sym; =Sym; (1+Kipm+Kom+ ...+ Km—1,m),
where I_ = {1,...,m — 1} and
Kim=KKi1.. KpoKp 1Kpo. . KK,

Now, recalling (2.3.4) and the second stability property for the non-symmetric

Jack polynomials, given in Lemma 2.3.2, we conclude that

0, n; > 0,
Ky 1Kp—o... KiJrlKiEn‘zm:o =

Enf(a;l, e ,I'N_l), 772» = 0

Thus, Sym;E,(x1,. .., J,‘N)‘ = 0 when A,, > 0, while

Ty =0
Sym;Ey (1, ... ,xN)‘meO
= Sym; ( KKiy1.. .Km_2>E,7_ (T1y+ sy Ty Tt 1y, TN)
i€{1,...,m—1}
)\;:
=nx(0)Sym; E;,_ (Z1,...,Zm—1,Tm+1,---,TN),

when A,,, = 0, and the proposition follows. O
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The next proposition relates Jack polynomials with prescribed symmetry of
different bi-degrees. It uses two basic operations on superpartitions. The first
one is the removal of a column:

C(Al,...,Am;Am+1,...,AN) = (Al - 17---;Am - 1§Am+1 — 1,...,AN - 1)
if Aj>0 V1I<i<N.
The second one is the removal of a circle:
CAL, .., A A1, - AN) = (AL, A1 A1, -, Ay)  if A, = 0.
The operators C and C are illustrated in Figure 2.1

Figure 2.1: Operators C and C

[ 1O [ 1O [ 1O
C O = O and

L O O O

@
\
Q]

Proposition 2.4.8 (Removal of a column or a circle). Let
A= (A1, ..., A Apsa, -, AN)
be a superpartition and let
Pa(21, ..oy Ty -y TN Q)

be the associated Jack polynomial with prescribed symmetry AA, AS, SA,or SS.

If A; >0 for all1 <i < N, then

Pa(x1,. sy .oy xns ) = (21 - an) Pea (X1, ooy Ty oo, TN Q).
If Ay, =0, then
Pr(z1, ..oy Ty oy TN @) . = emPsp(T1, ., T 1, T 1, -+, TN ),
Tm=

where €, = (—1)™"=D/2 for types AA and AS, while €,, = 1 for types SA and
SS.
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Proof. The removal of a column follows immediately from Lemma 2.4.4. For
types SA and SS, the removal of a circle follows from the stability property given
in Proposition 2.4.7.

It remains to prove the removal of a circle for types AA and AS. Only the
AS case is detailed below. Let A = (A1,...,Ap), p = (Apy1, -, AN), A7 =
Ay ooy A1)y = = (AN, ooy Appy1). Let alson = (A7, p7) and n- = (A2, ™),
where A\~ = (Ay,—1,...,A1). By definition,

(—1)m)(m=1)/2
Ju

As mentioned before Asym; and Sym; commute. The symmetrization operator

P (x) = Asym;Sym ;E, (z; o)

can be decomposed as
Asym; = Asym; (1 — Ky — Ko — ... — Kjp—1.m),
where I_ = {1,...,m — 1} and
Kim=KKit1...Kp oKy 1Kp—o... KinK;.

Now, recalling equation (2.3.4) and the second stability property for the non-

symmetric Jack polynomials, given in Lemma 2.3.2, we conclude that

0, 77’L > 07
Km1Km—2.. . Kiy1 KBy

Tm=0 =

E,F(:cl, e ,xN_l), n;, = 0.

From the previous line, we can see that the only nonzero contribution comes

from the permutation K, 1K;,_2... K9K;. Thus

Asym;E, (21, ... ’xN)’xm:O
=Asym; (KiKy...Kp 2B, (1,...,Zm-1,Tmt1,---,ZN))

= (—1)"?Asym; Ey (T1,.. ,Tm—1,Tmt1s---, TN)
and the proposition follows. O
The next proposition shows that just as the non-symmetric Jack polynomials

are eigenfunctions of the Sekiguchi operators, also the Jack polynomials with

prescribed symmetry are eigenfunctions of the Sekiguchi operators.
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Proposition 2.4.9 (Eigenfunctions). Let A be a superpartition of bidegree (n|m).
The Jack polynomial with prescribed symmetry, Py = Pp(z; ), is an eigenfunc-
tion of the Sekiguchi operators S*(u) and S®(u,v) defined in equation (1.5.1).

Moreover,
S*(u) Py = epx(a,u) Py S®(u,u) Py = epo(a,u) Py,
where the eigenvalues are given by equation (1.5.2).
Proof. This lemma immediate follows from the following three basic facts:
(1) Py is proportional to Oy jEy for any composition A such that A = ¢, (A);
(2) The operators S* and S® commute with Oy ;.

(3) By virtue of Lemma 2.3.3, E) is an eigenfunction of S*(u) and S®(u,v).
Moreover, if ¢,,(A) = A, then S*(u) E) = ep+(a, u) E) and S®(u,u) B\ =
epe (a,u) Ey.

O]

Theorem 2.4.10 (Uniqueness at generic «). Let A be a superpartition of bi-
degree (n|m). Suppose that « is a formal parameter or a complex number that is
neither zero nor a negative rational. Then, the Jack polynomial with prescribed
symmetry Py is the unique polynomial satisfying
(B1) Py =mp + Z cATMT, CAT € C(a);
I'<A
(B2) HPy=dxPy and T Py=epPy.

for some ca,dp,epn € C(a). Moreover, the eigenvalues dy and ep can be com-

puted explicitly, they will be given in equations (2.4.17) and (2.4.18) respectively.

Proof. We want to prove that the Jack polynomials with prescribed symmetry
are the unique unitriangular eigenfunctions of H = Zf\il ZandZ =51 &
However, according to Propositions 2.4.5 and 2.4.9, we already know that the
Jack polynomial with prescribed symmetry Py satisfies
(B1) Py =mp + Z CA,DTD;
<A
(B2) HPy=dxPrn and TPy =epPy.
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Thus, it remains to prove that there is no other polynomial that satisfies (B1)
and (B2).

First, we need to determine precisely the eigenvalues dy and ep. We recall
that mp is proportional to Oy jx", where n = (Ay,, ..., A1, AN, ..., Ayy1). Now,

as is well known (e.g., see conditions (A1’) and (A2’) in Section 2.2),

giwn = ﬁixn + Z frm/w’y-

Y=n

Then, for any polynomial g such that g(&1,...,£{n) commutes with Oy j, we have

g(&1, .. 6n)ma < Of 79(&1, ..., &N )"

=01 <g(771, o) 4 Z féﬂqﬂ) x g(M1y...,AN)MA + Z fX,Q mgq.

Y=<n I'<A
(2.4.16)

Consequently, a triangular polynomial Qx = mp + Y, c’A,Fmp, can be an
eigenfunction of g(&1,...,&y) only if its eigenvalue is equal to ¢g(71,...,7y). In
our case, () is an eigenfunction of H and Z, with respective eigenvalues dy and

e, only if
N m

dA:Zﬁz‘Q and ep :Zﬁi'

i=1 i=1
Now, as explained in Lemma 2.3.3, YN 72 = 7 (A} — (i — 1))2. By com-
paring the latter equation with the explicit expression for the quantity e (),

introduced in Lemma 2.1.1, we get

N(N—-1)(2N -1
dy = 2aep-(a) + o?|A*| + ( 25( ) (2.4.17)

Returning to the second eigenvalue, we note that because
n=Am,....,A1,AN,..., Ajpt1), We can write
m

Zﬁz’ = Z(@Ai —#{71A; = Ai}).
=1

7

From the comparison of the latter expression with the quantity ej(«), given in

Lemma 2.1.4, we then conclude that

ern = epa). (2.4.18)
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Second, we suppose that there is another Qx = ma + > ) C;\’Fmr such
that (1) Py —Qp #0, (ii) HQA = dpQa, and (iii) ZQx = ep Q. Condition (1)
implies that there is superpartition 2 such that Q < A and

Py —Qx =agma + »_ agrmr,

I'<A
I'<:Q

where <; denotes some total order compatible with the dominance order. The

substitution of the last equation into conditions (ii) and (iii) then leads to

H(agmg + Z ClQJ‘TTLF) =dp (anQ + Z (ZQITTLI‘) (2.4.19)
<A I'<A
I'<:Q I'<:Q
I(anQ + Z ag,pmp> =€\ (anQ + Z CLQImF). (2.4.20)
<A <A
I'<:Q T'<:Q
However, according to equation (2.4.16), we have Hmgq = dymp + ... and
Imgq = epxmp + ..., where the ellipsis ... stand for linear combinations of mono-

mial indexed by superpartitions strictly smaller than €2 in the dominance order.

Consequently, equations (2.4.19) and (2.4.20) can be rewritten as

dq aq mq + independent terms = dp aq mq + independent terms,

eq an mq + independent terms = ey ag mq + independent terms,
which is possible only if
dy =dg and ep =eq

On the one hand, using Lemma 2.1.1 and A > €, we conclude that the first
equality is possible only if A* = Q2*. On the other hand, Lemma 2.1.4 and A >
imply that, the second equality is possible only if A* > Q*. We thus have a
contradiction. Therefore, there is no polynomial Q4 satisfying (i), (ii), and (iii).

We have proved the uniqueness of the polynomial satisfying (B1) and (B2). O






CHAPTER 3

REGULARITY AND UNIQUENESS PROPERTIES AT aw = —(k+1)/(r — 1)

As mentioned in the Introduction, regularity and uniqueness are not obvious at
all if o is a negative rational. Here we find sufficient conditions that allow to pre-
serve these two properties. We indeed prove that if « = —(k+1)/(r—1) and A is
(k,r, N)-admissible, then the associated Jack polynomial with prescribed sym-
metry is regular and can be characterized as the unique triangular eigenfunction
to differential operator of Sekiguchi type. Similar results hold for a particular
family of non-symmetric Jack polynomials indexed by compositions formed by
the concatenation of two partitions and with an admissibility condition. We use
them at the end of the section to prove the clustering properties for £k = 1 of
the Jack polynomials with prescribed symmetry. This chapter is based on [20,
Section 3.

3.1 MORE ON ADMISSIBLE SUPERPARTITIONS

In this subsection we enunciate some lemmas related to the superpartition’s ad-
missibility condition, which are necessary to simplify the proofs of the regularity

and uniqueness propositions.

Lemma 3.1.1. Let A be a weakly (k,r, N)-admissible and strict superpartition.
Then both A* and A® are (k + 1,7, N)-admissible.

Proof. According to the weak admissibility condition, we have AZ@H A =T
sothat A7 —A7 . > A7 — A7, >r—1. Now, the equality A7, | —Aj ., =
r — 1 holds if and only if A?ﬂ = A}, + 1. However, in the latter case, A} >

A7 > A7, ,. We therefore have AY — A, .\ >r.

40
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Similarly, we have AY — A¥ , > r — 1. The equality AY — AY , = r —1

i+k i+k
occurs if and only if A?Jrk = Ay, + 1, but in this case, Ag_k > A7, > A?+k+1‘
Therefore, AZ@ — A?+k+1 >r. O
Lemma 3.1.2. If A is (k,r, N)-admissible, then
Afr =Ny 2P 1< <N —p(k+1), p€Zy, (3.1.1)
or equivalently,
A?_p(m) — A, > pr, plk+1)<i—1<N,peZ,. (3.1.2)

In particular, if A is moderately (k,r, N)-admissible, then equations (3.1.1) and
(3.1.2) hold.

Proof. The moderately and strongly admissible cases are trivial. We thus sup-
pose that A is strict and weakly (k,r, N)-admissible. Firstly, note that the case
p = 1 corresponds to Az®+1 — A7, = r, which is an immediate consequence of
weak admissibility condition. Secondly, suppose that Eq. (3.1.1) is true for some
p > 1. Then,

A?H - ;+(p+1)(k+1) = A?H - A;'k+p(k+1) + A?+p(k+1) - A;'k+(p+1)(k+1)
= pr+ A:+p(k+1) - A;(+(p+1)(k+1)‘
However, according to the previous lemma, A:+p(k+1) — A:—‘,—(p—i—l)(k-{-l) > r. Con-
sequently,
A?—i—l - ;‘k+(p+1)(k+1) 2 pr+,
and the lemma follows by induction. O

3.2 REGULARITY FOR NON-SYMMETRIC JACK POLYNOMIALS

To begin this subsection, we would like to illustrate the importance of the regu-
larity property when « specialized. For this, let us write explicitly the first non

trivial non-symmetric Jack polynomial, namely

Z2
E TQa) = .
1,0) (71, T2;0) = 71 + arl
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We can see from this example that already by considering a minimal degree,

such polynomials can have singularities when « is specialized.

However, as mentioned above, we need to find sufficient conditions on the
composition’s shape that allow us to specialize to a particular «. For this purpose
it is necessary to introduce some notation. Given a cell s = (7, j) in the diagram

associated to 1 a composition, we set
() = aan(s) + 1) + Ly(s) + Iy(s) + 1

where a,(s), l,(s) and [} (s) were given in eq. (2.1.1). According to the results
given in [47], we know that (Hsen dn(s)) E, belongs to N[, 1, ...,z n]. Then,
if we want to show that E,(x;«a) has no poles at a = oy, is suflicient to prove
that

Hdn(s) #0 if a=o,.

sEN

Hence, to demonstrate that some non-symmetric Jack polynomials have no
poles, we use the relationship between 7 and its associated superpartition to get
an expression of d,, in terms of A (the associated superpartition) and then we

impose an admissibility condition over A to get the regularity’s result.

In what follows, \* = (A],...,\%) and pt = (u7,...,uk_,,) denote parti-
tions. This notation is used in order to avoid confusion between partitions and
compositions. Moreover, the composition obtained by the concatenation of A™

and p*, which is (Af, ..., AL, uf .o uk ), will be denoted by

n=A" ") (3.2.1)

Lemma 3.2.1. Let n be as in (3.2.1) and let A = ., (n) be its associated super-
partition. Moreover, let BF(A) be the set of cells belonging simultaneously to a

bosonic row (without circle) and a fermionic column (with circle). Then,

[Mdis) = TI (alaa-(sH+D)+lue(sH)+1)  JI  (alans(s)+1)+a-(s)+1)

sen s'€BF(A) s'€A* /BF(A)
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Proof. Given a cell s = (i,7) in n, let 8" = (i, j) be the associated cell in A. We
want to express d,(s) as a function of the arm-length and leg-length of the cell s’
in A. For each cell s = (¢, ) in 7, we have a,(s) = aa+(s’), while we can rewrite

In(s) + 15, (s) as

Ly(s)+1(s) =#{k=1,...,i—1]j =m + 1}
+# k=1, i1 <m<m—1}+#{k=i+1,...,N[j <m <ni}.
(3.2.2)

The two last terms can be easily expressed I,(s) + l;?(s) with the help of the
leg-length of the cell s':

#h=1, 0= <m <m—1+#{k=i+1,...,N|j <m <ni} =l (s).
(3.2.3)

However, for the first term, we have to distinguish two cases:

(i) If s = (4,7) is such that j = n, + 1 for some 1 < k <14 — 1, then it is clear
that ' € BF(A). Moreover,

#lh=1,.. . i—1j=m+1}=#{k=1,...,mlj = \p + 1}.

Since #{k =1,...,m|j = A\ + 1} counts the number of circles that appear
in the column j in A —more specifically, in the leg-length of the cell s'— we

conclude that I,)(s) + 17,(s) = lpe(s’). Thus,

dn(s) = alar(s") + 1) + lpe(s) + 1. (3.2.4)

(ii) If s = (4,7) is such that j # np + 1 for each k = 1,...,i— 1, then it is clear
that s" € A*/BF(A) and also I;(s) + [;(s) = la+(s). Hence, we conclude
that

dp(s) = afap=(s") + 1) + la=(s") + 1. (3.2.5)

The substitution of equations (3.2.3)—(3.2.5) into (3.2.2) completes the proof. []
Lemma 3.2.2. Let n be as in (3.2.1) and let A = ¢, (n) be its associated super-

partition. If A is strict and weakly (k,r, N)-admissible or moderately (k,r, N)-

admissible, then Ey(x;a) does not have poles at oo = oy .
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Proof. As we have mentioned earlier (see [47]), to prove that E,(x;a) has no
poles at o = ay -, it is sufficient to show that Hsen dy(s) # 0 if o = ay,-.
Let us suppose that HsEn dy(s) = 0 when o = ap,. From the equality

obtained in Corollary 3.2.1, we have [ [, dy(s) = 0 iff

[T (alan-()+D)+ae(s)+1) =0 or [  (alan=(s)+1)+1r=(s)+1) = 0.
sEBF(A) seA*/BF(A)
Now, this is possible iff there exists a cell s € BF(A) such that a(ap«(s) + 1) +
Ipo(s) + 1 = 0 or if there exists a cell s € A*/BF(A) such that a(ax-(s) +1) +
Ia<(s)+1=0.

First, we suppose that s = (4, j) € BF(A). Now a(ap«(s)+1)+lpe(s)+1=0
iff there exists a p € Z4 such that ax-(s)+1 = p(r—1) and lpe(s)+1 = p(k+1).
Using both relations and expressing them in terms of the components of A, we
get

A7 — A?—l—p(k‘-{-l)—l +1=p(r—1).

Moreover, we have by hypothesis, A} = Ai® (bosonic row), so that the previous

line can be rewritten as

plr—1)—1=A7 — A?ip(lﬂrl)fl‘

However, by using Lemma 3.1.2; we also get

AP — A

®
i i+p(k+1)—1 > pr—1,

which contradicts the previous equality.

Second, we suppose that there is a cell s = (¢,7) € A*/BF(A) such that
a(ap=(s)+1)+1p«(s)+1 = 0. This is possible iff there exists a p € Z4 such that
ap<(s) +1=p(r—1) and Ip+(s) + 1 = p(k + 1). As in the previous case, using

both relations and expressing them in terms of the components of A, we obtain
plr=1) =12 A7 = A7y gy 2 pr =1

which is in contradiction with the admissibility condition of A (see Lemma 3.1.2).
Therefore, whenever o = . and A is (k,r, N)-admissible, we have
[Tse, dn(s) # 0, as expected. O

Remark 3.2.3. The set BF will be illustrated diagrammatically in Appendiz C.
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3.3 REGULARITY FOR JACK POLYNOMIALS WITH PRESCRIBED SYMMETRY

We recall that AT = (Af,...,A%) and p™ = (uf,...,uk_,,) are partitions.
Similarly, A= = (A\f,...,A]) and p= = (,u]'t,fm,...,uf) denote compositions
whose elements are written in increasing order. The concatenation of A~ and

w~ is given by

A, )=\, ,)\f', uj{_m, .. ,,ui").

As shown below, the regularity for Jack polynomials with prescribed symme-
try cannot be established directly using Definition 1.3. Indeed, a non-symmetric
Jack polynomials indexed by a composition 1 of the form (A™, ) is in general
singular at o = oy, even if 7 is associated to an admissible superpartition, as
we will see in the following example. Given k£ =1, r = 2 and N = 3, we consider

the compositions n* = (2,1,0) and = = (0,1, 2), so we have the polynomials:

1 1
E(2,1,0) (xla T2, T3; a) = 517%552 + mxlxg + m%%%g + mwm%
1 5 a?+2a+2 5 (a+2)(2a+3)
T lar BT s BT T s T
1
E@,1,2) (z1, 22, 23; ) = 9623?§ + mxlxglg

and we see that if we specialize « = —(k +1)/(r — 1) = —2 the polynomial E, -
has a singularity, while that F, + has no singularities at « = —2. We thus need to
use another normalization for the Jack polynomials with prescribed symmetry,

which we state in the following proposition.

Proposition 3.3.1. Let n = (At,u™) and A = @,(n). Suppose that « is

generic. Then

AS S
C C
P (z;0) = C%SASymISmeEn, PP (x;0) = C%SymzsmeEn,
A A
PR () = D Sym Aqym By, PM(ra) = A Asymy Asym, B
A (95,04)—@ ympASym y oy , A (xva)—cm Sy pASym jluy ,
A
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where

-1
Cﬁs — (_1)7rl(m—1)/2 H Qap® (sz ‘;ji\;a (82 )
seFp=(a) A8 T iaels
H aap«(8) +Iax(s) —v+1
aap(s) + la-(s) —

X

s=(i,j)EBRDB
0<y<#{t>i|A® —AF=0, A;=i}—1

s aape(s) +lxe(s) —v+1
C 1 aare (5) +Ine (5) — 7

s=(i,j)EFF*(A)
0<y<#{E>H|AP —A; =1, AP =i} -1

aap(8) +la(s) =7 +1
H aap~(8) +la-(s) — 7

X

)
s=(i,j5) BRDB
0<y SH{t>i[AF —A;=0, A;=i}—1

C[%A _ (_1)(N7m)(N7m71)/2 H
s=(i,j) EFF* (A)
0y S#{E>iAY —A;=1, AP =i}~1

aaps(s) +la+(s) — 1
X H aap«(8) + lax(s)

aape (s) +lae(s) -y +1
aape(s) +lxe(s) — v

)
s€eBRDB

CAA _ (_1)m(m—1)/2(_1)(N—7rL)(N—m—1)/2 H aape(s) +lxe(s) — 1

A SeFFT(A) aape (8) + lre(s)

" H aap-(s) +ia+(s) — 1 .

seprpp  Qanr(s) +1a-(s)

Notice that FF(A) denotes the set of cells belonging to a fermionic row and

a fermionic column, while FF*(A) = FF(A) \ {s|s € A¥/A*}. The set BRDB
contains all cells (i,7) such that i is a bosonic row, j is the length of some other

bosonic row i’ satisfying A} > Aj.

Sketch of proof. Let n~ = (A~, ™). The proof consists in calculating the con-
stant of proportionality Cy such that

OI,JEn = CAO[}JEnf.

Our method follows general arguments that are independent of the symmetry
type of the polynomials, so we give the general idea of the proof only for the
polynomials of type AS.

We first note that we can recover n from 1~ through the following sequence

of transpositions:

N=T2. . . Tm-1TmWm+2---WN (")
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where 7 = K, 1K,_o...K; and w, = K,_1K,_o... K11, except that in w,,

we do not consider transpositions K; such that p; = p;+1. Thus, we have

E, =

T2 Tm—1TmWm+2...wN (n7)

Now, given that we are considering ~ a composition in increasing order, we can

use successively the third line of (2.3.4). This yields an expression of the form

E

T2...Tm—1TmWm+2...-WN (77_)

= O10wNE, -,
where the operators O} and O’ are such that
Asym;0; = C;, Sym ;0 = OjSym;, Sym;O0’; =C", Asym;0’; = O;Asym;.

The coefficients C} and C'; are obtained by considering all possible combinations
of differences of eigenvalues A; — A; with i < j, i,j € {1,...,m} and A; # A, or
i,j € {m+1,...,N} and A; # A;. More specifically,

m(m— 1
Cp = (=ymemiz ] <1—A._A.>
i j

i<j N EA
i,j€{1,....m}

1
o= I (+5%)

i<j,A,Lv¢Aj
Z,]G{m-‘rl,J\]}

while

Rewriting the product C} - C’ in a more compact form finally gives the desired

expression for Cﬁs. ]

Remark 3.3.2. The sets FF and BRDB will be illustrated diagrammatically in
Appendiz C.

Lemma 3.3.3. Let n= (A1, u™) and A = ¢, (n).

(i) If A is strict and weakly (k,r, N)-admissible, then Cﬁs has neither zeros nor
singularities at o = o .

(ii) If A is moderately (k,r, N)-admissible, then C’% has neither zeros nor sin-
gularities at o = o .

(i3i) If A is moderately (k,r, N)-admissible, then C3* has neither zeros nor sin-
gularities at o = o .

() If A is strict and weakly (k,r, N)-admissible, then C3* has neither zeros nor

singularities at o = ay, .
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Sketch of proof. This follows almost immediately from the explicit formulas for
the coefficient C given in the last proposition. All cases are similar. The only
noticeable differences are the type of admissibility for each symmetry type and
the additional parameter v, which can be controlled with admissibility condition.
Once again, we restrict our demonstration to symmetry type AS.

Consider Cﬁs and suppose that it has singularities or poles at a = ay,,. This
happens iff there exists a cell s € FF* such that aape(s) + lxe(s) = 0 or a cell
s € BRDB such that aap=(s) + lpx«(s) —v = 0 for some 0 < v < #{t > i|A} =
Af}

First, assume that s = (7, j) € FF*. Note that aape(s) + lxe(s) = 0 iff there
exists a positive integer p such that ape(s) = p(r — 1) and lye(s) = p(k + 1).
Using these two relations and expressing them in terms of the components of A,

we find

AP — Afip(kJrl) =p(r—1). (3.3.1)

Now, the weak admissibility condition and Lemma 3.1.1 imply that

p(r—1) =AY — Af‘>+p(k+1) > pr. (3.3.2)

Equations (3.3.1) and (3.3.2) are contradictory. Hence, the first factor of C45
does not have singularities.

Now, assume s € BRDB. Following a similar argument, we conclude that
the second factor has no singularity.

In the same way, one can show that C'y has no zero. O

Proposition 3.3.4 (Regularity). Let A be a (k,r, N)-admissible superpartition.

Then, Py(z1,...,zN; ) is reqular at o = oy .

Proof. Let n = (AT, ut) and A = ¢,,,(n). According to Proposition 3.3.1, for
any symmetry type, there are coefficients ¢y and C) such that

CA

Pafaia) = &

Or,7E,(x; a)

The coefficient ¢y is independent of v, so it is trivially regular o = ay, . Given

that A is admissible, Lemma 3.3.3 implies that C'Xl is also regular at o = ay,.
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Finally, by Lemma 3.2.2, the non-symmetric Jack polynomial E,(x; «) is regular
at a = ay, . Therefore, limit

. CA
lim — O B, (x; )
=0 r A

is well defined and the proposition follows. O

3.4 UNIQUENESS FOR JACK POLYNOMIALS WITH PRESCRIBED SYMMETRY

Uniqueness of the triangular eigenfunctions of the Sekiguchi operators is a non
trivial property when « is not generic. This is due to the high degeneracy
of the eigenvalues. Non-symmetric Jack polynomials may have poles only for
non-generic values of «, and when poles occur, then there is non-uniqueness.
Indeed, following the result of Lemma 2.4 in [31], one easily sees that if the
non-symmetric Jack polynomial E; has a pole at some given value of ag, then
there exits a composition v < 7 such that ¢, + (oo, u) = £,+(ap,u). On the other
hand, for non-generic values of «, non-uniqueness may be observed even for
regular polynomials. As a basic example, consider the compositions n = (2,0)
and v = (1,1), which satisfy n > v. One can verify that E,(z1,z2;) and
E,(z1,z2; ) are regular at & = 0. Nevertheless these polynomials share the same
eigenvalues, i.e., ;la=0 = Vj|a=0 for j = 1,2. Hence, at a = 0, any polynomial
of the form E,(x1,x2; a) +ak, (x1, x2; o) satisfies the conditions (A1’) and (A2’)
of Section 2.2, so uniqueness is lost. This motivates us look for a uniqueness
criterion like eigenfunctions of the Sekiguchi operators for some specialization of

Q.

In order to simplify the proofs of the following theorems, we enunciate some

lemmas related to different types of admissible superpartitions.

Lemma 3.4.1. Let A be weakly (k,r, N)-admissible and strict. Suppose that for

some o € Sy, the superpartition I' satisfies
* * r—1 . .
LG =Aow + m(a(l) — i),
Then,

AN <T) = o(i) <1, AN =T = o(i) =1, A>T = o(i) > 1.
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Moreover,

. i—k—1 4f Af<I? and A, >T7
o(i) =
i+k+1 if Af>T; and A7, <T7.,.

Proof. Obviously, the equality I'} = A(’;(i) + Zﬁ (o(i) — 7) holds only if there is
p € Z such that o(i) =i + p(k + 1).

First, we assume that A; = I';. Then, A} = A:ip(kﬂ)

ptegry = proand A gy —

A} > pr. Combining the last relations, we get p(r—1) > pr, which implies p = 0.

+ p(r — 1) for some
p > 0. Lemma 3.1.1 implies however that A7 — A

Consequently, AY =T'} only if (i) = i.

Next, we assume that A7 > I'Y. We have three possible cases:
1. o(i) = i. This implies that A} = I'}, which contradicts our assumption.

2. 0(i) = i — p(k + 1) for some positive integer p. We then have A} >

® _
i—p(k+1)

— A} > pr — 1. Combining these equations, we

A;‘_p(kﬂ)—p(r—l). However, according to Lemma 3.1.2 ,we have A
A} > pr, so that A;‘_p(kﬂ)
get p(r — 1) > pr — 1, which contradicts the fact that p > 1.

3. (i) = i+ p(k + 1) for some positive integer p. In this case, we do not

obtain a contradiction. Hence, o (i) > .

Similar arguments can be used to prove that if A7 < T'}, then o(i) < 1.
To prove the second part of proposition, we suppose that A > I'Y while
Aj, <Tj.;. Now, we know that I'; | < I'7, where I'; | = A}, + ¢ for some
6 >0, and I'f = A7,y + p(r — 1) for some p € Zy. Combining these
inequalities, we get Ay, +0 < AZ o)+ p(r —1). However, A¥ ; = A7, —

where € = 0,1. Thus, A?-H — A;‘+p(k+1) < p(r —1) — § + €. By making use of

€

Lemma 3.1.2, we get pr < p(r — 1) — § + €, which implies that e = 1, 6 = 0 and
p = 1. Therefore, A7 > I'; and A} ; < T ; imply (i) = i — k — 1. The case
where A} <T7 and A}, ; > T}, is proved analogously. O

Lemma 3.4.2. Let A be moderately or strongly (k,r, N)-admissible. Suppose
that for some w € Sy, the superpartition I' satisfies

r—1
k+1

Iy =Ag, + (w(z) — 1),
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Then,

AY <TP = w(i) <1, AP =TY = w(i) =1, AP >TY = w(i) > .

K3 K3

Moreover,

_ i—k—1 if AP <T? and Af_,>T;,
w(i) =
i+k+1 if AP >TY and Af, <Ti,.

Proof. One essentially follows the same steps as in the proof of Lemma 3.4.1. [

Lemma 3.4.3. Let A be a (k,r, N)-admissible superpartition and let I" satisfy

r—1 . .
(i) =)

r—1

I7=Asm + (@) —i), LY =AM+

for some o,w € Sy. Then, 0 = w.

Proof. The cases for which A is a strict and weakly (k,r, N)-admissible super-
partition or for which A is strongly (k, r, N)-admissible superpartition are almost
identical, so we only prove the first. We deduce from the hypothesis that o(:) = i
mod (k+ 1) and w(i) =4 mod (k+ 1), so that w(i) = o (i) + t(k + 1) for some
teZ.

First, we suppose that o(i) < w(i), which implies that w(i) = o (i) + t(k + 1)
for some t € Z,. Then,

LY =T = Agiypirn) — Moy THr = 1)

By Lemma 3.1.1, we know that A* is (k+ 1, r, N)-admissible, which means that

A:‘;(i) — A:—(z‘)+t(k+1) > tr and A:(i) — Af(i)th(kJrl) > tr — 1. Combining the

inequalities previously obtained, we get
0<TY —Ti<1—tr+tlr—1)=1-t
This inequality is possible only if £ = 1. We have thus shown that
(i) TP =T} (i) w(@)=0c(@)+k+1 (4i7) A(*,(i) — Af(i) =r—1.

: ® _ * ® ® o . .
Note that if Aa(i) = AU(Z,), then Ag(i) — Aa(i)+k+1 =r—1 > r, which is a
contradiction. Similarly, one gets a contradiction by supposing Af:)(i) = A:)(i).

Thus, we also have

(iv) Agy=Asp+1 () Al =AML, +1
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Second, we suppose that o (i) > w(i), which implies that o(i) = w(i)+t(k+1)
for some t € Z,. Then

7

IP =17 = AJu) — Mgysegny — tr = 1).

By Lemma 3.1.2 we know that Af( - A7 > tr, so that

i)
1>TP —Tf>tr—t(r—1)=t.

(0)+t(k+1)

The latter inequality holds only if t = 1. We have thus proved that
(vi) Tf=T;+1 (vit) o(i) =w(i)+k+1 (viii) Af?(i) — Ay =T
Moreover, we deduce from (vi) and the admissibility condition, that

(#)

Now, assume that ¢ and w do not coincide. Then, there exists a positive
integer ¢ such that w(i) > (i), which by virtue of the above discussion, implies
that w(i) = o(i)+k+1. Let j be such that w(i) = o(i)+k+1 = o(j). Obviously,
i # j and o(j) # w(j). Then, according to conclusions (ii) and (vii) above, only
cases can occur: w(j) =o(i) +k+ 1+ (k+1).

e Suppose that w(j) = o(i) + 2(k + 1) and let jo be such that o(j2) =
o(i)+2(k+1), so that jo # j. Then, conclusions (ii) and (vii) above imply
that w(j2) = o(i) + 2(k + 1) = (k + 1). However, only the case w(j2) =
o(1)+3(k+1) is possible, since the equality w(j2) = o(i)+k+1 implies the
contradiction j = 4. Similarly, if js is such that o(j3) = o(i) + 3(k + 1),
then w(js) = o (i) + 4(k + 1). Continuing in this way, one eventually finds
a positive integer £ < N such that w(¢) > N, which clearly contradicts the
fact that w is a permutation of {1,..., N}.

e Suppose that w(j) = o(i). Recall that by definition, o(j) = o (i) + k + 1.
Hence, w(j) = 0(j) —k —1 < o(j). Conclusion (viii) above then implies
that Af(j

conclusion (iv) implies that Af(i) = A;(i) + 1. Combination of the last two

) — A} (j) = r, which is equivalent to Aff(i) — Al = r. However,

equations finally leads to
r=1=A0 = Aow = Ao — Do)kt

This equation contradicts Lemma 3.1.1.
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Therefore, the permutations o and w must coincide, as required.

Theorem 3.4.4 (Uniqueness at o = ). Let A be a (k,r, N)-admissible su-
perpartition of bi-degree (n|m). Assume moreover that o = og,,. Then, the
Jack polynomial with prescribed symmetry, here denoted by Py, is the unique
polynomial satisfying:

1. Py =mp + Z cA,rmr, ear € C,
I'<A

2. 5*(u)| Py = ep+ (i, u) Py and S®(u,u)| Py = epeo (g, u) Py.

a=ag,r a=ag,,
Proof. Proceeding as in Theorem 2.4.10, we know that there are more than one
polynomials satisfying (1) and (2) only if we can find a superpartition of type
T, say I, such that A > T, eps(a,u) = epx(,u), and epe(a,u) = epe(a,u).
Consequently, in order to prove the uniqueness, it is sufficient to show that if
' < A, then eps(a,u) # epx (o, u) or epe (o, u) # epe (o, u).

Let us assume that we are given a superpartition I' < A such that ep (o, u) =
ea(a,u) and epe (o, u) = epe(a,u). Obviously, the last two equality holds if
and only if there are o,w € Sy such that

* * r— 1 N ® __ ® r— 1 N .
Iy =Ayp) + Frl 1(0(2) i), LY =Ag,+ T 1(w(2) i) Vi. (3.4.1)

According to Lemma 3.4.3, equation (3.4.1) holds only if 0 = w. Now, we
recall that by hypothesis, either I'* < A* or I'* = A* and I'® < A®. Only the
former case is nontrivial. Indeed, Lemma 3.4.1 implies that if A} = I'} for all
i, then o is the identity, and so is w. In short, whenever equation (3.4.1) and
I'* = A* hold, we have I'® = A®, which is in contradiction with I'® < A®. Thus,
we must assume that I'* < A*, which implies that there exist integers j > 1 and
e > 0 such that

[T=A+e and I7 <A}, Vi<j. (3.4.2)

As a consequence of (3.4.1) and Lemma 3.4.3, there is a permutation o such that
o(j) # J,

" " r—1
Bi=%n* 7

r—1
k+1

(0G)—3).  TE=AZ, + —(o()—4), (343)

which is possible only if o(j) = j mod (k + 1).
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L. If o(j) = j + p(k + 1) for some positive integer p, then I'; = AT + € =
A;f ok +1)+p(r—1). However, the latter equation contradicts the hypothesis

€ > 0 and Lemma 3.1.2, according to which A7 — A7 > pr —1.

j+p(k+1)
2. If 0(j) = j — p(k + 1) for some positive integer p, then I'; = A;_p(kH) -
p(r—1). Moreover, we know that Iy = Aj_;—4, for some § > 0, and that
F;fl > I‘;f. Combining these equations, we get p(r — 1) > 6 + A;‘Lp(kﬂ) —
7_1. But by definition, A;f_p(kﬂ) = A?_p(kﬂ) — €, where € = 0,1. The

use of Lemma 3.1.2 then leads to p(r—1) > 0+ pr—¢é. Hence § =0, é=1,

and p = 1. In short, we have shown that

_ ® _ A® _
D5=A oy —r+1, TP=A%,  —r+l T5 =A%,

J o7
® __A® ® — A%
TY =A%, AV, =N+

Now, if A is strict and weakly (k,r; N)-admissible, then F;B =17+1
implies I';_; = A},

i1 2 A;B_ w1 — 7 +1, which contradicts the weak admissibility condition.

> F;@ Combining the previous equations, we get

On the other hand, if A is strongly (k,r; N)-admissible, then F%l =
A;’.B_l > FJQ‘) implies A;’-B_l > A;’.@_k_l — 7+ 1, which contradicts the strong

admissibility condition.

Therefore, whenever A is (k,r, N)-admissible, we cannot find a superpartition
I' < A such that er«(a,u) = ep«(a,u) and ere (o, u) = epe (o, u).
O

3.5 UNIQUENESS FOR NON-SYMMETRIC JACK POLYNOMIALS

Motivated by the uniqueness result of the Jack polynomials with prescribed
symmetry, we have tried to get a similar result for non-symmetric Jack poly-
nomials. However, we only have obtained a characterization for non-symmetric
Jack polynomials indexed for compositions of the type (3.2.1) and such that if
A is its associated superpartition, then A is (1,r, N)-admissible. Moreover, we
have had to set a difference between the type of admissibility of the associated

superpartition and the special form of the composition.
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Definition 3.5.1. Let A = (A1,...,An) be a composition and let A = @, (\) be
its associated superpartition. We say that A is weakly, moderately, or strongly
(k,r, N|m)-admissible if and only if A is weakly, moderately, or strongly (k,r, N)-

admissible respectively.

Theorem 3.5.2 (Uniqueness for £ = 1: weak admissibility). Let

A= (Myee oy Mmy 1y -« -y UN—m) be a composition formed by the concatenation
of the partitions n = (M1,...,Nm) and p = (U1,..., UN—m). Assume that \ is
weakly (1,r, N|m)-admissible and 1 is strictly decreasing. Assume moreover that
a = ai,. Then, the non-symmetric Jack polynomial E) is the unique polynomial

satisfying:

1. B\ = .CL‘)\ + Z C)\,"{x’y7 Cry € C,
Y=<

2. Ex=ME\, V1<i<N,
where the \;’s denote the eigenvalues introduced in (A2°) and (2.3.2).

Proof. There are more than one polynomials satisfying (1) and (2) only if there
are compositions v such that v < Aand (J1,...,9n) = (A1, ..., Ay). We can thus
establish the uniqueness by showing show that the latter equality is impossible.

Our task will be simplified by working with the associated superpartitions

A:@m()\), F:‘Pm(')/)'

We indeed know that I' < A whenever v < A\. Moreover, according to Lemma
2.3.3, the equality (J1,...,9~5) = (M1, ..., Ax) holds only if ep« (o, u) = ep«(a, u),
and ere (a, u) = gpe (o, u).

Let us now assume that we are given a superpartition I" such that ep«(a, u) =
eax(a,u) and epe (o, u) = epe (o, u). The last two equalities hold if and only if
there are permutations ¢ and w such that
r—1

2

r—1

T =Abp + (o) =), Ty =Ag,+ (w(i)—i) Vi (3.5.1)

We recall that by hypothesis, A is strict and (1,7, N)-admissible and I" < A,
which means that either I'* < A* or I'* = A* and T'® < A®.
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The simplest case is when I' = A* and I'® < A®. Indeed, I'f = A} for
all ¢ implies ¢ = id, while Lemma 3.4.3 yields ¢ = w, so that w = id and
I'® = A®. This contradicts the assumption A # I'. Thus, the equations I'* = A*,
I'® < A%, ep«(a,u) = epx(a,u), and epe (o, u) = epe (@, u) cannot be satisfied
simultaneously if A is strict and (1,7, N)-admissible.

We now assume that I'* < A*. This condition implies that there exists an

integer j > 1 such that
[ >A; and T7 <A;, Vi<j.

According to Lemma 3.4.1, satisfying the first equality in (3.5.1) is possible only
if 0(j) = j — 2. Thus

Now, A?_Q = A;_Q + € for some 0 < e < 1, and F;f = A;‘—1 — ¢ for some 6 > 0.
Hence,

etr=A7, A1 +5+1,

which is compatible with the admissibility only if ¢ = 1 and § = 0. Combining

all the previous results, we get
(i) Tj=A_o—r+1 (i) Tj=T;=Aj_;  (ii) A7 ,=Aj»+1

By making use of Lemma 3.4.1 together with A7 , > I';_, and (ii), we also
conclude that either o(j —2) = j —2 or o(j —2) = j. The first case is obviously
impossible since it contradicts o(j) = j — 2. The second case implies I';_, =
A% +r—1. Lemma 3.4.3 and (i) imply that F;@ = A;*lQ —1r+1. Then, combining
this equation with (iii), we get
(iv) T7=T;+1

Moreover, Lemma 3.4.3 and (ii) imply that F;B_l = A?_l. From this and result
(iv), we get F?‘B—1 =1I7_,+1, ie therow j—1in I' also contains a circle.

Combining F;T_Q > F;_l,

the admissibility condition and F;T_Q = A; +7r—1
we obtain I';_, = I''_;. Finally, Lemma 3.4.3 and the last equation yields
I‘;B_Q = F}[Q + 1. Consequently,

(v) §—2 = F;‘—1 =TI7

i (vi) Aj_o=Aj_1+r—1=A;+2(r—1).
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Let us recapitulate what we have obtained so far. We have shown that there
exist compositions A and - as in the statement of the theorem such that their as-
sociated superpartitions A = ¢,,(\) and T’ = ¢, () satisfy ep=(a, u) = ep« (o, u)
and ere (o, u) = epe (o, u). However, this occurs only if the equations (i) to (vi)
are also satisfied. We will now make use of this information to prove that the
equality (J1,...,9n5) = (A1,...,An) is incompatible with the admissibility of .

Before doing so, we need to recall how relate the eigenvalues A\; and 7; to the
elements of the superpartitions A and I'. Let w, be the smallest permutation
such that v = wy(y") = wy(I'*). Then, % is equal to the ith element of the
composition (ay — w,6~). More explicitly, ¥; = (w(al™ — 67)), or equivalently,
Y, i) = L'y — (i — 1). Similarly, there is a minimal permutation wy such that
A = wy(A*), so that Ay, ;) = @A} — (i —1). We stress that in our case A* # I'*,
which implies that w) # w,.

Now, let j be the largest integer such that I'; > A7 and I';_; < A7 ;. Let

also I = wy(j). Then, according to the above discussion,
Y=olf—(+1).
From (i) and (vi) above, we deduce that the last equation can be rewritten as
Fi=a(Al+r—1)—(j-1). (3.5.2)
Moreover, let j' be defined as wy '(1). This implies that
Ao=aly— (5 = 1), (3.5.3)
Combining equations (3.5.2) and (3.5.3), we get
M= =a) —A—r+1)+5—7" (3.5.4)
We are going to use the last equation and prove A\; —4; # 0. Three cases must

be analyzed separately:

(1) = A7. Then, A — 4 = —a(r — 1), which is clearly different from 0.

(2) At < Aj. Then, A% < Aj and 7" > j. By the admissibility condition, we
have A7 — A% > p(r—1), where p = j'—j. Thereby, A7 —A% = p(r—1)+6

for some 6 > 0. Now,

N == —a((p+ 1)(r—1)+8) - p.
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Substituting & = a1, = —2/(r — 1) into the last equation, we wee that
it is equal to zero if and only if 2((p + 1)(r — 1) + &) = p(r — 1). This is

impossible.

Ar > Aj. Then, A% > A and j' < j. Let p = j — j'. The admissibility
condition implies that A}, —A} > p(r—1). Thereby, A%, — A} = p(r—1) +0
for some 6 > 0. Thus,

M=q=a((p—1)(r—1)+0)+p.

The last equation is zero when a = a1, = —2/(r — 1) if and only if 2((p —
1)(r — 1) +0) = p(r — 1), which is equivalent to (p —2)(r — 1) +25 = 0. It
is clear that if p > 2, we have \; # 7;. Therefore we have only to analyze
the cases for which p =1 and p = 2.

On the one hand, if p = 1, then 7' = 7 — 1 and A’J'f, = Aj_,. Substituting
the last equality and (vi) into (3.5.4), we get \; — %, = 1.

On other hand, if p = 2, then j' = j — 2 and A;f, = Aj_,. Using once again
(vi) and (3.5.4), we find

N—y=alr—1)+2.

Replacing a by aq , = —% into the last equation, we get \;—3; = 0. Thus,
we have not reached the desired conclusion yet. However, given that in the
present case, we have \j_1 > \; = A;‘T_Q andv_1 =y = F;*» = F;f_l = F}‘T_Q,
we know that w;l(l —1)=7<j—2sothat A7 > A7 ,. Let p:=j—2—].
The admissibility condition then gives A} — A7 5 > p(r — 1), which is
equivalent to AT = A7_, +p(r — 1) + € for some € > 0. Then

Mot =1 = a(Aj o +p(r=1) +€) = (1) —alj_; + (j - 2)
(A o +p(r—1)+e) —a(Aj o —(r—1)+p+1

=a((p+1)(r—1)+e¢) +p+1

Finally, the substitution of & = a3, = —2/(r — 1) into the last equation
implies that \;_1 = ;1 iff 2(p + 1)(r — 1) +2e = (p + 1)(r — 1), which is

impossible.
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We have thus shown that there could exist compositions, A and -y, such that
A is (1,7, N)-admissible, I'* < A* and ep«(a, u) = ep«(a, u). However, when it

happens, we also have (A1,...,An) # (71,...,7n) and the theorem follows. [

Looking at the proof of the previous Theorem ”Uniqueness for k = 17 for
the case of weak admissibility, we remark that it is not enough to consider
the associated superpartition to the composition. In fact, by fixing k = 1,
r =2 and N = 3, we see that A = (2,1,0;0) is weakly (1,2,3)-admissible
and moreover by considering ' = (1,1,1;0), we can check that I satisfies the
conditions given in the preceding proof: I'" < A*, ep«(—2,u) = ep+(—2,u) and

ere(—2,u) = epe(—2,u). Indeed:

e (—2,u) = (u—4)(u—3)(u—2) and epe(—2,u) = (u—6)(u—>5)(u—4)
er+(—2,u) = (u—2)(u—3)(u—4) and ere(—2,u)= (u—4)(u—>5)(u—6).

We can check also that the eigenvalues associated to Ey 1 0)(z; —2) and
E(1,1,1)($; —2) are the same as sets, but if they are considered as tuples, then
they are different.

Let us remark that the preceding comment was the main difficult in the
proof of the Theorem. However, for the moderate admissibility case, the proof
is easier than the weak admissibility case, due to the conditions imposed over

the components of the compositions by the admissibility condition.

Theorem 3.5.3 (Uniqueness for £ = 1: moderate admissibility). Let

A= My oy Mmy 1y -y UN—m) be a composition formed by the concatenation
of the partitions n = (m1,...,Nm) and p = (U1,..., UN—m). Assume that \ is
moderately (1,7, N|m)-admissible. Assume moreover that « = oy ,. Then, the

non-symmetric Jack polynomial E\ is the unique polynomial satisfying:

1. B = -rA + Z C)\,"{x7> Cry € C,
Y=<A

2. &,FEx=MEy, V1<i<N,
where the \;’s denote the eigenvalues introduced in (A2°) and (2.3.2).

Proof. We proceed as in Theorem 3.5.2. We start by introducing the associated
superpartitions A = ¢,,(A\) and ' = ¢,,(7). We then assume that we are given
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a superpartition I' such that ep«(a,u) = epx(a,u) and epe (o, u) = epe(a,u),
which is possible if and only if equation (3.5.1) is satisfied for some o,w € Sy.
We recall that by hypothesis, A is moderately (1,7, N)-admissible and ' < A,
which means that either T'* < A* or I'"* = A* and T'® < A®.

First, we assume that I'* = A* and I'® < A®. This obviously implies that
I'Y = A} for all 4, but also that there exists an integer j > 1 such that

Di=Ar=AY, T7=AY+1 and T7 =AY -6, 6 =01 Vi<j.

By making use of Lemma 3.4.2, Aj@ < Fj@f) and F;‘—1 = A;—p we conclude that
w(j) = j — 2. This implies F? = AS’.B_Q —7r+1 and F;’-B = A;B + 1, so we get
A;’-Efz — AJ@ = r, which is in contradiction with the admissibility.

Second, we assume that I'* < A*, which implies that there exists a j > 1
such that

[ >A; and T7 <A;, Vi<j.

According to Lemma 3.4.1, the first equality in (3.5.1) is possible when i = j
only if o(j) = j — 2. Thus

F;: %_2—7"“1

Now A?f2 = A;ZQ + € for some 0 < e < 1, and F}'f = A;fl — ¢ for some § > 0.
Hence,

6+T:A;’»B_2—A;7_1+6+1,

which is compatible with the admissibility only if ¢ = 1 and § = 0. Combining

all the previous results, we get

() TE=A,—r+1 (i) T5=Ti, =A%,

(131) A?B_Q =A; 5 +1 (1v) A]®_1 =Aj_.
We now turn our attention to second equality in (3.5.1) when ¢ = j. By assump-

tion we know that I'; > A%, so that F;B > A;’.B. By making use of Lemma 3.4.2,

we get the following two options:

1. If Fj@ = AJQ-Q7 then w(j) = j. However by assumption I'; = A} + ¢ which
implies I‘? = A? = A +1and I'; = A7 + 1, and then I‘;’? =TI7. Now, as
I = A;’-B_Q —r we get A;’-B_Q —r= AJ@, which is clearly a contradiction with

the admissibility.
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2. If T7 > AY, then w(j) < j. Now, from I'y > A¥ and (i), we know using
Lemma 3.4.2, that w(j) = j — 2, i.e. F;B = A?_Q — 7+ 1. Thus, the row j
in I" contains a circle. This in turn implies that I ;*371 = 1";71 + 1, and also

that the row 7 — 1 in I" contains a circle.

So far, considering the row j, we have obtained
(v) TF=T7+1 (vi) TF,=Tj;+L

Now, considering (ii), (iv) and (vi), we obtain I’;’»B_l > A;’-B_l. Moreover,
from I';_5 < A7, and Lemma 3.4.2, we get w(j —1) = j — 3 and F?fl =
Aj@_g —r + 1. However, (ii), (iv), and (vi) imply that F?_l = A;’-B_l + 1.
Combining these equations, we conclude that A?_g — A?_l = r. This
violates our assumptions, because the moderate admissibility condition
implies that AY 5 — AT | > 2r.

We have shown that whenever A > T" and A is moderately (1,r,N)-admissible,
then (A1,...,An) # (31,...,7n), and the proof is complete. O






CHAPTER 4

CLUSTERING PROPERTIES

In this chapter we study the clustering properties of Jack polynomials with pre-
scribed symmetry. To this end, we consider two cases individually: & = 1 and
k > 1. In the first case, we get for each family of Jack polynomials with pre-
scribed symmetry a factorization, where the expected degree is reached. For
k > 1, we establish the clustering properties by following a strategy developed
by Baratta and Forrester in reference [8], according to which if a symmetric poly-
nomial is translationally invariant then it almost automatically admits clusters.
We first generalize results of Luque and Jolicoeur about translationally invari-
ant Jack polynomials [37] by finding the necessary and sufficient conditions that
make the Jack polynomials with prescribed symmetry are invariant under trans-
lation. We then generalize the above-mentioned result of Baratta and Forrester
and get clustering properties for Jack polynomials with prescribed symmetry of
type AS and translation invariance. Most of the results contained in this chapter

have been published for the first time in [20, Section 4].

4.1 DEFINITION CLUSTERING PROPERTY

To start this chapter we remind the definition of the clustering property.

Given f(z1,z2,...,2N) a symmetric polynomial in N variables, we say that

f admits a clustering of size k and order r if:

k
——
b f(za"'vzaxk-‘rla""x]\f)#o
k+1
—
o f(Z,...,2,Xks2,...,xN) =0

63
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and moreover f vanishes with order r when k + 1 variables are identified; i.e.

k N
,dh r
f(Z,...,Z,CCk+1,...,IEN)O( H(Z—IEZ)
i=k+1
For instance,
2 2 2 2 2 2
f(x1, 20, 23) = —4a323 + 323 + o — da32? — datal + 2ie + 2is 4 2123

+ xl:pg + QI%SCQJJ?, + 2331.%%563 + 2x1$2m§

is a symmetric polynomial in three variables. Now, w.l.g if we specialize the last
two variables, we get 2z(x1 —2)3, and it is clear that f vanishes with order 3 when
3 variables are identified, and therefore we can say that f admits a clustering of

size 2 and order 3.

4.2 CLUSTERING PROPERTIES FOR k =1

We start this section by generalizing the clustering property given in [8, Propo-
sition 2]. This property shows the explicit factorization of the non-symmetric
Jack polynomials indexed by (1,7, N)-admissible partitions at the specialization
a = —2/(r — 1) (with r even). We generalize this result by considering non-
symmetric Jack polynomials indexed by particular compositions formed by the
concatenation of two partitions and such that the associated superpartitions to
the compositions are (1,7, N)-admissible. We then use these results and prove
clustering properties for each family of Jack polynomials with prescribed sym-

metry.

Before stating our results we must find a way to add a superpartition with
a partition, which will first be specified formally in the following definition and

then will be illustrated in terms of diagrams.

Definition 4.2.1. Let A be a superpartition and let A be a partition. We formally
define the superpartition A+ X\ = (Q*, Q%) where Q* = A*+ X and Q% = A® + \.
In terms of the diagrams, it is interpreted as the associated superpartition to the

diagram obtained by adding the diagrams of A and \.
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Let us illustrate this definition by computing A+ when A = (5,3,1,0;4,2,1)
and A = (6,5,4,3,2,1,0). Obviously, we have

@) | [ ]

O

A= = A" and A® =

A* A=

and A® )=

Thus, the diagram obtained by adding the diagrams associated to A and A is
given by

At r=

which is equivalent to say that A + A = (11,7,3,0;9,5, 2).

Proposition 4.2.2. Let r be even and positive. Let also k = (AT, u™), where

AT is a partition with m parts while u™ is a strictly decreasing partition with

N —m parts. Then

Eyr—1s (1, 2n;=2/(r—1)) o H (zi—x;) " Eo(z1,. .., 2N 2/ (r—1)).
1<i<j<N

In the above equation, &' = wy(d), where § = (N —1,N —2,...,1,0) and w, is

the smallest permutation such that k = w (k™).
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Proof. In what follows, we set A = ¢,,(x) and use the shorthand notation

Ay = H1§i<j§N($i - zj).

First, we consider the action of &; on the polynomial A%_I)E,{(x; 2/(r—1)):

N

r— r— Z;
AN VEa(@2/(r 1)) = alr = DATTY 3T B2/ (r — 1)
i=ligj 7
+ oy Va0, Balws2/(r = 1) + A Y —H— (14 Kij) Bula:2/(r = 1)
i<j 7 ¢
r— T . r—
ALY (14 Ky B2/ (r = 1) = (= DAYV Ee(ws2/(r = 1)).
i>j " !

Second, we restrict £; by imposing o = —2/(r — 1), which gives

re 2 r—
Sj\a:—2/(r—1)(A§v YE.(2;2/(r — 1)) = —ﬁAgv l)fﬁjﬁijn(fE;Q/(T - 1))

r— Lj I
—AGTY S (- Ky B2/ (= 1)~ ANV Y K Bl 2/ (r— 1))
i=1,i#] >3

— (N =1DATVE(2:2/(r - 1)).

By reordering the terms, we also get

Eilamz)o1) (AN Y Ex(z;2/(r — 1))
= AT (&lazz/rory + 20V = 1)) E(2:2/(r — 1)).

Now, the use of (A2’), allows us to write

Eilam—2/—1) (AN Bu(w;2/(r = 1))
= — (Rjlazsjr_1) + 2(N = 1)) AUV E (2;2/(r — 1)), (4.2.1)

We have proved that (A%il)En(:c; 2/(r—1))) is an eigenfunction of §;|,—_2/(r—1)
for each j. The eigenvalue can be reorganized as follows. On the one hand, we
know from equation (2.3.2) that the eigenvalues associated to E(x;2/(r — 1))
restricted to a = 2/(r — 1) are given by

2
r—1

Fjlaz2/(r—1) = ki —#{i <jlri > K5} — #{i > jlKi > k)

Now, given x; in x, we know that to x; corresponds a cell in diagram of x and

moreover, this cell has an associated cell s in diagram of A. Then, we can express
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the eigenvalues %; in terms of arm-colength and leg-colength of cell s in A. Given

that
ape(s) =rj—1 and  l).(s) = #{i < jlki > K} + #{i > jlri > K},

we can rewrite the eigenvalue as

_ 2
il 1) = (@ (5) + 1) = 4 ). (42.2)

On the other hand, from equation (2.3.2) and considering the composition x +

(r —1)¢', we have
(k+ (r— 1)5’)j =a(k; + (r— 1)5;) —#{i < jlki+(r—1)0; > kj+ (r — 1)6;}
— #{i > jlri+ (r = 1)0; > kj + (r — 1)d3}.
However, we can simplify this expression if we rewrite the eigenvalue in terms of
A := A+ (r — 1)6 the associated superpartition to x + (r — 1)¢’. The same way
as before, given (k + (r — 1)d’); in the composition x + (r — 1)¢’, we know that

to (k4 (r —1)¢"); corresponds a cell in diagram of x + (r — 1)¢’ and moreover,

this cell has a cell s’ associated in diagram of A’. So, we have

ap(s') = kj — 1+ (r —1)0;
U (") = #{i < jlwi + (r — 1)8; > kj + (r — 1)8%}
+ #{i > jlri+ (r — 1)5; > ki + (r— 1)5;}

Hence,

<m+<r—1>6'>jra_m_n:—(f (ahe(s) + 1) =l (). (42.3)

—1)
Now, comparing the arm-colenght and leg-colenght of A and A’, we get

apin(s) = dy-(8) + N — ) (s) — 1 and Uy (8) = U+ (5) (4.2.4)

Hence, by combining the equations (4.2.1), (4.2.2), (4.2.3) and (4.2.4), we con-
clude that

Epygone(z;—2/(r—1))  and AV Ek(z;2/(r — 1))

have the same eigenvalues for each {; with j =1,..., N.
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In brief, we have proved that (A%il)En(:c; 2/(r—1))) as the same eigenvalues
than B, 1) (7;—2/(r — 1)). Little work also shows that both polynomials
exhibit triangular with dominant term 25T (r=1" Moreover, because of the form
of k, the composition x + (r — 1)d’ is weakly (1,7, N|m)-admissible. Therefore,

we can make use of Theorem 3.5.2 and conclude that
Eepironye (@1, on; =2/(r=1) o< [[  (@i—a;)" 'Exlar, ... 2552/ (r-1)),
1<i<j<N

i.e., the polynomials are equal up to a multiplicative numerical factor. O

Example 4.2.3. Givenr =4, N =3 and k = (2,2,1), we have § = (2,1,0),
thus &' = (2,1,0) and k + 36’ = (8,5,1). According to the last proposition we

have the following factorization:

1
Egs1) (21, 22,23, —2/3) = 5961582332(961 — 19)3 (21 — 23) (29 — 13)°

X (bxy1we 4+ 3z123 + 3T973)
= (21 — 22)° (w1 — 23)" (22 — 23)° Eg.2,1) (21, w2, v3;2/3)

and forr = 2, N = 4 and k = (2,2,3,1), we have § = (3,2,1,0), thus §' =
(2,1,3,0) and k + 0" = (4,3,6,1). So, using again Proposition 4.2.2, we have:

1
E36,1) (71,72, 73, 24; —2) = o T1%2%3T4 H (x; — xj)
1<i<j<4
2 2 2 2 2 2
X (21lzyxoxs + 8x1xoxaxs + 3x1x2x] + TT12524 + T123T5 + TT2T5T4 + T2X3T7)

= H (zi — ;) E@231) (21, T2, 23, 243 2).
1<i<j<4

We will present more examples in Appendiz D.

Corollary 4.2.4. Let r > 0 even and let X a partition with {(X\) < N. Then

Exio—nyoy (@1, an;=2/(r=1)) =[] (@i—a)" "Ex(z1,. .., 2n;2/(r—1)).
1<i<j<N
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Remark 4.2.5. As mentioned above, the clustering property corresponding to
Corollary 4.2.4 was first obtained in [8, Proposition 2. The proof given in this
reference uses the characterization of the non-symmetric Jack polynomials as
the unique polynomials satisfying (A1°) and (A2’). However, the problem of the
validity of this characterization at o = oy, was not addressed by the authors.
Our result about the reqularity and uniqueness given in Proposition 3.2.2 and

Theorem 3.5.2 respectively, now firmly establishes the proof proposed in [8].

Before stating the clustering properties for the polynomials with prescribed,

we recall two useful formulas. For this, let
I ={i1,i2,...,in}, J={J1,72,--sdm}

A]Z ||(xi—xj), AJZ ||(x2—$J)
i,j€l i,J€J
1<j 1<J

Then, obviously,
Sym; (Alf(ﬂfl, e $N)) = ArAsym; <f($17 o 7$N)>,

Asym ; (Ajf(:vl, - x]\/)) = A,Sym, (f(ﬂh, N :33N)>. (4.2.5)

In the following proposition we study the general clustering property for k = 1
for each type of Jack polynomials with prescribed symmetry, getting the natural
generalization of the clustering property for symmetric and antisymmetric Jack
polynomials, which have been proved in [13] in the context of fractional quantum

Hall states.
Proposition 4.2.6 (Clustering k = 1). Let r be positive and even. Let also A
be a superpartition of bi-degree (n|m) with £(A) < N.

(i) If A is strict and weakly (1,r, N')-admissible, then

PS(xy,...,an;—2/(r—1)) = H (i — ;)" Q(x1, ..., zN).

m41<i<j<N

(ii) If A is moderately (1,7, N)-admissible, then

PS(xy, ..., xn;—2/(r — 1))
= H (z; —xj)" H (zi — 2;)"Q(1, ..., 2N).

1<i<j<m mA1<i<j<N
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(iii) If A is moderately (1,r, N)-admissible and it is such that A1 > ... > Ap,
then
P/%A(xlava7_2/(r_1)): H (.’IJZ—.’EJ)TQ(.TIL,%N)
1<i<j<m
(i) If A is strict and weakly (1,7, N)-admissible, and it is such that
Am+1 > 00> AN, then
P, =2/(r = 1)) =[] (wi—a)" Qe . a).
1<i<j<N
In the above equations, Q(x1,...,xy) denotes some polynomial, which varies

from one symmetry type to another.

Proof. Once again, all cases are similar, so we only provide the demonstration
for the symmetry type AS, which corresponds to (i) above.

As before, we set [ = {1,...,m} and J = {m +1,...,N}. According to
Definition 1.3 and Proposition 3.3.1, there is a composition 7, obtained by the

concatenation of two partitions, such that
PS(z1,...,xn;a) Asym;Sym ;(Ep(z1,...,2N; @)).

Given that A is (1,7, N)-admissible, then n has the form x+ (r — 1)0’ where k =
(AT, u") is the composition obtained from 7 after subtraction of the composition
(r — 1)¢’. Moreover, since A is strict and weakly (1,r, N)-admissible, we know

that r is such that p* is strictly decreasing. Thus,

Pfs(xl, o xn; —2/(r = 1)) o< Asym Sym j(Eyy (p—1)5 (71, - - -, 2N =2/ (1 —1))).
(4.2.6)

Now, by Proposition 4.2.2, we also have
Er—1s (1, oN;=2/(r—1)) o H (zi—x;) " Eo(z1,. .., 2N 2/ (r—1)).

1<i<j<N
(4.2.7)

The substitution of (4.2.7) into (4.2.6), followed by the use of (4.2.5), leads to

Pfes(l‘l,...,x]v;—2/(r —1)) x

m N
(ANTIANTIsymy (T T (@i — 2) " DAsym Bu(an, ... zn32/(r — 1))
i=1j=m+1



4.2. CLUSTERING PROPERTIES FOR k = 1 71

Now, we know that Asym ;E,(z1,...,zn;2/(r—1)) is antisymmetric with respect
to the set of variables indexed by J, so we can factorize the antisymmetric factor

[Lni1<icjen(®i — ;). Exploiting once again (4.2.5), we finally obtain

P[Aés(xlvvaa_Q/(’r_l))O( H (xi_xj)TQ(lila"'va)a
m+1<i<j<N

where

m N
Qi,...,an)= [[ @i—=)"'[] 1] (2 — 2;)0"

1<i<j<m i=1 j=m+1

% Sym, (AsmeEK(ajl, co N2/ (r — 1))>  (428)

Hm+1§z’<j§N(fUi — ;)

O

Remark 4.2.7. The case (i) was first conjectured in [26] in the context of sym-

metric polynomials in superspace. All other cases are new.

Corollary 4.2.8. Let a = —% and let r be positive and even. Moreover, for

any positive integer p, let

poN = (p(N— 1),p(N—2),...,p,O).

Then, the antisymmetric Jack polynomial satisfies
S(r_l)(;N(xl,...,a:N;a) = H (3?1 —.%'j)(r_l),
1<i<j<N
while the symmetric Jack polynomial satisfies
PrgN(.CUl,...,LUN;Oé): H (xz_x])r
1<i<j<N

Proof. We recall that if /(A\) = N, then
Sa(z; o) = Pas;w)(:v; a) and Py(z,a)= P(%?)\) (z,a).

The first result then follows from Proposition 4.2.6 and equation (4.2.8) for the
case with m = N and k = (). The second result also follows from Proposition

4.2.6 and equation (4.2.8), but this time, with m =0 and k = dy. O
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Example 4.2.9. In this example we show different clustering properties, by
considering first a symmetric Jack polynomial, then second an antisymmetric
Jack polynomial and finally a Jack polynomial with prescribed symmetry of type
AS and other of type SS.

e Fork=1,r=2, N =3 and X\ = (4,2,0), since that X is weakly (1,2,3)-

admissible, we have

Pl (21, 22,203, -2) = (21 — 22)* (21 — 23)* (22 — 23)°

o fork=1,r=4, N =3 and \ = (6,3,0), since that \ is weakly (1,4,3)-

admissible, we have
S6.3,0) (X1, T2, w3; —2/3) = (21 — 32)° (w1 — 23)° (22 — 23)°

o fork=1,r=2, N =3 and A = (0;4,2), since that A is weakly (1,2, 3)-

admissible,
Plosgy (w1, 9, 33 =2) = wows (w1 — w2) (w1 — @) (w2 — 23)°

e fork=1,r=2, N =4 and A = (5,3;2,0), since that A is moderately
(1,2,4)-admissible,
1
PR300)(@1, 22, 3,145 -2) = (21— 22)? (w3 — w4)* (21 — 3) (21 — 24)
X (1’2 — 333)(132 - x4)(7x1x2 + $3.T4).
The examples above illustrate that the order r is reached in the symmetric

part of the polynomial.

Now, to motivate the content of the next section, we show that there are
similar clusterings when k£ > 1. For example, by taking k =2, r =3, N =4
and A = (4,3,0,0) (notice that A is weakly (2,3,4)-admissible), we have the
symmetric Jack polynomial

Pl 0,0) (2,2, 03,74, —3/2) = (22 + 23 + 74) (2 — 24)° (2 — 3)°
and if k =2, r =3, N =5and A = (2,0;5,3,0) (notice that A is weakly
(2,3, 5)-admissible), we have the Jack polynomial of type AS:

Pl .0)(®1, 2,3, 2, 2 =3/2) = 22(21—19) (21 —2w3+m2) (11 —2)* (w2—2)* (13 —2)°
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and we can see that after the identification of k-variables of the symmetric part,

the order r is reached in the symmetric part of the polynomial.

4.3 TRANSLATION INVARIANCE

In this section, we first generalize the work of Luque and Jolicoeur about trans-
lationally invariant Jack polynomials [37]. We indeed find the necessary and
sufficient conditions that guaranties the translational invariance of the Jack poly-

nomial with prescribed symmetry of type AS. To be more precise, let

Py = PiS(xy,...,xn;0), (4.3.1)

and suppose that
a = o, (4.3.2)
A is a strict and weakly (k, r, N')-admissible superpartition. (4.3.3)

Then, as was stated in Theorem 4.3.13, P, is invariant under translation if
and only if conditions (C1) and (C2) are satisfied. The latter conditions concern
the corners in the diagram of A. The proof relies on combinatorial formulas
obtained in [26] that generalize Lassalle’s results [51, 52] about the action of the

operator

Yo
Ly=) 7o, (4.3.4)
=1

on symmetric Jack polynomials. We now apply the result about the translation-
ally invariant polynomials to prove that certain Jack polynomials with prescribed

symmetry AS admit clusters of size k and order r.

4.3.1 GENERATORS OF TRANSLATION

The action of L1 on a Jack polynomial with prescribed symmetry AS, Pfes(x; a),
is in general very complicated. However it can be decomposed in terms of two
basic operators, Qo and Q5. Their respective action on Pfes(x; a) can be trans-
lated into simple transformations of the diagram of A, namely the removal of a

circle and the conversion of a box into a circle.
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Now, let I = {1,...,m}, I ={1,....m+1}, I_ ={1,...,m—

1},

J={m+1,....,N}, Jy={m,....,N},and J_ ={m+2,...,N}. We define

Qo and Qg on 1 ® Ly For 1 <m < N,

N

Qo : Jz{l®yJ—>4f[7®yj+;f'—>(1+ Z Ki,m)f7
i=m+1

while for 0 <m < N — 1,

u“ 0
Qo: GO — iy, @S [ (1= Kimr) o

=1

0Tyt

Notice that for the extreme case m = 0, we set Qo = 0. Similarly, for m = N,

we set Qg = 0.

Lemma 4.3.1. On the space o1 @ .5, we have Qoo Qg+ QuoQn = L.

Proof. Let f be an element of & ® .%;, which means that f is a polynomial

in the variables x1, ...,z that is antisymmetric with respect to x1,...,z,, and
symmetric with respect to £, 41,...,2n. We must show that
N

Q00 Qa)()+(@a e Qo)D) = X 5

On the one hand,

(QO °© QD)(f 837m_|_1 ZZ K; m-‘rl

Tm+1

+ Z Kimi7—— 630 - Z Kjmy1 ZKZ mH@me'

j=m+2 j=m+2

However, the symmetry properties of f imply

N
> Kimng — Z
j=m+2 ax mAL o2 ax]
m N 9
ot 3 oSl =30 S
j=m+2 i=1 j=m+2
By substituting the last equalities into (4.3.6), we obtain
of al
@ooQu)f) =gt 3 L -y Z (Kijf)-

Tm+1 .

j:m+2 =1 5= m+1

(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)
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On the other hand,

N

9 0
(QooQo)(f) = 67f+ > = (Kjmf)
o j=mar T
m—1 af m—1 9 N
_ ; Ki,m% - ; Ki,m% j:;rl Kj,mf . (4.3.9)

Once again, the symmetry properties of f allow to simplify this equation. Indeed,

m—1
- oF of
Kim Ory Z ox;

i=1 =1

m—1 8 N m—1 N
and Z Kl,m% 4 Z Kme = — Z fL'Z( Z7jf)
i=1 j=m+1 i=1 j=m+1

Then,

N
(@s0Qu)(f Zaxz Y Y L aaw)

i=1 j=m+1
We finally sum equations (4.3.8) and (4.3.10). This yields equation (4.3.5),
as expected. O

The explicit action of Q5 and Qg on the polynomial P{5(z; ) can be read off
from Proposition 9 of [26] and we state it explicitely below in Proposition 4.3.2.
Indeed, this proposition is concerned with the action of differential operators —
related to the super-Virasoro algebra— on the Jack superpolynomials, denoted by
Py (z;6; ), which contain Grassmann variables 61, ...,0y. Among the operators

studied in [26], there are
0 0
1_ 9 — 7
= zl: 20, and ¢ ZI: 0; oz,

Now, a Jack superpolynomial of degree m in the variables 6;, can be decomposed
as follows [22]:

Py(z;0;0) = Z 0; - 0, fImim (2 ),
1<j1 < <jm <N

where f71-Jm(z; ) belongs to the space D jm) © L, NN seenrjm} a0 18

an eigenfunction of the operator D defined in (1.1.3). This means in particular
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that fb™(x; ) is exactly equal to our Pfes (z; ). It is then an easy exercise to
show that the formula for the action of Q on Py (z;6; o) provides the formula for
the action of Q- on P//és(x; «). Similarly, ¢Py(x; 6; ) is related to QDP/@S(JC; a).
Notice that the formulas obtained in [26] are given in terms of the following

upper and lower-hook lengths:

>
2
—
»
S—
I

Ire(s) + a(aa-(s) + 1)

(4.3.11)
A (5) = Ia+(s) + 1 + a(ape (s))

Proposition 4.3.2. [26] The action of the operators Qo and Qg on the Jack

polynomial with prescribed symmetry Py = P{S(x;a) is

@,
Qo(Pr) =S (-1* [ ] h?A)() (N+1—i+a(j—1)Py (43.12)

Q s€rowgo a ()

()
Qu(Py) =Y (- | ] L) Py (4.3.13)
Q SETOWqo hgza) (5)

where the sum is taken in (4.3.12) over all ¥'s obtained by removing a circle
from A; while the sum in (4.3.13) is taken over all s obtained by converting
a box of A into a circle. Also, in each case A and Q differ in exactly one cell
which we call the marked cell and whose position is denoted in the formulas by
(1,7). The symbol #Q° stands for the number of circles in Q above the marked
cell. The symbol rowge stands for the row of Q and A to the left of the marked

cell.

Example 4.3.3. Given A = (4, 3;2,2), through the action of Qg on Py we obtain

one Jack polynomial with prescribed symmetry indexed by the superpartition €,

O O
A= O 9, 0= O

O

and then, acting with Qo on Pq we obtain a lineal combination of Jack

polynomials with prescribed symmetry indexed by the superpartitions I,
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@ RN T TIO 11110
O O

O O O O

|
Q= O Q_O>r3— O

. ®

But if we act first with Qo on Py we obtain a lineal combination of two Jack

polynomials with prescribed symmetry indexed by the superpartitions €,

® | [ 1O O
= [ IRy

and then acting with Qg on each Po we obtain a new lineal combination of Jack

polynomials with prescribed symmetry indexed by the superpartitions I,

| | @, @,

O s, = O Q) = Qo, 1,

/
1=

=
I

Q) = , oy [ [ O

Algebraically we have

Qo(QuPr) = dar,caoPr, +dor,caoPr, + dorseaoPr,
Qo(QoPa) = dor ryea o Py + day a0, Pry, + day a0, Pr-

where the coefficients ¢ and d are obtained from the product of hooks specified in
4.8.12 and 4.3.13.

Remark 4.3.4. Let A be a superpartition such that in the corresponding dia-
gram, all corners are boxes. Then, in equation (4.3.12), we cannot remove any

circle from the diagram of A and we are forced to conclude that QoPy = 0. This
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s coherent with the fact that in such case, Pfs(x; «) is a symmetric polynomial
and according with our convention, Qo f =0 for all f € S, Ny

Similarly, if A is a superpartition such that in its diagram, all corners are
circles, then we cannot transform a box in the diagram of A into a circle. This
is coherent with our convention. Indeed, in such case, P{S(z;a) is an antisym-

metric polynomial and we have set Qnf =0 for all f € 1 Ny

4.3.2 GENERAL INVARIANCE

In this section we determine whether a Jack polynomial with prescribed symme-
try is translationally invariant by looking at the shape of the diagram associated
to the indexing superpartition. We pay a special attention to the corners in the

diagram.

Definition 4.3.5. Let D be the diagram associated to the superpartition A. The
cell (i,j) € D is a corner if (i+1,j) ¢ D and (i,j + 1) ¢ D. We say that the
corner (i,j) is an outer corner if the row i — 1 and the column j —1 do not have
corners. We also define a corner (i,j) to be an inner corner if the row i — 1 and
the column j — 1 have corners. A corner that neither outer nor inner is called
a bordering corner. Note that in the above definitions, it is assumed that each

point of the form (0,7) or (,0) is a corner.

Example 4.3.6. In the following diagram we specify the corners and corner’s

type (outer c., inner c. or bordering c.).

' nner c.

& outer c.

mner c.

D bordering c.

Lemma 4.3.7. Let D' be the diagram obtained by removing the corner (i,j)
from diagram D, which contains ¢ corners. Then, the number of corners in D’

18:

o c—1if(i,7) is an inner corner;
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e ¢ if (i,7) is a bordering corner;
e c+1if(i,7) is an outer corner.

Proof. This follows immediately from the above definitions. O

Lemma 4.3.8. Assume (4.3.1), (4.3.2), and (4.3.3). Then, Qa(Pxr) =0 if and

only if A is such that all the corners in its diagram are circles.

Proof. According to Proposition 4.3.2, Q5 (P ) vanishes if and only if each corner
of A is either a circle or a box located at (i,7’) such that for some j < j', we

have
h’g\akm) (Zaj) = ZA® (,Lv.]) + ak,?‘(a/\* (Zaj) + 1) =0

Now, hAak’T)(i,j) = 0 only if for some positive integer k, we have ax-(i,j) +
1 =k(r—1) and lye(i,j) = (k + 1)k. This implies

AP = A rerny Shr— k. (4.3.14)

i} _
R D) > kr. More-

> kr. This inequality contradicts

On the other hand, Lemma 3.1.2 implies that Al@Jrl —A
over, AY > AY, so that A} — A:+E(k+1)
(4.3.14).

Therefore, if A is a (k,r, N)-admissible superpartition, Qg (Pa) vanishes if

and only if all the corners in A are circles. O

The conditions for the vanishing of the action of Q- on a Jack polynomial
with prescribed symmetry are more involved. They require a finer characteriza-

tion of the different types of hooks formed from the corners of the diagrams.

Definition 4.3.9. Let D be the diagram associated to the superpartition A. Let
(i,7) € D be a circled corner. We say that (i,7) is the upper corner of a hook of

type:
a) Ci, if the boz (1,5 —r) € D and it satisfies [+ (i,j —1) = lpo (i, —1) = k;

b) Cr if the box (i,j —r) € D and it satisfies In+(i,§ — ) = k together with
lho(iyj—1)=k+1.
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Similarly, when (i,j) € D is a boxed corner, we say (i,7) is the upper corner of

a hook of type:
c¢) By, if the box (i,j —1) € D and it satisfies In«(i,5 —1) = lpe(i,j —1) = k.

d) By, if the box (i,j —r) € D and it satisfies Ix<(i,5 —r) = k together with
lpo(i,j—71)=k+1.

The hooks are illustrated in Figure 4.1.

Let us consider a concrete example. For this we fix k =4, r =3 and N = 18

and we consider the following (4, 3, 18)-admissible superpartition:

©

O

Each cell marked with a star is the upper corner of one of the four types of hooks.

The first one, located at the position (1,11), is the upper corner of a hook of
type (5’4,3. The second, located at the position (6,8), belongs to a hook of type
C4,3. Similarly, the third and the fourth corners, are the upper corners of hooks

of type 34,3 and By 3, respectively.
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Lemma 4.3.10. Assume (4.3.1), (4.3.2), and (4.3.3). Then, Qo(Pr) = 0 if

and only if each corner in the diagram of A is either:
(i) a box;
(1t) a circle and the upper corner of a hook of type Cy, or C’km;

(iii) a circle with coordinates (i,7) such that i = N + 1 —k(k + 1) and j =
k(r — 1) + 1 for some positive integer k.

Note that there is at most one corner (i,7) satisfying the criterion (iii).

Proof. According to Proposition 4.3.2, Q~(Py) = 0 iff, each corner (i, j) satisfies

at least one of the following criteria:

1. the cell (4, 7) is a box;

2. the cell (i, ) is a circle and there is a j < j such that h) (i,7") = 0, where

hY (i,5") = lo=(4,7") + 1 + aur(age (i, ') and Q is the diagram obtained

from A by removing the circle in (7, j) ;
3. the cell (i,7) is a circle and it is such that N +1 — i+ a,(j — 1) = 0.

The first criterion being trivial, we turn to the second. Obviously, hgz)(i, =0
iff there exists a positive integer k such that age (i, ') = k(r —1) and lg« (i, j') =
k(k+1)—1. The first condition is equivalent to j—j’ = k(r —1)—1. The second
is equivalent to say that A:—‘,—E(k—‘rl)—l > 4/ and that the cell (i+kk+k,j') is empty
or a circle. Suppose further that & = 1. Then, we have shown that hgz)(i, i =0
iff j' =j—r+2, A, > and AY | <j (e, A, <j orAY, ,=7"),
this corresponds to the two hooks given above. Now, suposse k = 2. On the one

hand, we have A 1 > =j—2(r—1)+1=A7 —2(r—1)+1, ie,

AY — A opyq <2r—3. (4.3.15)

)

On the other hand, the admissibility requires AY — A >rand A — A7 5 >
r — 1. Then,
AP — A opi1 =AY — Af o >2r — 1 (4.3.16)

Inequalities (4.3.15) and (4.3.16) are contradictory, so we conclude that & cannot
be equal to 2. In the same way, one easily shows that k cannot be greater than
2.
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Now consider the third criterion. As N +1 — ¢ > 0, the factor N +1 —
i+ g, (j — 1) vanishes iff j = k(r — 1) +1 and N = i+ k(k + 1) — 1, for
some positive integer k. Now suppose there is another corner (i,;’) such that
N+1—i+ap.(j’—1). Then, i/ =k(r—1)+1y N=4+k(k+1) -1, for
some positive integer k. Without loss of generality, we can assume i < i/, which
implies j > j', i.e. k> k. Let n =k —k’. Then, j —j' = AY — A =n(r — 1),
which implies AY —A} = n(r—1)+1. Using N = i+k(k+1)—1 = i'+k'(k+1)—1,

we get i/ =i+ n(k+1). Also, AY — A ey > AP — A}, ., thus
AP — Af o <n(r—1). (4.3.17)

However, by using the admissibility and the fact that
AP =Ny = A7 = A A= Ao A ot AT gy — A (43.18)
one easily shows that

A=Ay >r+(n—1)(r—1)=nr—n+1. (4.3.19)

)

Obviously, equations (4.3.17) and (4.3.19) are contradictory. Therefore no more
than one corner is such that N +1—i+4 oy ,(j — 1) = 0. O

Corollary 4.3.11. Assume (4.3.1), (4.3.2), and (4.3.3). Suppose moreover that
the last corner in A’s diagram is a circle. Let (¢,7) the coordinates of the last

corner. Then, Qo(Pr) =0 only if N =0+ k and j =r.

Proof. According to the previous proposition, as (¢, j) cannot be the upper corner
of a hook, Qo (Pp) = 0 only if the condition (iii) is met for the corner (¢, j). This
means that Qo(Py) =0 only if ¢ = N +1—k(k+1)and j = k(r — 1) + 1 for
some positive integer k. Now, the admissibility condition requires ¢ + k > N,
ie.,

N+1—k(k+1)+k>N.

This is true iff k = 1. Thus, Qo(Pr) =0 only if { = N —k and j = r. O

Proposition 4.3.12. Assume (4.3.1), (4.3.2), and (4.3.3). Then, Py is invari-
ant under translation if and only if Qu(QoPr) =0 and Qo(QPy) = 0.
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Proof. Clearly, Py is translationally invariant iff L, (Py) = 0. Moreover, we
know from Lemma 4.3.1 that Ly(Pr) = Qu(QoPr) + Qo(QnPa). Thus, if
Qu(QoP) =0 and Qo(QP) =0 then Ly P =0.

It remains to show that if L P = 0, then Qp(QoPr) = 0 and Qo (QpPr) =
0. In fact, we are going to prove the contrapositive: if Qn(QoPr) # 0 or
Qo(QuPa) # 0 then L P # 0. However, if Qn(QoPa) # 0 and Qo (QpPy) =
0, or if Qu(QoPr) = 0 and Qo(QgPr) # 0, then automatically Ly Py # 0.

Consequently, we need to prove the following statement:

Qu(QoPr) #0 and Qo(QuPr) #0 =  QuQo(Pr) + QoQu(Pr) # 0.
(4.3.20)

We assume that Qo(QoPp) # 0 and Qo (QuPr) # 0. Then, Qo Py # 0 and
QoPr # 0. According to Lemma 4.3.10, the first equation implies that there is
at least one circle in the diagram of A that does not satisfy the conditions (ii)
and (iii). Let (i,j) denote the position of such a circle. Moreover, according to
Lemma 4.3.8, the second equation implies that there must be at least one boxed
corner in the diagram of A. Let (i,7) be its position.

Let T be the superpartition obtained from A by removing the circle (i, )
and by converting a box (i, 7) into a circle. There is only one way to get Py by
acting with QpQo on Pp by acting with QnQg on Py. Thus, it is enough to
verify that the coefficients of the polynomial Py in the expansions of Qn(QoFPa)
and QoQg(Py) are not the same (up to a sign).

Let Q' be the superpartition obtained from A by removing the circle in
(,7). Clearly, the coefficient of Py in Qn(QoPa) is equal to the product of two
coefficients: cy g1, the coefficient of Pq1 in Qn(Py), and bo v, the coefficient of
Py in Qn(Pq). Similarly, if Q2 denotes the superpartition obtained from A by
converting the box (i, j) into a circle, then the the coefficient of Py in Qo (QgPa)
is the product of the two following coefficients: by o2, the coefficient of Pn2 in
Qo Pa, and coe2 v, the coefficient of Py in Q- (Pg2). In short,

QDQO(PA) = CA’QI bﬂl,T P’r + ... (4321)
QOQD (PA) = bA,QQ CQQ,T P’r + ... (4322)
where ... indicates terms linearly independent from Py. We recall that the

coeflicients b and ¢ can be read off the equations in Proposition 4.3.2.
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Now, we need to distinguish two cases: (1) the box is located above the circle
in the diagram of A, which means i < 4, and (2) the box is located under the
circle in the diagram of A, which means i > i.

Suppose first that the box is located above the circle, i.e., i < i. Obviously,
b, o2 is not zero. Moreover, cq2 v is equal to ¢y g1 . This can be understood as
follows. These coefficients depend only on N, the coordinates of the marked cell,
which are (7, j) in both cases, and on ratios of hook-lengths for the cells in the
row to the left of the marked cell. Given that the marked cell is below the cell
(i,7), the hook-lengths involved in the coefficients are not affected by any prior
transformation A — 2, so the coefficients are equal. The situation is not so
simple for by o2 and bg1 v, so explicit formulas for these coefficients are required.

Up to a sign, they are

AR K, 1)
dA,92 = H % , dQl}T = H ?alf (4323)
1<I<j—1 hos (i,1) 1<I<j—1 hy ' (,1)

It is important to note that
PG = b0 VI<I<j-1, 1#]
and for [ = j we have

WG =G =i +af—j+1)

o o - (4.3.24)
hﬂl(%]):(Z_Z_l)—’_a(j_]—i_l)
Also, for | # j,
h) @) =rI G0 vi<i<j-1,
while for [ = j,
W)@, 5) = (i~ +alf—j
o2 (6,7) = (i —4) + a(j — j) (4.3.25)

W (E9) = (i =i = 1) +a(j - j).

After having made basic calculations, we see that the coefficients by g2 and bo1

are equal iff & = 0. We thus conclude conclude that by g2 # 4bg1 v, which in
turn 1mphes that CA,Ql le;r + bA,QQ CQQ,Y 7é 0.

The second case, for which the square is located under the circle in the A

diagram, is very similar to the case just analyzed. The only difference for the
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second case is that by g2 = b1 v and co2 v # Fcp o1 Nevertheless, this implies
once again that CA,Ql le}’r + bA,QQ CQQ,T 75 0.

In conclusion, we have proved equation (4.3.20) and the proposition follows.

O

For instance, fixing k = 2, r = 3, N = 5 and n < 10 we get 18 admissible

superpartitions:
(4,2:3,0,0), (4,3,2;0,0), (4,2,0;3,0), (4,3,2,0;0), (2;5,3,0,0), (5,2;3,0,0),

(3,2;5,0,0), (2,0;5,3,0), (4,2;4,0,0), (5,3,2;0,0), (5,2,0;3,0), (3,2,0;5,0),
(47 270; 47 0)7 (47 3727170)7 (5? 37 270; 0)7 (47 37 27]‘;0)7 (47 3? 2?0; 1)7 (4? 37 27]‘70; ®)

which 6 indexed Jack polynomials invariant under translation:

(2:5,3,0,0), (4,2;3,0,0), (4,2,0:3,0), (4,3,2;0,0), (4,3,2,0;0), (4,3,2,1,0;0).

In the following theorem we give the necessary and sufficient conditions that
characterize the Jack polynomials with prescribed symmetry which are invariant

under translation.

Theorem 4.3.13 (Translation invariance). Let A be a strict and weakly (k,r, N)-
admissible superpartition. Then, the Jack polynomial with prescribed symmetry
Pfs(a:; ag,r) is invariant under translation if and only if one of the following two

conditions is satisfied:

(C1) all corners (circles or bozes) of A are located at the upper corner of a hook
of type By r, Bk,b Ck,r, or C’k,l, except for one corner, which must be located
at the point (N — k,r);

(C2) all corners of A are circles such that if they are not interior, they are
located at the upper corner of a hook of type Cy, or CN'M, except for at

most one non-interior corner (i,j), which is such thati = N+1—k(k+1)

yj=k(r—1)+1 for some k.

Types of hooks are given in Figure 4.1. Interior and non-interior corners are
defined in Definition 4.3.5.
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Figure 4.1: Types of hooks. From left to right, Cj,, ék,r, By, and Bk,r

-0 O L] REN

Proof. In what follows, Py = Pr(x1,...,ZN;ap,), where A is as in (4.3.3). We

suppose moreover that the diagram of A contains exactly m circles.

According to Proposition 4.3.12, P, is invariant under translation iff it be-

longs simultaneously to the kernel of Qg o Q¢ and that of Qq o Q.

Consider first QnoQo(Pa) = 0. It is clear that QnoQo(Pa) = 0iff Qo (Par) =
0 or, according to lemma 4.3.8, Q- (Pp) generates Jack polynomials indexed by
superpartitions whose corners are all circles. On the one hand, Qo (Py) = 0 iff
A belongs to the set B formed by all superpartitions satisfying conditions (i), (ii)
and (iii) of Lemma 4.3.10. On the other hand, Q(Px) # 0 and Qp o Qo (Pa) =
0 iff each corner of A is a circle such that if we delete it, we obtain a new
superpartition whose corners are all circles, except possibly some that satisfy
the conditions ii) or iii) of Lemma 4.3.10 (by assumption not all circles of A
satisfy these conditions). We call C the set of all such superpartitions. Now, by
Lemma 4.3.7, the elimination of a circle does not create a corner with box iff the
circle is an inner corner. Then, C is given by the set of all superpartitions whose
corners are all inner circles except possibly some that satisfy the conditions ii)
or iii). It is interesting to note that the only superpartition having only circled
inner corners is the staircase 0,, = (m —1,m — 2,...,1,0;0), which is (k,r, N)-
admissible if N < k, or N > k and k > r — 1. Therefore, Qg o Qo (Pp) = 0 iff A
belongs to the set B, or the set C.

So far, we have shown that Qo Qo(Py) = 0 iff A € BUC. It remains to
determine the subset A C BUC such that A € A = L, (Py) = 0. The simplest

case is A € C. Indeed, since all corners of A are circles, we automatically have
Qu(Pr) = 0, which implies Qo 0 Q(Pr) =0 and Ly (Py) = 0.
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We now suppose that A € B. We want to determine the necessary and
sufficient criteria for QooQg(Pa) = 0. On the one hand, we know that Q5 (Py) =
0 iff all corners of A are circles. Therefore, Qo (Py) = 0 and A € B iff all corners
are circles that satisfy conditions (ii) and (iii) of Lemma 4.3.10. Now, if A € B
and has at least one boxed corner in (7, j), then Qg(Pa) does not vanish and
generates Pq, where () is the superpartition obtained from A by converting the
box (i,7) into a circle. Now, Qo (Pq) vanishes iff all corners of €2 satisfy any of
the three conditions of Lemma 4.3.10. Since by hypothesis A already complies
with these conditions, Qo (Pqn) = 0 iff (7,7) in Q is the upper corner of the hook
C,r or CN';M, or it is such that s = N +1 — k(k+ 1) and j = k(r — 1) + 1 for
some positive integer k (what is possible only once). Applying this result to each
boxed corner of A, we get Qo(Qa(Pa)) = 0 iff each boxed corner of A is the
upper corner of a hook By, or Bk,r, or it is such that 1 = N +1 — l_c(k: +1) and
j = k(r — 1) + 1 for some positive integer k.

Finally, let (¢,7’) the coordinates of the last corner A € B. Obviously, if
there is a circle in (¢, 7), this circle also corresponds to the last corner of any
superpartition € indexing the Jack polynomials generated by Qo (P ). According
to Corollary 4.3.11, we know that Qoo Qn(Pr) =0only if /= N —k and j = .
On the other hand, if the last corner A is a box, it is known that Qg(P)
generates a Pq such that the last corner of € is a circle, so we have once again
that Qo 0o Qo(Pr) =0 only if ¢ =N —k and j =r.

In summary, Qg o Qo(Pr) =0 and Qo o Q(Pa) = 0 iff: 1) all corners of A
are circles, which are inner corners, except possibly for some circles that satisfy
the conditions (ii) and (iii) of Lemma 4.3.10; or 2) the last corner of A is located
in (N —k,r) and all other corners of A are the upper corners of hooks type By,
Bk’r, Ck,r or C~’k77~. O

4.3.3 SPECIAL CASES OF INVARIANCE

The previous theorem clearly shows that for n, m, k, r, and N, the number
of ways to construct superpartitions that lead to invariant polynomials could
be enormous. In general such superpartitions do not have a explicit and com-
pact form. There are two notable exceptions however: (1) when we are dealing

with conventional partitions (no circle in the diagrams), which was studied by
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Jolicoeur and Luque (see [37]), and (2) when the maximal length N of the su-
perpartition is bounded as N < 2k. Below, we derive in a simple way one of
their results, in the following corollary to 4.3.13. For the second case, we identify

three simple forms of superpartitions associated with invariant polynomials.

Corollary 4.3.14. Let P\ = P\(z1,...,2N; 04,), where X is a (k,r, N)-admissible

partition. The polynomial Py is invariant under translation if and only if

A= (((B+Dr) (Br)F, "),
where 0 < 3, 0<1 <k, and N=k(f+1)+1.

Proof. As a consequence of Theorem 4.3.13, we have that P, is invariant under
translation iff the last corner of \’s diagram is located at position (N —k,r) and
all remaining corners are upper corners of hooks By .. Thus, P is invariant iff
A= (((B+ 1)) (Br)F, ..., r*) with 0 < 3. The admissibility condition requires
0 <! < k. Finally, the condition on the position for the last corner imposes
N=Fk(B+1)+1. O

Corollary 4.3.15. Assume (4.3.1), (4.3.2), and (4.3.3). Suppose moreover that
A’s diagram contains m circles and that N < 2k. Then, Pa is invariant under

translation if and only if A has one of the following forms:
(F1) A= (0;rNF);

(F2) A = (m —1,m —2,...,1,0;0), where m < N <k or N—-12>k >
N-m+r—-1

(F3)) A=(r+f—-1,r+f—2,...,r—1,g—1,g—2,...,1,0;7N"F=™)  where
m=f+g+1,0< f<N-k—-1, 0<g < min(k,r —1) and
f>g+N—2k—1.

These forms are respectively illustrated in Figures 4.2, 4.4, 4.5 below.

Proof. Let us start with the sufficient condition. According to Theorem 4.3.13,
if A is of the form (F1), (F2) or (F3), then Py is invariant under translation.

Indeed, (F1) trivially satisfies (C1); the only corners in (F2) are inner circles, so
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(F2) satisfies (C2); in (F'3), all corners are inner circles, except one circle located
at (N — k,7), so it satisfies (C2) with k = 1.

We now tackle the non-trivial part of the demonstration, which is the nec-
essary condition. For this, let (¢, ) be the last corner of the A diagram. There
are two obvious cases, depending on whether (¢, j) is an inner corner or not.

First, we suppose that (¢, j) is a bordering corner or an outer corner. Ac-
cording to Theorem 4.3.13, P, is invariant under translation only if N +1—/¢+
apr(j —1) =0, where o, = —(k+1)/(r — 1). Since N +1 —¢ > 0, we must
assume that j — 1 = j(r — 1), where j is a positive integer. Then, the invariance
condition requires N = £ + j(k + 1) — 1. However, by hypothesis, N < 2k, so
j =1 (i.e., j = r). Therefore, the invariance condition and N < 2k impose j = r
and ¢ = N — k < k, which is compatible with the admissibility. Now, let (i, ¢')

be the first corner of A diagram. Once again, two cases are possible:

1. (i,¢) is a box. Suppose (i,¢") # (¢,7). According to Theorem 4.3.13, Pp
can be invariant only if we can form a hook By, or Bk,r whose respective
lengths are either k4 1 or k£ + 2, which is impossible because ¢ < k. Then,
the only possible squared corner is the last corner. Thus, the invariance
and admissibility conditions impose that the diagram is made of N — k

rows with r boxes, corresponding to the first form of the proposition.

2. (i,0') is a circle. Referring again to Theorem 4.3.13 and recalling that
¢ < k, we see that P, is invariant under translation only if (i,¢") = (¢, j)
or if (i,¢') is a inner circled corner. The first condition imposes A = (r —
1;7V=F=1). The second imposes that only criterion (C2) can be considered,
so all remaining corners must be circled inner corners. Consequently, A =
(r+m—2,r+m—3,...,7,7—1;7N=F=™) for some 1 < m < N — k. This
is illustrated in Figure 4.3

Second, we suppose that (¢, j) is an inner corner. This implies that j = 1 and
as a consequence, criterion (C1) of Theorem 4.3.13 cannot be satisfied. Thus, the
only option is that the last corner is a circle and criterion (C2) must be satisfied:
all other corners must be inner circles, except for at most one corner, which can

be a bordering or outer circle, located at (1,J), and such that 1= N +1—k(k+1)
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Figure 4.2: Form (F1)

Figure 4.3: Form (F3) with ¢ =0

N—-k—m-+1

and J = k(r—1)+1 for some positive integer k. However, we know that T < ¢ < 2k,

so that & = 1. In short, if (£, ) is an inner corner, then all corners are inner
circles, except for at most one non-inner corner, which could be a circle located
at (N — k,r). If all corners are inner ones, without exception, then the only

possible superpartition is
A=(m-1m-2,...,1,0;0), m <N,

which is the form (F2) illustrated in Figure 4.4. Finally, if there is one exceptional

corner, then all possibles superpartitions can be written as
A= (T-l-f—1,T—1—f—2,...,r,r—179_1’g_2’_”’0;rN—k—f)’

where

f+g+1:ma g<7", ggkv f<N—k
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This is the last possible form and it is illustrated in Figure 4.5. Note that the
admissibility imposes some additional restrictions on the forms (F2) and (F3).
The form (F2) is admissible whenever N < k, while for N > k, it is admissible
if N+7r—m—1<k. In the case of (F3) (see Figure 4.5), the admissibility also
requires f > g+ N — 2k — 1.

Figure 4.4: Form (F2)

@,
O

3

Figure 4.5: Form (F3)

r f

g@

We have demonstrated that only three forms of admissible superpartitions

lead to invariant polynomials when N < 2k. O
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4.4 THE CLUSTERING CONDITION FOR k > 1

Baratta and Forrester have shown that if symmetric Jack polynomials are also
invariant under translation, then they almost automatically admit clusters [8].
In what follows, we generalize their approach to the case of Jack polynomials

with prescribed symmetry.

Proposition 4.4.1. Let Py(x1,...,2n;ak,) be a Jack polynomial with pre-
scribed symmetry AS, where A is as in (4.3.3) and of bi-degree (n|m) and such
that N > k +m+ 1. Suppose moreover that A is such that Py(x1,...,oN; )

1s translationally invariant.

(i) If ¢((A) > N — k then

Pp(z1,...,2N; 0 y) =0.
TN _k41=...=TN=Z
(i) If ¢(A) = N — k then
N—k
Pr(z1,.. . 2N o) = H (s — 2)"Q(x1, ..., TN, 2)
TN k1= . =TN=Z Bt

for some polynomial Q of degree n — (N — k —m)r.

Proof. From the admissibility condition, we know that Py (x; o) is well defined.
Moreover, the condition N > k 4+ m + 1 ensures that the specialization of the k
variables takes place in the set of variables in which P, is symmetric. In other

words, if a is not a negative rational nor zero, then

£0.

TN—k4+1=-.=CN=Z2

Py (z; )

Thus, property (i) is not trivial. However, if we suppose that P (z;ag,) is

translationally invariant, then

PA(xla-' . 7xN;ak,7“) = PA(ﬂfl Ry s TNk — 2707"'>O;ak,r)
IN—k+1=---=TN=Z
(4.4.1)
Now, by the stability property given in Lemma 2.4.6, the last equality can rewrit-
ten as
Pr(z1,. .. oN; apy) =Pr(z1— 2, ,aN—k — 2 0y). (4.4.2)

TN—kt1=...=TN=Z2

From this point, two cases are possible:
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(i) If ¢(A) > N — k, Lemma 2.4.6 also implies that the RHS of (4.4.2) is zero,

as expected.

(ii) If £(A) = N — k, then the RHS of (4.4.2) is not zero. From the triangu-
larity property of the Jack polynomials with prescribed symmetry in the

monomial basis, we can write

Py(z1—2,...,aN—k — Z;08,) =MA(T1 — 2,.. ., TN_f — Z)
-+ Z carmr(x1 —2,...,TN_f — 2).
I'<A

Moreover, according to Theorem 4.3.13 and Lemma 4.3.11, the last corner
in A’s diagram is located at (N —k,r). This fact, together with ¢(T") = N—k
and N > k+m+ 1, impose that

Ay_p>r and TI'y_p>r forall T <A.

Hence, Hfi;ﬁ_l(azl — z)" divides mp for each mp such that I' < A. This
finally implies that Hz]i;fﬂ(% —z)" divides Pr(21—2,...,TN_f — 2; ),

and the proposition follows.

The last proposition establishes the clustering properties conjectured in [26]
in the case of translationally invariant polynomials. The next proposition shows
that in this case, it is also possible to get more explicit clustering properties
involving only Jack polynomials and not some indeterminate polynomials @Q as
before. Note that in some instances, we only form cluster of order r — 1. We
stress that this is not in contradiction with the previous proposition. Indeed,
more variables could be collected to get order r, but this factorization would not
allow us to write explicit formulas in terms of Jack polynomials with prescribed

symmetry.

To illustrate what was mentioned in the last paragraph, we consider the
following examples, by taking k = 3, » = 2, N = 7, and a;, = —4. It can be
checked that:
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o if A =(2,1,0;2,2,0,0), then Px(z;ay,) is translationally invariant and

moreover

PA(-flv X2y ..., ak,r)’x5:x6:$7:z =0
while

Pr(z1, 22, .., 075 Ok p ) [w3 =g =27 =2 = ($1—Z)(902—2)($4—Z)2($5—Z)2(331—CB2)
= H (x; — 2) - (1 — z2) (g4 — 2) (x5 — 2)
1<i<5
A3
= H (5 — 2) - Py(21 — 2,22 — 2,04 — 2,75 — 2)
1<i<5
i#£3

where A = (1,0;1,1).

e Now, if A =(1;3,2,2,0,0,0), then Py(z;ag,) is translationally invariant

and moreover

PA(xla L2y evey X735 ak,””)|375:936:1722
= —(z1 — 2)(z2 — 2)2(x3 - 2)2(354 — 2)2(33:1 — T9 — T3 — T4)

= H (i —2) - (w2 — 2)(x3 — 2) (24 — 2)(Bx1 — 2 — T3 — T4)
1<i<4

= H (w5 — 2) - Py(w1 — 2,22 — 2,03 — 2,24 — 2)
1<i<4

where A = (0;2,1,1).

Proposition 4.4.2. Let Py(x1,...,zN) be a Jack polynomial with prescribed
symmetry AS at o = ., where A = (A1, ..., Ay Ay, .., AN) is as in (4.3.3)
and of length £ < N. Suppose that the partition (Ap41, - .., AN) contains fo parts
equal to 0. Suppose moreover that A is such that Ax_jy =1 and Pp(x,...,zN)

1s translationally invariant.
(i) If Ay, > 1r or m =0, then

Pp(z,...,zN) = H (i — 2)" - Py_pe(71 — % s TN—fo —z).

IN—fo+1=--=TN=2
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(ii) If Ay, =7 — 1, then

N—fo
Py(z1,...,2N) = [ @—2)"""Pa_oiy(@r—2,. an—2),
QCN_f0+1:...:.Z’N:Z im1
(ii) If Ay, = 0, then
Pp(z1,...,zN)
ﬂCnL:l‘N_f0+1:...:$N:Z
= H (i —2)" Pr(x1— 2, -, Tl — 2, Tmgl — 2, -+, TN fo — )
1<i<N-—fo
i#Em

where

v=min(r, Ap_1), A=CA—0"D and CA=(Ar,...,Ap_1;Apst, - AN).

Proof. Proceeding as in the proof of the previous proposition, we use the trans-
lation invariance and the stability of the Jack polynomials with prescribed sym-
metry, and find

Pp(z1,...,zN) =Pr(z1—2,...,&N—f) — 2). (4.4.3)

TN fo 1= mUN=2
(i) f Ay—f, =7 and m =0 or m > 0 and A, > r, then we can decompose the
superpartition A as
A=A+ rt

where A is some other superpartition, which could be empty, and ¢ denotes the
partition (r,...,r) of length ¢. This allows us to use Lemma 2.4.4 and factorize
the RHS of (4.4.3). This yields, as expected,

N—fo
PA(xl,... ,.ZCN) = H (-Tz - Z)T : PK(xl — %, IN—fo — 2’)
i=1

CEN,fO+1=...=.’L'N=Z

(ii) If ANy—f, = r and A,;, =7 — 1, then A can be decomposed as

A=A+ (r—1)
where, this time, Ais a non-empty superpartition of length ¢ and such that
A, = 0. Using once again Lemma 2.4.4, we can factorize RHS of (4.4.3) and
get the desired result:

N—fo
Pp(z1,...,2N) = H (z;—2) " -P;\a)(azl — 2y IN—fy — Z)-

TN — =..=TN=Z R
N—fo+1 N o1
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(iii) Finally, we suppose Ax_g, =7, Ay, = 0, and v = min(r, Ay,—1). In equation
(4.4.3), we set x,, = z. This yields
Pp(z1,...,zN)
Tm=TN_fy+1=--=TN=2

=Ppr(z1— 2, Bt — 2,0, Tmq1 — 2, .., TN_fy — 2).

According to Lemma 2.4.8, the RHS of the last equation can be simplify as
follows
PA(.%'l, e ,[IJN)
LBm:IN,fO+1=...:IEN=Z

=Pz (1= 2, Tl — 2, Tl — 2, ON—fy — 2). (4.4.4)
Now, we can decompose CA as
CA=A+ v,

for some superpartition A whose length is smaller or equal to £ — 1 . This allows
us to exploit Lemma 2.4.4 and rewrite the RHS of (4.4.4) as

m—1 N—fo

H (r;—2)"- H ($i—z)”-P/£\a)(x1 — 2y Tl — 2, Tl — 2y EN—fy — Z),
i=1 i=m+1

which is the desired result. O

Let us consider a non-trivial example in relation with the last proposition.
We choose k =2, r=3and N =8. Let A = (8,7,5;6,3,3), i.e.

O
O

A= @)

Clearly Pp(x;—3/2) is translationally invariant. Proposition 4.4.2 then yields

Py(z1,..., 28, —3/2)

6
= H($1 - 2)3P%_3/2)(x1 — 2y, X6 — 2)
i=4

Tr=r8=2

where A = (5,4,2;3), i.e.,

O
i @)
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Moreover, Px(z;—3/2) is also translationally invariant in N=N-k=26

variables, so that

PK(xl —2,...,m — 2;—3/2) = PK(:El, oo, me; —3/2).

Therefore,

6

- 1_[(‘77z - Z)SPK(JUL ceyTe; —3/2).
i=4

Py(z1,..., 285 —3/2)

T7=r8==2

The last example is very special because it involves a pair of superpartitions
satisfying the following bi-invariance property: A and A = A — 7! are such
that both Py(x1,...,zn;0k,) and Py(z1,...,2N_k;0,) are invariant under
translation. In fact, one can check that the diagrams given below define a large
family of pairs of superpartitions satisfying this bi-invariance property. By using
Theorem 4.3.13 we find sufficient conditions over A and A that allow preserve the
translation invariance of Pp(z1,..., 2y} ok,) and Pi(21,...,2N—k; ag,). These

diagrams are shown below.

Figure 4.6: From left to right, the diagrams of A and A.
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CHAPTER 5

MACDONALD POLYNOMIALS WITH PRESCRIBED SYMMETRY

In this final chapter we study the Macdonald polynomials with prescribed sym-
metry. Most of the results in this chapter are based on the fact that the
Macdonald polynomials with prescribed symmetry can be expressed as a lin-
ear combination of non-symmetric Macdonald polynomials (see [1]). Following
the scheme of the Jack polynomials with prescribed symmetry, we prove their
stability and regularity properties. Also, since the Macdonald polynomials with
prescribed symmetry are defined from the non-symmetric Macdonald polynomi-
als, we use vanishing conditions for non-symmetric Macdonald polynomials (see
[39]) to prove clustering properties for Macdonald polynomials with prescribed

symmetry.

The results presented in this chapter about the Macdonald polynomials with

prescribed symmetry have not yet been published.

5.1 NON-SYMMETRIC MACDONALD POLYNOMIALS

In this section, we introduce the non-symmetric Macdonald polynomials, which
are a g-generalization of the non-symmetric Jack polynomials. After their defi-
nition, we recall their stability property, which will be used in the next section
to prove the stability property of the Macdonald polynomial with symmetry AS
or 5.

The non-symmetric Macdonald polynomials, like the non-symmetric Jack
polynomials, can be defined in various ways. One way is to characterize them as

triangular eigenfunctions of the Cherednik operators, through a combinatorial

99
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formula (see [35]) and the other way is through a recursive formula (see [3]).
In order to show the recursive formula, we introduce new operators. These
operators are the g-analogous of the Dunkl operators, which were considered to

define the non-symmetric Jack polynomials.

Let us first remark that the action of the g-shift operators, denoted by 7;, on

the function f in N-variables is given by
Tif(x1, .. 2. xn) = f(x1, ..., qTi, ..., TN), i=1,...,N.

We need also to consider the Demazure-Lustig operators defined by

tr; — xiq1

Ti:t—ki(si—l), i=1,...,.N—1
Ti — Ti+1
tey —

T():t—i-Hil(So—l)
qrN — X1

where s; € Sy is the transposition that exchanges ¢ and ¢ + 1, which acts on the

functions of N variables, through

Sif(ﬂfl, ey Lj—15 T4y Ty41y - - .,xN) = f(a:l, ey Li—1y Tj4+15 Ly - - .,:EN), 1 S 7 S N-1
(5.1.1)
and where 80:81]\]7'17';[1,With siy such that sy f(z1,...,2n) = f(zN,...,21).

Also, we must define the w operator,
Wi=8N-1...82817T1.
The above operators, T; (0 <i< N —1) and w satisfy the relations

(Ti =t)(T; +1) =0
LT Ty = Ty 1T
T =TyT, Wi j| >
wl; =T; w.

We can check that from the first relation, we get the identity T;l =t1-14
t~1T;. Moreover, the operators T; (0 < i < N — 1) and w generate the affine
Hecke algebra.

In order to give the recursive definition, we must still introduce a new opera-

tor. It is the g-analogue of the raising operator ® introduced by Knop and Sahi
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in [47], and it is defined by

O, = NIy, .. Ty T

It is sufficient to consider ®, and 7T; operators to get the non-symmetric
Macdonald polynomials. Baker and Forrester proved in [3, Corollary 4.2] that
the operator ®, acts on non-symmetric Macdonald polynomials in the following
manner

O,E,(z;q,t) = t*#{mzm}Eq)n(x; q,t) (5.1.2)
where &1 := (n2,n3,...,0n,m1 + 1) (P is called the raising operator).

One important result in the theory of the non-symmetric Macdonald poly-
nomials is the explicit action of the operator T; (V1 <i < N —1) on E,. It was
shown in [56] that this action is given by

TS5 By + B (), M < Mit1
Ky
Tiky = | tEy, Ni = Mit1 (5.1.3)
- 1—t8; ) (1—t~16; ,
1i5.11E77 + (’fi(éin)2 ’])Esz'(n)’ Mi = Mit1;
,m ’

where 0;, = 7;/7; 1 and by abuse of notation, the operator that acts on com-
positions, called the switching operator is also denoted by s;, and it is given
by

SiN = (My ey ey Wik 1y Miy « -« s 1IN ) i=1,...,N—1.

Remark 5.1.1. It is clear that all compositions can be recursively generated
from the composition (0,...,0), by using s;, the switching operator, and ® the
raising operator. Then, we can get the explicit expression for any non-symmetric
Macdonald polynomial, using (5.1.2) and (5.1.3).

Examples of non-symmetric Macdonald polynomials will be given in Appendiz
F.

As we have mentioned earlier, there are many ways to define the non-symmetric
Macdonald polynomials. However, one of the most natural ways for us is to char-

acterize them as triangular eigenfunctions of the g-analogues Dunkl operators.
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These operators are defined as follows:
Y =t VYT Ty T T i=1,...,N.

Let 1 be a composition and let ¢ and ¢ be formal parameters. Then, the non-

symmetric Macdonald polynomial E; (x;q,t) is the unique polynomial satisfying

En(l’; q, t) =z + Z bnul'ya bnu € C(Qa t)

v<n

YiEy(w;q,t) = iEp(25q,t) 1<i< N
where

M =q"t 0 and U (6) = #{k < ilme > ni} + #{k > il > mil-

5.2 MACDONALD POLYNOMIALS WITH PRESCRIBED SYMMETRY

All along this section, we introduce the Macdonald polynomials with prescribed
symmetry, which are built from the non-symmetric Macdonald polynomials by
acting with the t-antisymmetrization and/or t-symmetrization operators defined
on disjoint subsets of variables. Then, for each family of Macdonald polynomials
with prescribed symmetry, we get a linear expansion in terms of non-symmetric
Macdonald polynomials with explicit coefficients. Also, we show the stability
property for two special families and the regularity property for each family of

Macdonald polynomial with prescribed symmetry.

Before providing the precise definition of this type of polynomials, let us clar-
ify what is meant by t-anti-symmetrization and ¢t-symmetrization. A polynomial
f is said t-antisymmetric with respect to x; and z;41 if T;f(z) = —f(z), it is
t-symmetric with respect to the x; and x;41 if T;f(z) = tf(x). From this, we

conclude that the t-symmetrization and t-anti-symmetrization operators are

1\ Ko
Uft=>Y T, and U = ) <t1> T,,

gESN oceSN

respectively. Let Sy denote the symmetric group acting on N-symbols. Note
that if o = Siygy - - - Sia where s; are transposition operators as (5.1.1), then T,

denotes the sequence of operators T (o) " Ty
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The above t-symmetrization and t-antisymmetrization operators are closely
related to the standard symmetrization and antisymmetrization operators, which

are respectively defined as

S—Za and A= Z g("

oESN oceSN

Indeed, one can show that for any polynomial f (see for instance [55]),

Ut f(z) = A(Ai (;j;(x)) =5 (Ai (;()”“’) f(x)) (5.2.1)
and
U™ flz) = it((;)) Af(x), (5.2.2)
where

Ay(x) = H (xi —t'z;) and A(z):= H (i —xj).

1<i<j<N 1<i<j<N

Definition 5.2.1. For a given positive integer m < N, set I = {1,...,m}
and J = {m+1,...,N}. Let A = (A1,..., ) and p = (p1,...,un—m) be
partitions. The monic Macdonald polynomial with prescribed symmetry of type
t-antisymmetric- t-symmetric (denoted AS) and indexed by the ordered set A =
(Ao s A el oy UN—m) 1S defined as follows

PS(w;q,t) = cd> Uy UT By (w0, 1), (5.2.3)
where 1 is a composition equal to (A1,..., Amy 1, -y UN—m) while the normal-
ization factor cﬁs is such that the coefficient of :1:1\1-~ :c%{”x“mlﬂ x?VN ™ in

Pfs(:v;q,t) s equal to one. Other types of Macdonald polynomials are defined
similarly:

PRMas;q,t) = ed Up Uy B0, 1),

PN q,t) = &8 U UT Ey(w3, 1),

PAS(m; q,t) = cf UfrUjEn(x; q,t) .

We will introduce a new quantity associated to the composition’s diagram.
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Definition 5.2.2. For n a given composition, we denote

dy = dy(q, 1) = [J(1 = g F 1))
sen

dy = dy(q,t) = [J(1 — g He)
sEn

where a, and l,, were given in (2.1.1).

In what follows, let

M= An) and pt = (s i)

denote partitions. As mentioned in previous chapters, we denote the composition

obtained by the concatenation of AT and ™ as follows:
n=A" ") (5.2.4)
Also, a permutation of this composition means

w(n) =~ (5.2.5)

where w = o x o/ with ¢ € S,,, and ¢’ € Sn_.

Proposition 5.2.3. Let n = (A*, u™) be a composition as in (5.2.4) and let A
be its associated superpartition, i.e., pm(n) = (A*, A®). Then

Pa(w;q,t) = Y by By(w30,1) (5.2.6)
y=w(n)

where w =0 x o' and 0 € Sy, 0’ € SN—m. With

oo . 17\ 4(0) d d, . )
i) ép =1 and é,, = (=L 2 if Py s the type AS.
) Em = (F) T oy Tor ety f Pa yp

i) oy =1 and ¢,y = (%)K(UHE(U/) Z—Z if Py is the type AA.

[y

)@ dnydy if Py is the type SA.

11) Cpy =1 and ¢,y =
) Cm m = Yoty wt)Uo ), ut)

~ ‘

. o ~ d! . .
W) Cyp =1y épy = ﬁ if Py is the type SS.
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Proof. Cases ii) and iii) were proved in [1] (see Corollary 1). Since all cases can
be proved in a similar way, we only give the proof for the case i).

First note that we can write

Z @me(l’; q, t) = Z Xi,z‘-{—l(én"/Ev(x; q, t) + énsi('y)Esi('y) (:17; q, t)) (527)

y=w(n) y=w(n)
Vi <YVi+1

where Xii+1 = % if Yi = Vi+1 and Xii+1 = 1if Vi < Vitl-
If we consider ¢ € I, we just have the possibility 7; < v;4+1. In this case, we

have, on the one hand,
TiPa(w;q,t) = —Pa(w34,t)
and, on the other hand,
Ty By + Cpsi() Bsi(1) = e TiBy + Ensy () TiEs, ()

Now, by using the first and third line of relation (5.1.3), and then ordering the

terms, we obtain

. A cot=1 o (L=t ) (=t i)
Ti(ny Eytéys, () Esi (7)) = (Cnv 1_g ! + Cpsi(v) (1 7_ 5. )2 = | By
i i,5i(7)
. . t—1
et + e | sty (5:2.8)
1= 0

2,54
then, by comparing the coefficients and using that v; < v;4+1, we get the equality
0,

iysi(y) = 04 ,Yl, which implies

Sy _ —(t = i)

énsz‘(’Y) t(1—0iy)

Viel. (5.2.9)

Since 7; < 7,41 we can use equation (19) of [7] to rewrite (5.2.9) and thus

éT]’Y _;1 d"/ )
b dsy)

(5.2.10)

Cns;(7)

Now, by noting that AT = o71(y) = s;, <+ Sy, (7) for some s; € Sy, and
applying (5.2.10) repeatedly, we obtain

N l(o
O <1> ( )di“/' (5.2.11)
Cp (0t 0! (1)) t d(nt o (ut))
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On the other hand, we know that TjPy(x;q,t) = tPx(z;q,t) if j € J. Note
that if v; = 7,41 then T;E, = tE, holds true due to the second line of (5.1.3).
Hence, we consider the case ; < «j41. In this case we have the expansion given

in (5.2.8), and by using the above arguments, we get

C tdjy—1
b W=Dy (5.2.12)
Cns;i(7y) t(éja"/ - 1)
Since 7v; < ;41 we can use equation (19) of [7] to rewrite (5.2.12) and thus

ér %)
o S\
= (5.2.13)
ns; () gl
Once again, by nothing that u* = o’ ~1(y) = s, ...Sjao,)(w) for some s; €
SN—m, and applying (5.2.13) repeatedly, we obtain

Cn(Ato(uh) _ _
g = Cy(rtou) = 7 : (5.2.14)
m (At,0’ (1))
Finally, equations (5.2.11) and (5.2.14) imply the result. O

We prove the stability property for the Macdonald polynomials with pre-
scribed symmetry of type AS and SS, by making use of the stability property of
the non-symmetric Macdonald polynomials with respect to the number of vari-
ables (see [55, equation (3.2)]). To be more precise, let n = (91,...,nn) and

n— = (M1,...,mn—1) be compositions. Then,

Efa;l,...,a:N,;q,t, if NZO,
By(z1,...,on-1,0:q,t) = - a0, itn (5.2.15)

0 if py > 0.

Proposition 5.2.4 (Stability for types AS and SS). Let

A= (A1, ., A Mgy -, AN) be a superpartition and let

A= (A1, . A Ay, oo, An—1). Then, the Macdonald polynomial with pre-
scribed symmetry AS or S satisfies

PA,(xla"'axN—l;Q7t)a lfANZO
Pr(z1, . 2N 45 t) [ey=0 = (5.2.16)
07 ZfAN > 0.
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Proof. The cases AS and SS being similar, we only give the proof for AS.

We denote n = (A, ) to the composition formed by the concatenation of
the partitions A = (Ag,...,Ap) and g = (Apt1,...,An). Notice that 7 is a
composition like (5.2.4) and its associated superpartition is A. Now, Proposition
(5.2.6) allows to obtain the expansion of a Macdonald with prescribed symmetry
in terms of the non-symmetric Macdonald polynomials. Then, if we evaluate

xy = 0 we have

Ppr(z1,...,oN-1,0;q,t) = Z ey By (21, .. 2N—1,0;¢,1) (5.2.17)
y=w(n)

where w =0 x ¢’ and 0 € S,,,, 0/ € SN
By making use of the stability property of non-symmetric Macdonald poly-
nomials (see equation (5.2.15)), we conclude that in the above equality, the only
summands that are not zero are those whose composition has the form v =
(w(n-),0), where n— = (A, u—,0) = (A1,..., A, Apug1,- - -, AN—1,0), ©=0 x &
with o € S, and & € Sy_;,m—1. Furthermore, it is verified that for each v we

have : '
n-0d@m)n Ay yden)

B d/(A,&(u,))d()\ﬁ(Mf))

A\ 5(u 1,005 (u-),0)

Thus, we can rewrite the equality (5.2.17) as follows

PA(xla"'7$N—17O;Q7t): Z éT]’YfE’Yf(xla--'7xN—1;q7t)7
y-=w(n-)

and the proposition follows. ]

As mentioned in the Introduction, the regularity is not obvious for all possible
specializations of ¢ and t. Nevertheless, we give a sufficient condition that allows
to preserve this property. This result is used at the end of the chapter to prove
the clustering properties for £ = 1 of the Macdonald polynomials with prescribed

symmetry.

Proposition 5.2.5 (Regularity at ¢"~! =t~ *1). Let A be a (k,r, N)-admissible

superpartition. Then, Pp(x;q,t) is reqular under the specialization thtlgr=1 =1.

Proof. The proof follows from Proposition 5.2.3 and the explicit formulas for

the coefficients given in (5.2.6). All cases are similar. The only differences are
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the type of admissibility for each symmetry type and the explicit formula of the
coefficients. Hence, we restrict our proof to the symmetry type AS.

Let n = (AT, u™) be the associated composition to A, i.e., p,(n) = A.
According to Proposition (5.2.3), we have

(x;q,t Z EyEy (259, t). (5.2.18)
y=w(

Then, if we wish to prove that Pa(x;q,t) is regular under the specialization
thtlgm=1 = 1, it is sufficient to prove that for each v = w(n) the summand
ény By (23 ,t) has not pole at tFHlgr—1 = 1.

Let &) := [[4ey (1= q*@F T B, By Corollary (5.2) of [46] we know that
& = 2o, ozl where ¢y, € Z[g,t]. Now, since in the expansion (5.2.18) each
non-symmetric Macdonald polynomial E,(x;q¢,t) is multiplied by its respective
coefficient d,, and this implies dE(z;q,t) € Z|q, t][x].

Then, to prove that Py (z; g, t) is regular, we just have to show for each compo-
sition «y in the expansion (5.2.18) the coefficients d;, d/()\+70-/(/"'+)) and dx+ o7 (ut))
are not zero.

We proceed in two main steps. First, following the idea used in Lemma 3.2.1,

we obtain the expression of d;? in terms of the associated superpartition to 7:
d;7<q7t) - H (1 — qu* (s)+1tlA®(8)> H (1 _ qu*(S)+1tlA*(5))'
sEBF(A) seA*/BF(A)

Now, the observation of (5.3.2) infers that d(q,t) = 0 iff there exist a p € Z,

satisfying one of the two following conditions:

i) For some s € BF(A), we have ap-(s)+1 = p(r—1) and lpe(s) = p(k+1).
Using both relations and expressing them in terms of the components of
A, we get

®
A Az+p(k+1) <p(r-1)-1.
As we assume that s belongs to some bosonic row, then A} = A?. Thus,

the last equality can be rewritten as

p(r—1)—1> A% — A?

i+p(k+1)"
However, Lemma 3.1.2 implies that AO A?+p(k+1) AP A?er(kﬂ) >

pr. Hence, p(r —1) — 1> AY — A?

it+p(kt1) > pr , which is a contradiction.
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ii)

For some s € A*/BF(A) we have ax«(s)+1 = p(r—1) and Ir-(s) = p(k+1).
Using both relations and expressing them in terms of the components of
A, we get

p(r—=1) =12 A7 = Afy )

and since AZ-@ < A7 + 1 we can rewrite the last equality as

p(r—1) > A? - A:er(kJrl)'

But we know that A? — A;rp(kJrl) > A? - A;'k«i»p(k%l»l
we have AY — A*

p(k1)—1 > pr, obtaining a contradiction.

)1 By Lemma 3.1.2,

Therefore, whenever we have the specialization t*1¢"~1 = 1 and A is a weakly

(k,r, N) admissible superpartition, we conclude that d(q,t) # 0. Following a

similar argument, we conclude that d,(q,t) # 0.

Second, we must show that the coefficients d/(/\ﬂa’(u*)) and dy+ g(,+)) are

not zero. We introduce a new parameter ¢ taking the values 0 or 1, in order

to consider both cases, d’( Mot (i) and d(\+ 4/(,+)) simultaneously. We analyze

separately two possible cases:

i)

ii)

s’ is a cell such that s’ belongs to a fermionic row. In this case, we have
that d/(AJr,o'(;ﬁ))(S/) = d, (') (analogously d(x+ g/(,+)(8") = dy(s')). Then,
by using the result obtained in first step, we conclude d’( At o (WL))(S' ) #0
and dy+ or(,+)) (8") # 0, as expected.

s’ belongs to a bosonic row. Suppose first that s’ = (i, ) is such that
j' > 1. Let s € A the associated cell to s'. Then, we have I(x+ (,+)(8') =
Ip+(s) — € for some € > 0 and where s = (4, — 1). Thus, d/()\+,o’(u+))(5,) =
0 (respectively dx+ or(ut))(s’) = 0) iff ap«(s) +1 = p(r —1) and
Ia<(s) + 0 — e = p(k + 1) (considering § = 0 for the product d’ and 6 =1

for d). We can rewrite the above relations as follows

Aj — :+p(k+1)+676 < p(r—1).

Moreover, we have by assumption, Af‘) = A} (bosonic row), so that the

previous line can be rewritten as

Az® - A'?—&—p(k—i—l)—i—e—(s < p(r - 1)
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but, obviously we have that Ay — A httyes 2 AP — A} kr1)—s- Com-
bining these equations, we get p(r — 1) > AY — A;f+p(k+1)_6, which is a

contradiction with the admissibility condition of A (see Lemma 3.1.2).

Finally, we must consider the cells s’ = (#,1) such that s’ belong to a
bosonic row. Once again, we let s € A be the cell associated to s’. Let also
a=H#{k <i|n, =0} and 8 = #{k > i|nx = 0}. Then,

It oruin(s) =la=(s) +a  and N =i+ix(s) +a+ 8. (5.2.19)

However, we know that d/(/\+,a’(u+)) = 0 (dixt or(uty) = 0) iff there exist
p € Z4 such that

At or(uty(8) +1=p(r—1) and It o (ut)) (8) + 6 = p(k +1).
(5.2.20)
On the one hand, combining the conditions given in (5.2.20) and the as-
sumption s’ = (¢/,1), we get A = p(r —1). And on the other hand,
combining (5.2.19) and (5.2.20) we obtain i = N — p(k+ 1)+ — 8. Thus,
AT > Aj‘v_p(k+1)+6. However, by Lemma 3.1.2 we have A%—p(k+1)+5_A7V >
pr, which implies A )+ > pr — 1. We have therefore shown that

*

N—p(k+1
p(r—1) =Af > A*N—p(k+1)+5 > pr — 1, concluding that the only possible
caseis p = 1. Now, if p = 1, we have Af@ = A =r—1withi < N—Ek, which
is clearly in contradiction with the admissibility condition of A. Therefore,

we conclude that d’( Mot (i) and d\+ /(,+)) are not zero, as expected.

d/

From the first and second steps, we conclude that the coefficient i

o (ut ) Ot ol (ut))
has no zeros or poles at the specialization t*T1¢"~! = 1 when A is a weakly
(k,r, N) admissible superpartition. Hence the proposition follows.

O]

5.3 CLUSTERING PROPERTIES

In this section we study briefly the clustering properties of the Macdonald poly-
nomials with prescribed symmetry. To this end, we consider two cases: k = 1
and k£ > 1. In the first case, we get the desired result, i.e. we obtain a factor-

ization where the degree expected is reached. However, for the case k > 1, we
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conjecture the general cluster property, but we can only show that the degree

reached is the degree expected minus 1.

All results of this section are based on the results of Kasatani (see [39]), which
deal with vanishing conditions for non-symmetric Macdonald polynomials, and

which are enunciated in the following subsection.

5.3.1 ZEROS OF THE NON-SYMMETRIC M ACDONALD POLYNOMIALS

In this subsection, we summary some results of Kasatani [39], which are relevant

for our work.

We assume the specialization of the parameters at t*1¢"~! = 1 for 1 <
k<n-—1andr > 2. Also, we introduce a new parameter u and we specialize
according to the new notation. Let M be the greatest common divisor of (k +
1,7 — 1) and w an M-th primitive root of the unity and w; € C such that

—1)/M . . . .
wY M _ . For the new indeterminate u, we consider the specialization

r—1 k+1

t=u, ¢g=wiu M (5.3.1)

such that t%qbl\/ll =w and thtlgr—1=1.

Remark 5.3.1. Given a,b € Z we have

¢@tP =1 iff a=(r—1)s, andb= (k+1)s for somes € Z. (5.3.2)

Definition 5.3.2 (Wheel condition). A polynomial f satisfies the (k,r, N) wheel

condition whenever

flxi,...,zn) =0 if x., =x,t¢* (1<a<k) (5.3.3)
for all non-negative integers i1, ...,i511,S1,-..,Sk such that
k
all i, are distinct, Zsa <r—2, and i4 <igt1 if Sq = 0.
a=1

We denote by IJ(\If’r) the space of polynomials satisfying the wheel condition (5.3.3).
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Definition 5.3.3 (Admissible compositions). The composition A € NY is (k,r, N)-

admissible if

Aig — A

o Nigay =T 0T Nip—A

ie, =Tl andiq <igrp (1<a<n—k), (5.34)

where the indices (i1,...,i,) =w-(1,...,n) are so chosen that w is the shortest
element of Sy such that A\ = w - \*. We define the set B](\];’T) as the set of all

compositions A that satisfy (5.3.4).

Theorem 5.3.4. [39, Theorem (3.11)] For any A € BJ(\I;’T), the non-symmetric
Macdonald polynomial Ey has no pole at (5.3.1). Moreover, a basis of the ideal
[](\’f’r) is given by {Ex|\ € B](\];’T)} specialized at (5.3.1).

5.3.2 CLUSTERING PROPERTIES FOR k = 1

We start this subsection by showing the explicit factorization of the non-symmetric
Macdonald polynomial indexed by a staircase partition at the specialization
¢"~! = t72 (with r even). Then, we show the general cluster when k& = 1
and when the polynomial is indexed by an (1,7, N)-admissible superpartition.
This result is proved for each family of Macdonald polynomials with prescribed
symmetry (AS, AA, SA and SS). And, in particular for the Macdonald polyno-
mial with prescribed symmetry of type AS, we get explicit formulas for special

staircases superpartitions.

Corollary 5.3.5. Let k = 1, r be positive and even and denote o, = —%.
Then

Boonsy(@n, ooyt 0= JT [] @i—t*v'ay). (5.3.5)
1<i<j<N 0<s<r—2

Proof. Tt is clear that the partition (r — 1)dy belongs to Kasatani’s set B(1"), so

by using Theorem 5.3.4 we get that E_1)s, (21, ., ZN; t=2/=1) 1) is divisible

by the product of the factors on the right side of equation (5.3.5). Then, by

comparing the degree of both polynomials we get the result. ]

Theorem 5.3.6. Let k = 1, r be positive and even and denote oy, = -2

r—1
Let also A be a superpartition of bi-degree (n|m) with ¢(A) < N. If A is strict

and weakly (1,r, N)-admissible, then
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P,és(xl, .o, TN t_2/(r_1), t) = H H (x; — t_sa“_lxj)

1<i<j<N 0<s<r—2

< II (@i-te)Q)

m+1<i<j<N
.. AA L L— — _ - T .
ii) Py (zq,..., 2Nt 2/(r 1),75) = H1§i<j§N Hogsgr—Q(xi_t sarr =l )Q ().
In the above equations, Q(x1,...,xN) denotes some polynomial, which varies

from one symmetry type to another.

Proof. The cases AS and AA being similar, we only give the proof for AS. More-
over, during this proof we write P, instead of Pfés and let I :={1,...,m} and
J:={m+1,...,N}.

Let 7 be the associated composition to A, i.e., ¢, (n) = A. We can prove eas-
ily that if A is weakly (1,7, N)-admissible, then 1 belongs to B("). This implies
that Ey(x;q,1)|,—4—2/¢-1) is divisible by [T;o; <y [Tocs<r—o(@i — tmsanr=lg ),
Thus, there exists a polynomial f(z) in C(¢)[x] such that

E,(x; q,t)\q:t_z/(,«_l) = H H (x; — t_so‘l"“_lxj)f(xl, C TN

1<i<j<N 0<s<r—2

Now, since Pp(z1,...,zn;t=2/=D ) = UI_UjEn(a:; q,t)’q:t—2/(r71) , we get
Pp(z1, ... ,mN;t_Q/(T_l),t)

= U;UJ+ H H (x4 —t_salvT_lxj)f(:clj...,azN)

1<i<j<N 0<s<r—2

S W QR

1<i<j<m 0<s<r—2

m N
i (I TT Gmriay

i=1j=m+10<s<r—2

X H H (l’i—tisal”dilxj)f(xl,...,x]v) . (536)

m+1<i<j<N 0<s<r—2
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However, formula (5.2.1) allows to express Uj in terms of the symmetrization

operator acting on the last N — m variables, and so we have

m N
0 (T IL T ey

i=1j=m+10<s<r—2

X H H (i =t ) f (1, . o)

m+1<i<j<N 0<s<r—2

m N
=957 H H H (Z‘i—tfsal’rilxj)

i=1j=m+10<s<r—2
Lt
X H H (z; — t* 0~ ) f(@1, .. 2N) H (i = twy)
L <.y @i — )
m+1<i<j<N 0<s<r—2 m+1<i<j<N

Thus, if we extract the symmetric factors of the last equality and we replace in

equation (5.3.6), we obtain

Pp(z1,... ,xN;fQ/(T*l),t)

m N
— UI_ H H (a;, — tisal’rill’j) H H H (a:l — tisal’rilxj)

1<i<j<m 0<s<r—2 i=1j=m+10<s<r—2

X H H (z; — t_so‘lvr_lmj) H (x; — tay)

m+1<i<j<N 0<s<r-2 m+1<i<j<N
XSJ H (l‘i—$j)_1f($1,...,l’]\[) . (5.3.7)
m+1<i<G<N

Now, formula (5.2.2) allows to express U; in terms of the symmetrization oper-

ator acting in the first m variables, so we have

m N
I Rl | ) | (RO
1<i<j<m 0<s<r—2 i=1j=m+10<s<r—2
= (z; —t1z;) S (z; — t 50 1g))
- % J I A 7
1<i<j<m 1<i<j<m 0<s<r—2

m N
<IT IT II @—-¢=otay) I (@2

i=1 j=m+10<s<r—2 1<i<j<m



5.3. CLUSTERING PROPERTIES 115

Once again, if we extract the symmetric factors of the last equality and we

replace in equation (5.3.7), we obtain

Pp(zq,... ,xN;t72/(T71),t)

= I 1II @-t=tay [ (@i—tay)

1<i<j<N 0<s<r—2 mA1<i<j<N
—1
(zi — " ) -1
X St H WSJ H (xi — ;)" f(z1,...,2N)
1<i<j<m ¢ J m+1<i<j<N
and the proposition follows. O

Corollary 5.3.7. Let k = 1, r be positive and even and denote oy, = —
Then

2
r—1-

Pr-noyo) (@, ont 00 = [T [ (@it ).
1<i<j<N 0<s<r—2
Proof. We have by definition that Pyg)(71,...,ZN;q,t) = Ul_waE)\(acl, c TN G, t).
Then, by using Corollary 5.3.5 and noting that the product of the factors in

equation (5.3.5) is t-antisymmetric, we get the result. O

Corollary 5.3.8. Let A = (6,,;0Y~™) be a superpartition. Then,

P((gm;Ome)(.%'l,...,xN;q,t) = H (mz —t_la:j).
1<i<j<m

Theorem 5.3.9. Let k =1, r be positive and even and denote oy, = —r_%. Let
also A be a superpartition of bi-degree (n|m) with £(A) < N. If A is moderately

(1,7, N)-admissible, then
i)

PEA(:cl, e TN t_2/(T_1), t) = H H (x; — t_sal”"_lxj)

1<i<j<N 0<s<r—2

< T (@ —te)Q@)

1<i<j<m
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PA$({L‘1, st t) = H H (x; — t_sa“_lazj)

1<i<j<N 0<s<r—2

< ] @i—ta))  J] (@ —tz)Q).

1<i<j<m mA1<i<j<N

In the above equations, Q(x1,...,xN) denotes some polynomial, which varies

from one symmetry type to another.

In the following proposition, we recall the special clustering property given
in [1, Proposition 2] and furthermore we enunciate this result for the Macdonald

polynomial with prescribed symmetry of type AA.

Proposition 5.3.10. Let A = (0,5 1) be a superpartition and p a partition such
that p1 < m —1. Then,

Z) P(%i;“)(xla -+ TN q7t> = Hl§i<]’§m(wi - tilxj)P(‘(%?H)(xm-l-l? <oy TN qtat)
M’) P(%‘?n;li) ('Tla -y TN 4, t) = H1§z<]§m($l - t_lf,C])Pm) (merl? .o, TN 4L, t)

Proof. The case i) was proved in [1] and the proof of case ii) is similar to the

proof for case i). O

Corollary 5.3.11. Let A = (0yn; 1) be a superpartition and p a partition such
that p1 < m —1. Then,

P((Sm;u)(xlv"'vx]\/;a): H (33’2‘—.Z'j)P((Z);,u)(J)erl,...,QZ'N;OZ—F1)
1<i<j<m

where Pp(z; ) denotes the Jack polynomial with prescribed symmetry of type AS.

5.3.3 CLUSTERINGS PROPERTIES FOR k > 1

In this subsection we get a criterion that allows to determine when a composition
as in (5.2.4) and any permutation of this composition (see (5.2.5)) belongs to
Kasatani’s set B(%7"), for a given k and 7. This result is of fundamental impor-
tance to prove the general k > 1 clustering property for Macdonald polynomials

with prescribed symmetry.



5.3. CLUSTERING PROPERTIES 117

Proposition 5.3.12. Let n = (AT, ™) be a composition as in (5.2.4) and let
A be its associated superpartition, i.e., pm(n) = (A*,A®). If A is moderately
(k,r, N)-admissible, then n belongs to B%1) and moreover, for any v obtained

by a permutation of n as in (5.2.5), we have that vy also belongs to Bm),

(k1) using that A is its associated

Proof. First, we show that n belongs to B
superpartition. By definition 1 belongs to B*") if and only if for all i =
1,...,N — k, we have n;, — n;,.,, > 1 or ni, — i, =1 —1ifig < igg.
The indexes are determined as follows: (iy,...,i,) = w- (1,...,n) where w is
the shortest element in S,, such that n = w - n* and where " is the associated
partition to 1. Now, since A* = 1™, we can rewrite the conditions above: 7

belongs to B ") iff for all ¢ = 1,...,N — k, we have Af —Aj, > ror
A; — A =r—1 ifl <j, where o(m) = A} and ¢(n;) = A] .

Fixi e {1,...,N — k}. We analyze two cases:

i) A% A, + 1. By hypothesis we know that A is moderately (k,r, N)-

itk T
admissible, i.e., AY — Af‘ik >r, forall 1 <i< N —k, but since Af‘ﬂrk =
A7+ 1, we get AP — A7, = r+1, which implies A7 — A7, > r. Thus,

we conclude that 1 belongs to B%"). Furthermore, for any + obtained
by a permutation of 1 as in (5.2.5), we have that v and 7 have the same

associated superpartition. Hence, we conclude that v also belongs to B (k)

ii) A;ﬂk = A} .- By hypothesis we have that AP — Afik >r,foralll <i<
N — k, but since A7, = A
analyze two possible cases: AY = Af and Ay = Af + 1.
If AY = A} we get Af — Ay
the same argument given in case i) we conclude that « also belongs to
B®1). On the other hand, if AY = A} +1 we get A} — A7, > r— 1

However, by the assumption Af%rlC = A7, we know that A7 , = o(n;) for

®
i we get A7 — AY > r. Now, we have to

> r, so we conclude n € B%")_ Following

some j € {m+1,...,N}, while to require AY = A + 1, we know that
Af = () for some [ € {1,...,m}. So, we have g —n; > r — 1 with

(k) Following the argument that n and ~

l < j, which implies n € B
have the same associated superpartition and using the definition of the
permutation v (see (5.2.5)), we obtain that A} = ¢(v;) and A}, = ¢(7})
for some I’ € {1,...,m} and 5/ € {m +1,..., N}. Thus, we conclude that

v E Bkr),
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O]

Remark 5.3.13. Letn = (AT, u) be a composition as in (5.2.4) and A its asso-
ciated superpartition. We can prove easily that if A is weakly (k,r, N)-admissible,
then n belongs to B*") . However, it is not true that for any composition v ob-

tained by a permutation of n as in (5.2.5), v belongs to B*™).

For example, by taking k = 1, r = 2, N = 2 and n = (1,0), we see that
(1,0;0) is weakly (1,2,2)-admissible andn = (1,0) € BY2) i.e., By(x1,22;t72,t)
is divisible by txy — 5. However, v = (0,1) ¢ BM?) and we can check that
En(asl,azg;t_2,t) = 19, so it is not divisible by tx1 — xo. Despite the above, the
Macdonald polynomial with prescribed symmetry P o.p) satisfies the clustering

— lx1—
)_ Ilt$2'

property P o0y (w1, w2512,

Proposition 5.3.14. Let k > 1 and r be positive integers with ged(k + 1,1 —
)=1,a=—(k+1)/(r—1) and let A = (A1,..., Am; At1,---,AN) be a
superpartition of bi-degree (n|m) and such that N > k+m+1. If A is moderately
(k,r, N)-admissible, then Py(x;q,t) vanishes at

¢ U =1 and Tippy = xiatHO‘S“, 1<a<k, ig>m+1

for all non-negative integers iy, ..., %k+1, S1,- .-, Sk Such that
k
all i, are distinct, Zsa <r—2, and i4 <igt1 if Sq = 0.
a=1

Proof. Let n = (A1,..., Ay At1, ..., AN) be the associated composition to A.
According to Proposition (5.2.18), we have

Pa(w;q,t) = Y épnBy(wig,t) (5.3.8)
y=w(n)

for w =0 xo0' and o0 € S, 0’ € Sy_,u. By the argument used in the proof

of Proposition 5.2.5, we know that if A is moderately (k,r, N)-admissible, then

each summand ¢, E.(z; ¢,t) has no poles at the specialization ¢"~1t**+1 = 1.
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Furthermore, Proposition 5.3.12 establishes that each v = w(n) in (5.3.8)

belongs to B, and thus each one of the summands E,(x;q,t) vanishes when

F 1 =1 and

Tiyi :xiatHaS“, 1<a<k, ig>m+1, s1+...4+8. <r—2,
and the proposition follows. O
Corollary 5.3.15 (Clustering property). Let A be a moderately (k,r, N)-admissi-
ble superpartition of bi-degree (n|m) and such that N > k 4+ m + 1. Assume

a=—(k+1)/(r—1). Then the Jack polynomial with prescribed symmetry of
type AS or S satisfies the following clustering property:

k times N—k
NG _
Pr(z1, ..., EN—f, 2 ..., 25 Q) = H (x; —2)" WQ(x1,...,2Nn_1, 2)
j=m+1

for some polynomial Q@ in N — k 4+ 1 variables.

Proof. Let Pp(x;q,t) be the Macdonald polynomial with prescribed symmetry.

According to Proposition 5.2.3, we have

Py(x;q,t) = Z ey By (254, 1) (5.3.9)

y=w(n)
and moreover, by Proposition 5.2.5, we know that if A is a moderately (k,r, N)-
admissible superpartition, then Pj(z;q,t) is regular under the specialization ¢ =
t“, where o = —(k + 1)/(r — 1). Since the non-symmetric Jack polynomials
can be recovered from the non-symmetric Macdonald polynomials through the
specialization ¢ = t* when ¢ — 1 and each term in the last expansion is regular

at this specialization, then we can specialize term to term. So,
Py(z;q,t)|g=te —> Pa(z;) when t— 1.

On the other hand, by Proposition 5.3.14, we know that if A is moderately
(k,r, N)-admissible, then Pj(z;q,t) vanishes at ¢ =t fora = —(k+1)/(r — 1)

and

miaﬂzxiatHasa, 1<a<k, ig>m+1, s1+...4+s. <r—2.
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In particular, if the variables zn_g411, ..., 2N are specialized as

the polynomial Py (z;t%,t) is divisible by

k
H(ﬂUN—k+z' —giralsitetsi g forallsy + .. s <1 —2
i—1

so, when we specialize these k-variables as z, the polynomial

k times
Pr(z1, ..., ZN_f,Z ..., 25 Q)
is divisible by
k .
H(z — tz+o‘(51+"'+si):ﬂN_k), forallsy+ ...+ s, <r—2.
=1

In the limit ¢+ — 1 the last product simplifies to (z — zy_z)"~!. Now, since

the polynomial Pj(z;«) is symmetric in the last N — m variables, then the

k times
. o N— . .. N—k _ .
polynomial Pp(x1,...,ZN—k,%...,2;«) is divisible by Hj:mﬂ(z — ;)" i,

the result is independent of the specialized variables, and the corollary follows.
O






APPENDIX A

RECURSIVE FORMULA FOR NON-SYMMETRIC JACK POLYNOMIALS

In [47], Knop and Sahi defined the creation operators for the non-symmetric
Jack polynomials: ® := z,5,_15,—9...51, where s; is the transposition that
exchanges z; and x;y;. They proved the following result (see [47, Corollary
4.2]):

Let A € N™ with A\, # 0 and \* := (A, — 1, A1,..., Ap_1), then E)\ = ®(E)-).

The polynomials given below were generated by using the previous result and
[4, Eq. (2.21)].

Table A.1: Non-symmetric Jack polynomials of degree n < 2.

Composition Non-symmetric Jack polynomial
n Ey(z; a)
(0,0,0) 1
(0,0,1) T3
(0,1,0) Ty + 503
(1,0,0) r1 + a%rl:zg + %4_1:133
(0,1,1) ToT3
(1,0,1) 123 + 29521:3
(1,1,0) T1T2 + 3 1x1$3+ a+1$2$3
(0,0,2) z3 + a+1x1x3 + = 1;102:133
(0,2,0) x3 + mx% + a+19€1$2 + 2( +1)2 r123 + Wl’zm
(2,0,0) 2 + ﬁx% + mx3 + mxll‘z + mib‘lxg + mazgxg

122



APPENDIX B

TRIANGULARITY OF JACK POLYNOMIALS WITH PRESCRIBED

SYMMETRY

In this appendix, we provide tables that exemplify the triangular decomposition

of the Jack polynomials with prescribed symmetry in the monomials basis.

Table B.1: Jack polynomials with symmetry AS and degree n < 3

Superpartition | Jack polynomial of type AS
A Py(z; )
(0) m(o)
(1) m(1)
(1,1) m(1,1)
(2) me) + Zma)
(1,1,1) m(1,1,1)
(2,1) M)+ 355M,1)
(3) M) + a2 + @iy L)

123
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Superpartition | Jack polynomial of type AS
A Py (z; )
(0;0) (0;0)
(0;1) mo;1)
(1;0) M(10) + 7™M (0;1)
(0;1,1) m(0;1,1)
(1;1) M1y + a35M0;1,1)
(0;2) M) + ZMoLY + arw
(2;0) M(20) + 5a71M02) + @D 011 + s M)
(0;1,1,1) M(0:1,1,1)
(L1,1) M11,1) T 253 M0,1,1)
(0;2,1) Mo2,.1) + 3o3M0:1,1,1) T Fr3M(11,1)
(1;2) M) + T M02,1) T Wﬁ(amm(o;l,l,l) + Zaman)
(2;1) m(z;1) + %m(o;z,l) + ﬁm(o;l,l,l) + mag) + %m(l;l,l)
(0;3) M03) + 3a1M02,1) T @) (3T MU0 LY T 3eTM(12) T @I (aa T L)
+ oM
(3;0) M (3,0) + 3257 M(0:3) T mm(o;m) + mm(o;m,n
+mﬂ§%m(m) + T EaT ML) T 3@
(1,0;0) M (1,0;0)
(1,0;1) M(1,051)
(2,0;0) M(2,0,0) T THTM(1,051)
(1,0;1,1) mM(1,051,1)
(1,052) M(1,02) T a33M(1,011,1)
(2,0;1) m(2,0;1) + %ﬂm(l,og) + aiﬂm(l,o;l,l)
(2,1;0) m,150) + 3arnzM02) T (ajl)z me0,1) T 22,01
(3,0;0) M (3,00) + 3aT(1,02) + Wmm(l,o;m) + 52 M2,010) + 3T M(2,150)
(2,1,0;0) mM(2,1,0,0)




APPENDIX C

SETS OF CELLS ASSOCIATED TO SUPERPARTITIONS

In this appendix we illustrate the sets associated to the diagram of a superpar-

tition introduced in Chapter 3. Let us consider the diagram

|
O

O

Below, we have marked the cells belonging to BF(A), the set of cells belonging

simultaneously to a bosonic row (without circle) and a fermionic column (with

circle):

O

— A"/BF(A) =

In the diagrams below, we have marked the cells belonging to FF(A), the set

of cells belonging to a fermionic row and a fermionic column, while FF*(A) =

FE(A)\ {s|s € A®/A*},

125
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|
.

FF(A) = — FF*(A) =

O

Finally, we have marked the cells belonging to the set BRDB that contains

all cells (7,7) such that ¢ is a bosonic row and j is the length of some other

bosonic row 4’ satisfying A > A

|

O

BRDB(A) =




APPENDIX D

CLUSTERING FOR NON-SYMMETRIC JACK POLYNOMIALS

In this appendix, we provide basic examples that illustrate how clusters are

formed in non-symmetric Jack polynomials.

Forr=2, m=1and N =3

K 5 KA (r=1)8" | Epyporye(z;2/r —1) Eq(x;2/r —1)
1 2 2 2 2
(1,2,0) | (2,1,0) | (2,4,0) - H (x; — zj)Ex(z;2) 1—8(18331372 + Tx1xoms + 3x125 + 63wy + T23)
1<i<j<3
1
(0,2,0) | (2,1,0) | (1,4,0) - I @i—x)Ea(a;2) g (6m122 + 2125 + 1822 + Txoxs + 323)
1<i<j<3
Forr=2 m=2and N =4
K ) K+ (r—=1)0" | Eeyonys(@;2/r—1) E.(z;2/r —1)
1
(1,1,2,0) | (3,2,1,0) | (3,2,5,0) H (xi — zj)Ei(z; 2) i(?lxlmgscg + 8z @ox3%4 + 3T1T3To + 7$4x§m1
1<i<j<4
+z12372 + Trorie, + zoz37?)
1
(1,0,2,0) | (3,2,1,0) | (3,1,5,0) H (xi — zj)Ei(z; 2) ﬁ(wlmxg + Tx1@0w3 + 3123 + Sr42377 + 21$1x§
1<i<j<4
+ 72923 + dwowamy + 2379 + T2423 + 2372)

127




128 CHAPTER D. Clustering for non-symmetric Jack polynomials

Forr=2, m=3and N =5

K 0 K4 (r =108 | By (z;2/r —1) E.(z;2/r —1)
1
(1,1,1,2,0) | (4,3,2,1,0) | (4,3,2,6,0) | — H (i — ) Ex(z;2) ﬂ(24x2x1m3mi + 8xox123xs + 30w X372
1<i<j<5

+8x1x3x2r5 + 8$2x3x2r5 + 9xox 32475
+:1;2x4:1:3:L'§ + ZL‘4ZIJ1II}3.’I}§ + :1;27;1:1:41%)
(1,1,0,2,0) | (4,3,2,1,0) | (4,3,1,6,0) | — H (xi — 2j)Ex(x;2) %(161’1I2I3ﬂ74 + 2x1232925 + 1811242075
+6r1x§xg + 16x1:1731§ + 48:1:11'31'2 + 2:171:1:31%
+16x1:cix5 + 2x4a:1:v§ + 9z1x30504 + 5031427%
+8x3xix5 + 16x2r31‘§ + 2x2x3r§ + 16r21‘§x5

+2:L‘2:1;4:1;§ + 9zox32475)




APPENDIX E

EXAMPLES OF ADMISSIBLE AND INVARIANT SUPERPARTITIONS

In this appendix, for the triplet (k,r, N) given below, we display all smallest
possible (k,r, N)-admissible superpartitions that lead to Jack polynomials with
prescribed symmetry AS that are translationally invariant and, as a consequence,
admit clusters of size & and order r. The word “smallest” refers to the least

number of boxes in the corresponding diagrams.

Let (k,r, N) = (4,3,15). Suppose first that the number m of circle is zero.
Then, according to Corollary 4.3.14, the smallest possible partition that is
(k,r, N)—admissible and indexes an invariant polynomial is A = (93,64, 3%). For
higher values of m, one obtains the smallest superpartitions by deleting some
squared corners in A and adding circles while keeping conditions C1 and C2

satisfied. All smallest superpartitions for (k,r, N) = (4, 3,15) are given below.

129



130 CHAPTER E. Examples of admissible and invariant superpartitions

O 1 M o
Ol ® ! ]
D D
D
® D o) D
HNG) ENG)
: : P :
D o)
D O
D
ENG) ENG) ENG) ENG)
2 ¥ =2 P
D D
D D D
® ® o) o)
ENG) ENG) ENG)
s P o P
® D o D
@ o) D
® D o)
ENG) ENG) ENG) ENG)
0 e e o
o) O O
D D S
D
@ D o) .
@ @ o)
o
T TO 10 o
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APPENDIX F

RECURSIVE FORMULA FOR NON-SYMMETRIC MACDONALD

POLYNOMIALS

The non-symmetric Macdonald polynomials can be generated recursively. For

instance, with the help of [3, Corollary 4.2], we can easily obtain the explicit

expansions given in the following table.

Table F.1: Non-symmetric Macdonald polynomials of degree n < 2

Composition | Non-symmetric Macdonald polynomial
n En($§ q, t)
(0,0,0) 1
(0,0,1) T3
(0,1,0) 7y + M)
(1,0,0) x1 + q(t 2332 + [i(ﬁi;xg
(0,1,1) XoT3
(1,0,1) 123 + tql(i_t%)xgacg
(1,1,0) T1x9 + Q(ng T3+ q(Hi;x 3
(0,0,2) x3+ thxlx;), + 1+th2x3
(0,2,0) x5 + (ttaqlz)tql T3+ j1+1tq$1332 e fi;;));(tgjﬂ)mm + Q(ti(l,)ﬁgf(g;j?ﬂ)mxg
(2,0,0) ot + UG el + Yol + e + e, + %IQ“
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APPENDIX G

EXPANSION OF MACDONALD POLYNOMIALS WITH PRESCRIBED

SYMMETRY IN TERMS OF NON-SYMMETRIC MACDONALD POLYNOMIALS

The formula that allows to write down explicitly the Macdonald polynomials

with prescribed symmetry of type AS as a linear combination of non-symmetric

Macdonald polynomials is given in (5.2.6). The examples given below were

generated with the help of this formula.

Table G.1: Macdonald polynomials with prescribed symmetry AS of degree n < 3

and N =3
Superpartition | Macdonald polynomial with prescribed symmetry
A Py(w;5q,t)
(0,0,0) E0,0,0)
(1,0,0) Ex0,0 + %E(o 1,0) %E(oo 1)
(1,1,0) Eq,10 +1 th(101)+1 t2 E@1,1)
(2,0,0) E(2,0,0) + 1= tqu(020)+ - zE(002)
(1,1,1) Eain
1— 1— )(1-tg?) (1-q)(1-tg?)
(2,1,0) E(i,f,o));ﬁf(myl)"'l tq 120)+(§ tg)(l 2 2)E(102 +(1 fg)(l 12 2)E(021)
+(1t§)(71t22)E(0 1,2)
3
(3,0,0) Ego0) + 30,30 + — g 3E(003)
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Superpartition | Macdonald polynomial with prescribed symmetry
A Pr(z59,1)
(0;0,0) E0,0,0)
(0;1,0) E@1,0 + %E(o,o,l)
(1;0,0) E(1,0,0)
(0;1,1) Eo,1,1
(1;1,0) E(110)+ - th(lol)
(0;2,0) E.2,0 + 1_t2q2 Ew,02)
(2;0,0) E20,0)
(0;1,1,1) Ew1,1,1)
(1;1,1) Enan
(0;2,1) Eoz21) + 1 th(o 1,2)
(1;2,0) Eq20) + 1 t2 zE(102)
(2;1,0) E@10) + mE(Qm)
(0;3,0) Eo30) + 1 t2 3E(00 3)
(3;0,0) E30,0)
(1,0;0) Eq00) — t}ff; E0,1,0)
(1,0;1) Enon — ,(1 fzq) Eo1,1
(2,0;0) E(20,0) — WE(O 2,0)
(1,0;1,1) Enp11) — ﬁE(O,LLI)
(1,0;2) E(102) — tz%tg)E(o,Lz)
(2,0;1) E@01) — %E(o,zﬁl)
(2,1;0) E2,1,0) — t(l i Ea20)
(3,0;0) E300) — t(1 iqj) Eo3,0
(2,1,0;0) E1,00) — 11 ttg) Ewpo1,0 — 1 tq) LEq.2,0,0) + WE(LOQ,O)
O 10— SR i1
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