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Introduction

Cellular algebras were introduced by Graham and Lehrer in 1994 in the paper [15] as a framework for study-
ing the non-semisimple representation theory of many finite dimensional algebras. The motivating examples for
cellular algebras were the Iwahori-Hecke algebras of type An and Temperley-Lieb algebras, but it has since been
realized that many other finite dimensional algebras fit into this framework. For a cellular algebra one has a fam-
ily of cell modules {∆(λ)}, endowed with bilinear forms 〈·, ·〉λ, that together control the representation theory of
the algebra in question. Unfortunately, the concrete analysis of these bilinear forms is in general difficult, but in
this thesis we give a non-trivial cellular algebra over C for which the bilinear forms 〈·, ·〉λ can in fact be diagonal-
ized over an integral form of the algebra, thus solving all relevant questions concerning them, and therefore, by
cellular algebra theory, concerning the representation theory of the algebra itself.

Our cellular algebra has two origins. Firstly it arises in the diagrammatic Soergel calculus of the Coxeter sys-
tem (W,S) of type Ã1 as the endomorphism algebra ÃCw := End(w) of w := st st · · · of length n, where S = {s, t }. An
approach to Soergel calculus of universal Coxeter groups, in particular of type Ã1, has been developed recently by
Elias and Libedinsky in [10], see also [8]. For type Ã1 this approach involves the two-colour Temperley-Lieb alge-
bra but unfortunately the two-colour Temperley-Lieb algebra only captures the degree zero part of ÃCw , whereas
our interests lie in the full grading on ÃCw .

The second origin of our cellular algebra is as a certain idempotent truncation NBn−1 of Martin and Saleur’s
blob-algebra from [35]. In [33] the algebras ÃCw and NBn−1 were studied extensively and in particular presenta-
tions in terms of generators and relations were found for each of them. Using this it was shown that there is an
isomorphism ACw

∼=NBn−1 where ACw is a natural diagrammatically defined subalgebra of ÃCw , whose dimension
is half the dimension of ÃCw . On the other hand, we show in this thesis that the representation theory of ÃCw can
be completely recovered from the representation theory of ACw .

Similarly to the original blob-algebra, the diagrammatics for NBn−1 is given by blobbed (marked) Temperley-
Lieb diagrams, although the rule for multiplying diagrams is different. Following [33], we call NBn−1 the nil-blob
algebra, but in fact NBn−1 has also appeared in the literature under the name the dotted Temperley-Lieb algebra,
see [42].

An important feature of ÃCw and NBn−1, and in fact of all cellular algebras appearing in this thesis, is the fact
that they are Z-graded algebras, with explicitly given degree functions defined in terms of the diagrams. They are
Z-graded cellular in the sense of Hu and Mathas, see [20].

Our main interest lies in the representation theory of Aw . To study this, we construct integral forms Aw and
B

x,y
n−1 for ACw and NBn−1 over the two-parameter polynomial algebra R := C[x, y] and a lift of the isomorphism

ACw
∼=NBn−1 to Aw

∼=Bx,y
n−1. The integral form Aw is in fact already implicit in the setup for Soergel calculus, using

the dual geometric realization of the Coxeter group W of type Ã1. Under this realization, the parameters x and
y correspond to the two simple roots for W . The integral form for NBn−1 is also a well-known object, since it
is simply the two-parameter blob-algebra Bx,y

n−1 with blob-parameter x and marked loop parameter y . Thus the
novelty of our result lies primarily in the isomorphism between these integral forms, which on the other hand
has the quite surprising consequence of rendering a Coxeter group theoretical meaning to the two blob algebra
parameters for Bx,y

n−1, since they become nothing but the simple roots for W .

So, via the above isomorphism, the representation theory of Aw is equivalent to the representation theory of
B

x,y
n−1. For several reasons the representation theory of Bx,y

n−1 is more convenient to handle. Both algebras are cel-
lular algebras with diagrammatically defined cellular bases, but the straightening rules for expanding the product
of two cellular basis elements in terms of the cellular basis are easier in the Bx,y

n−1 setting. Additionally, there is a
natural Temperley-Lieb subalgebra TLn−1 of Bx,y

n−1 whose associated restriction functor Res is very useful for our



4

purposes, because Res satisfies some properties which imply a diagonalization process for the bilinear form 〈·, ·〉
of a cell module in Bx,y

n−1, and therefore, for the bilinear form of a cell module in Aw .

The values of the diagonalized matrix associated to the bilinear form are obtained using the Jones-Wenzl
idempotent elements for TLn . The determination of these coefficients constitutes the main calculatory ingredient
of our thesis. Although one may possibly not have expected Coxeter theory to appear in this calculation, the result
turns out to be a nice product of positive roots for W .

This work is partially motivated by the paper [44] in which a diagonalization of the bilinear form for the cell
module for Ãw is obtained, in fact the results of [44] are valid for a general Coxeter system. Unfortunately, as was
already mentioned in [44], the diagonalization process in that paper does not work over R itself, but only over the
fraction field Q of R, since it relies on certain Jucys-Murphy elements for Aw that are of degree 2, and not 0. As a
consequence the Z-graded structure on the cell module for Ãw breaks down under the diagonalization process in
[44]. The diagonalization process of the present thesis, however, which is based on the Jones-Wenzl idempotents
that are of degree 0, resolves this problem at least for type Ã1.

After the diagonalization process, we use the results to set up a version of the Jantzen filtration formalism for
the graded cell modules of Ãw , using its bilinear form, and later, to set up a graded sum formula that holds at
enriched Grothendieck group level.

The layout of the thesis is divided in two chapters. Chapter 1 recalls preliminary concepts. In section 1 we
recall the original definition of Jantzen filtration over a principal ideal domain and the sum formula. In section
2 we recall the concept of cellular algebra, cell module and its bilinear form, adding as example TLn . In section
3 we define the Jones-Wenzl idempotent elements JWn in TLn and show several properties that JWn holds. In
the last section of this chapter we define de Soergel calculus algebra Ãw in our particular context, its light leaves
basis, and show a non-recursive formula that light leaves hold.

Chapter 2 develops the main content of our work. In section 1 we introduce some notation that shall be used
throughout the thesis and recall two additional algebras that play a role throughout: the blob algebra Bx,y

n and
the nil-blob algebra NBn . We also recall how each of them fits into the cellular algebra language. In section 2 we
introduce the subalgebra Aw of Ãw and show the isomorphism B

x,y
n−1

∼= Aw that was mentioned above. We also
show how the cellular algebra structure on Ãw induces a cellular structure on Aw and that there is an isomor-
phism ∆Bn−1(λ) ∼=∆w (v) between the respective cell modules for Bx,y

n−1 and Aw . In section 3 we consider a natural
filtration of Res∆Bn(λ) where Res is the restriction functor from B

x,y
n−1-modules to TLn−1-modules. We show that

the Jones-Wenzl idempotents JWk for TLk where k ≤ n−1 can be used to construct sections for this filtration and
to diagonalize the bilinear form 〈·, ·〉Bn−1,λ on ∆Bn−1(λ). In section 4 we prove the key Theorems 2.4.1 and 2.4.2, that
were already mentioned above. They allow us to give concrete expressions for the diagonal elements of the ma-
trix for 〈·, ·〉Bn−1,λ, which, as already mentioned, turn out to be products of positive roots α for W . In section 5 we
give a description of the reflections sα in W that correspond to the positive roots of section 4. Finally, in section
6 we use the results of the previous sections to give the graded Jantzen filtration with corresponding graded sum
formula.
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CHAPTER 1

Preliminaries

1. Jantzen filtration over a principal ideal domain

In this section we recall definitions and results about the Jantzen filtration, originally defined in [24] for
Verma modules. In this case, we consider a more general and simple version of the Jantzen filtration, follow-
ing [22] and [23], where the construction of the filtration is defined over a principal ideal domain. In this section,
we chose this version of Jantzen filtration because we don’t work over Verma modules in this thesis.

Let R be a principal ideal domain and p ∈ R prime. Let νp the p−adic valuation over R, i.e., νp (a) = n if pn

divides a but pn+1 doesn’t divide a. Let M be a free R−module of finite rank r equipped with a non-degenerate
symmetric bilinear form (·, ·). For each non-negative integer n we define

M(n) = {m ∈ M : (m, M) ∈ pnR}.

From this definition we have the following filtration:

M = M(0) ⊇ M(1) ⊇ M(2) ⊇ ...

Now, let be M = M/pM . Then M is a vector space over R := R/pR. So, if we consider M(n) as the image of
i (M(n)) under reduction modulo p, where i : M(n) −→ M is the natural embedding, then we have the following
filtration of R−vector subspaces:

M = M(0) ⊇ M(1) ⊇ M(2) ⊇ ...

called Jantzen filtration.

For the rest of this section we will need the following definitions and results from Module Theory over a
principal ideal domain.

LEMMA 1.1.1. Let R be a principal ideal domain. Let M be a free R−module of finite rank r , and let N be a
submodule of M. Then:

(1) N is free R−module of rank s ≤ r .
(2) There is a free R−basis {b1,b2, ...,br } for M and non-zero elements {a1, a2, ..., as } such that a1|a2| · · · |as and

{a1b1, a2b2, ..., as bs } is a free R−basis for N . In other words:

N = ⊕
1≤i≤s

Rai bi .

DEFINITION 1.1.2. Let R be a ring. Let M be an R−module. We define the dual module of M as M∗ =
HomR (M ,R).

LEMMA 1.1.3. Let R be a principal ideal domain and M a free R−module of finite rank r . Then, M∗ is also a
free R−module of rank r .

LEMMA 1.1.4. Let R be a principal ideal domain and M a free R−module equipped with a non-degenerate
bilinear form (·, ·). Then the function

φ : M −→ M∨

defined by
φ(m) = (m, ·)

is an isomorphism, where M∨ := {(m, ·) : m ∈ M } ⊂ M∗.

LEMMA 1.1.5. Let R a principal ideal domain. Let M a free R−module of finite rank r and M∗ its associated
dual module. Let (·, ·) a non-degenerate symmetric bilinear form over M. Then there are:

• A free R−basis {e∗1 , ...,e∗r } for M∗

7
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• A free R−basis { f1, ..., fr } for M
• A set of elements {a1, ..., ar } ⊂ R such that

( fi , ·) = ai e∗i

for each i ∈ {1,2, ...,r }.

Proof: Let N = M∨, with M∨ from Lemma 1.1.4. Since (·, ·) is non-degenerate, then by Lemma 1.1.4 we have
that N is a free R−submodule of M∗ of finite rank r . Additionally, from Lemma 1.1.1 there is a free R−basis
B∗ = {e∗1 ,e∗2 , ...,e∗r } for M∗, where B∗ has exactly r elements by Lemma 1.1.3, and also there is a set of non-zero
elements {a1, a2, ..., ar } ⊂ R such that BN = {a1e∗1 , a2e∗2 , ..., ar e∗r } is an R−basis for N . Now, by Lemma 1.1.4, for
each 1 ≤ i ≤ r there is a unique element fi ∈ M such that

φ( fi ) = ai e∗i .

So, the set BM = { f1, f2, ..., fr } is an R−basis for M because φ is an isomorphism. Finally, by definition of φ we
have that φ( fi ) = ( fi , ·) for each 1 ≤ i ≤ r , and then

( fi , ·) = ai e∗i

for each 1 ≤ i ≤ r . □

REMARK 1.1.6. In the previous lemma the R-elements {a1, a2, ..., ar } also satisfy the divisibility relation a1|a2| · · · |ar ,
because they are given by Lemma 1.1.1.

Now, the main result of this section, known as Jantzen sum formula.

THEOREM 1.1.7. Let R be a principal ideal domain and p ∈ R prime. Let M be a free R−module of finite rank
r , equipped with a non-degenerate symmetric bilinear form (·, ·) of non-zero determinant D with respect to some
R−basis for M. Let νp , M(n), R and M(n) be defined as before. Then the following equality holds:

vp (D) = ∑
n≥1

dimR M(n).

Proof: From Lemma 1.1.5 there are:

• A free R−basis B∗ = {e∗1 ,e∗2 , ...,e∗r } for M∗.
• A free R−basis B1 = { f1, f2, ..., fr } for M .
• A set of nonzero elements {a1, a2, ..., ar } ⊂ R such that

( fi , ·) = ai e∗i .

Let B = {e1,e2, ...,er } be the R−dual basis for M with respect to B∗, i.e.,

e∗j (ei ) = δi j

where δi j is the Kronecker delta. Let n be a non-negative integer. First of all, we need to know how M(n) is

generated, and then apply reduction modulo p to obtain a basis for M(n). So, let f ∈ M . Since B1 is basis for M ,
there are elements {c1,c2, ...,cr } ∈ R such that

f =
r∑

i=1
ci fi .
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So,

f ∈ M(n) ⇔ ( f , M) ⊂ pnR

⇔ ( f ,ei ) ∈ pnR ∀i

⇔
 r∑

j=1
c j f j ,ei

 ∈ pnR ∀i

⇔
r∑

j=1
c j

(
f j ,ei

)
∈ pnR ∀i

⇔
r∑

j=1
c j a j e∗j (ei ) ∈ pnR ∀i

⇔
r∑

j=1
c j a jδ j i ∈ pnR ∀i

⇔ ci ai ∈ pnR ∀i

⇔ νp (ci ai ) ≥ n ∀i

⇔ νp (ci )+νp (ai ) ≥ n ∀i

⇔ νp (ci ) ≥ n −νp (ai ) ∀i

Here, we have two possibilities for each ci :

• If n −νp (ai ) ≤ 0 then νp (ci ) ≥ 0, and this implies that ci ∈ R without restrictions.
• If n −νp (ai ) > 0 then νp (ci )v ≥ n −νp (ai ) > 0, and this implies that ci ∈ pn−νp (ai )R.

So, we have

M(n) = ⊕
i :n−νp (ai )≤0

R fi ⊕
⊕

i :νp (ai )>0
pn−νp (ai ) fi ,

and applying reduction modulo p on this equality we obtain that

M(n) = ⊕
i :n−νp (ai )≤0

R fi ,

and this implies that

dimR M(n) = #{i : n −νp (ai ) ≤ 0}.

With this, we have the following expression for the right-side of the sum formula desired:

∑
n≥1

dimR M(n) = ∑
n≥1

#{i : n −νp (ai ) ≤ 0}

=
r∑

n=1
#{i : n −νp (ai ) ≤ 0}

=
r∑

n=1
νp (ai ).

Let D be the determinant of the associated matrix for (·, ·) with respect to B . We show that D =
r∑

n=1
νp (ai ).

Since B1 is also a basis for M , there is a matrix X = (xi , j ) ∈ GLr (R) such that for each j ∈ {1,2, ...,r }

e j =
r∑

k=1
xk, j fk .
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So,

D = det
(
(ei ,e j )

)
1≤i , j≤r

= det

(
ei ,

r∑
k=1

xk, j fk

)
1≤i , j≤r

= det

(
r∑

k=1
xk, j

(
ei , fk

))
1≤i , j≤r

= det

(
r∑

k=1
xk, j

(
fk ,ei

))
1≤i , j≤r

= det

(
r∑

k=1
xk, j ak e∗k (ei )

)
1≤i , j≤r

= det

(
r∑

k=1
xk, j akδki

)
1≤i , j≤r

= det
(
xi , j ai

)
1≤i , j≤r

=
r∏

i=1
ai ·det

(
xi , j

)
1≤i , j≤r

=
r∏

i=1
ai ·det(X ),

but det(X ) is a unit of R because X ∈ GLr (R). Then, modulo multiplication by units, we have that

D =
r∏

i=1
ai

and therefore

νp (D) = νp

(
r∏

i=1
ai

)
=

r∑
i=1

νp (ai ) =
∞∑

n=1
dimR M(n).

□
From the Jantzen sum formula of Theorem 1.1.7 we know that the determinant D of the associated matrix

for the bilinear form (·, ·), denoted by M(·,·) contains information about how the R-modules M(n) are generated,
and so on, about how the R-modules M(n) are generated. In other words, knowing the associated matrix for (·, ·)
we can find values for dimR M(n) and dimR M(n), for each non-negative integer n. Moreover, from Lemma 1.1.4
we have that the elements {a1, a2, ..., ar } correspond to the diagonal of the Smith Normal Form, denoted by Md ,
of M(·,·), that is:

Md =


a1 0 0 . . . 0
0 a2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . ar

 .

So, knowing Md we can find values for dimR M(n) and dimR M(n), and then obtain a sum formula.

EXAMPLE 1. Let M be a Z-module with basis {e1,e2,e3}, equipped by a non-degenerate symmetric bilinear form
(·, ·) with associated matrix

M(·,·) =

 5 −2 7
−2 0 −2

7 −2 1

 .

The Smith Normal Form of M(·,·) is
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Md =

 1 0 0
0 4 0
0 0 8

 ,

then D = det(Md ) = 32. If we consider p = 2, then νp (D) = 5. Now, seeing Md we give the following information
about the Z -modules M(n):

M(0) = M

M(1) = {m ∈ M : (m, M) ⊂ 2Z}

= SpanZ〈2b1,b2,b3〉
M(2) = {m ∈ M : (m, M) ⊂ 4Z}

= SpanZ〈4b1,b2,b3〉
M(3) = {m ∈ M : (m, M) ⊂ 8Z}

= SpanZ〈8b1,2b2,b3〉
M(k) = {m ∈ M : (m, M) ⊂ 2kZ}

= SpanZ〈2k b1,2k−2b2,2k−3b3〉 para k > 3

where {b1,b2,b3} is another basis for M obtained after the diagonalization process to get Md . Therefore, apply-
ing reduction modulo p = 2 we obtain information about the M(n) modules:

M(0) = M

M(1) = SpanF2
〈b2,b3〉

M(2) = SpanF2
〈b2,b3〉

M(3) = SpanF2
〈b3〉

M(k) = 0 para k > 3

where we can verify the Jantzen sum formula:∑
i>0

dimR M(i ) = 2+2+1 = vp (D).

2. Cellular algebras

In this section we recall some definitions and examples related to the concept of Cellular Algebra, which
was introduced for the first time by Graham and Lehrer in [15]. This concept is fundamental in our thesis be-
cause all algebras considered in this work are cellular algebras, so, to study these algebras from the perspective
of cellularity will be very useful in order to reach our main goal.

DEFINITION 1.2.1. Let A be a finite dimensional algebra over a commutative ring k with unity. Then a cellular
basis structure for A consists of a triple (Λ,Tab,C ), called cell datum for A, such that Λ is a poset with ordering
given by <, Tab is a function on Λ with values in finite sets and C :

∐
λ∈ΛTab(λ)×Tab(λ) →A is an injection such

that
{Cλ

st | s, t ∈ Tab(λ), λ ∈Λ}

is a k-basis for A: the cellular basis for A. The rule (Cλ
st )∗ := Cλ

t s defines a k-linear antihomomorphism of A and
the structure constants for A with respect to {Cλ

st } satisfy the following condition with respect to the partial order:
for all a ∈A we have

aCλ
st =

∑
u∈Tab(λ)

rusaCλ
ut mod A<λ (1.1)

where A<λ is the k-submodule of A spanned by the set {Cµ
s,t | s, t ∈ Tab

(
λ
)

and µ<λ} and where rusa ∈ k.

In each cellular algebra there are the following modules.
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DEFINITION 1.2.2. Let A a cellular algebra with cell datum
(
Λ,Tab,C

)
. For λ ∈ Λ we define the cell module

∆
(
λ
)

as the k-module with basis given by the symbols {Cλ
s | s ∈ Tab

(
λ
)
} and A-action given by the equality

aCλ
s = ∑

u∈Tab(λ)
rusaCλ

u mod A<λ (1.2)

where rusa ∈ k are the same scalars of Definition 1.2.1 (which not depend of t in the previous definition).

Additionally, a cell module ∆
(
λ
)

can be equipped by the following bilinear form.

DEFINITION 1.2.3. Let A a cellular algebra with cell datum
(
Λ,Tab,C

)
, and let λ ∈Λ. Then, for the cell module

∆
(
λ
)

we define the bilinear form 〈·, ·〉λ using the following equality

Cλ
asCλ

tb = 〈Cλ
s ,Cλ

t 〉λCλ
ab mod A<λ (1.3)

where a,b, s, t ∈ Tab
(
λ
)

.

LEMMA 1.2.4. In Equation 1.3, the value of 〈Cλ
s ,Cλ

t 〉λ doesn’t depend on the elements a,b ∈ Tab(λ) chosen.

Proof: Applying the A-action defined in 1.1 to the product Cλ
asCλ

tb we have that

Cλ
asCλ

tb = ∑
u∈Tab(λ)

rutCλ
as

Cλ
ub mod A<λ (1.4)

and by the equality 1.3 we have that

〈Cλ
s ,Cλ

t 〉λ = ratCλ
as

, (1.5)

and therefore 〈Cλ
s ,Cλ

t 〉λ doesn’t depend of b. On the other hand, applying the anti-homomorphism ∗ on 1.3 we
have that

Cλ
bt Cλ

sa = 〈Cλ
s ,Cλ

t 〉λCλ
ba mod A<λ (1.6)

but by 1.1 the product Cλ
bt Cλ

sa is

Cλ
bt Cλ

sa = ∑
u∈Tab(λ)

rusCλ
bt

Cλ
ua mod A<λ, (1.7)

which implies that

〈Cλ
s ,Cλ

t 〉λ = rbsCλ
bt

, (1.8)

and therefore 〈Cλ
s ,Cλ

t 〉λ doesn’t depend of a. □

The following lemma is a property of the bilinear form 〈·, ·〉λ.

LEMMA 1.2.5. The bilinear form 〈·, ·〉λ of ∆
(
λ
)

is symmetric. In other words,

〈Cλ
s ,Cλ

t 〉λ = 〈Cλ
t ,Cλ

s 〉λ (1.9)

for all s, t ∈ Tab
(
λ
)
.

Proof: Let s, t ∈ Tab
(
λ
)
. By Definition 1.2.3 we have the equalities

Cλ
asCλ

tb = 〈Cλ
s ,Cλ

t 〉λCλ
ab mod A<λ (1.10)

Cλ
a′t Cλ

sb′ = 〈Cλ
t ,Cλ

s 〉λCλ
a′b′ mod A<λ (1.11)

for any a, a′,b,b′ ∈ Tab
(
λ
)
. So, if we consider a = b′ = t and b = a′ = s then the equalities (1.10) and (1.11)

implies the following equalities, respectively:
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Cλ
t sCλ

t s = 〈Cλ
s ,Cλ

t 〉λCλ
t s mod A<λ (1.12)

Cλ
st Cλ

st = 〈Cλ
t ,Cλ

s 〉λCλ
st mod A<λ. (1.13)

Now, applying the anti-homomorphism ∗ on (1.12) and considering that r∗ ∈ A<λ for all r ∈ A<λ we have that

Cλ
t sCλ

t s = 〈Cλ
s ,Cλ

t 〉λCλ
t s mod A<λ ∗=⇒

(
Cλ

t sCλ
t s

)∗ = 〈Cλ
s ,Cλ

t 〉λ
(
Cλ

t s

)∗
mod A<λ

=⇒Cλ
st Cλ

st = 〈Cλ
s ,Cλ

t 〉λCλ
st mod A<λ.

(1.14)

Therefore, from equalities (1.13) and (1.14) we have that 〈Cλ
s ,Cλ

t 〉λ = 〈Cλ
t ,Cλ

s 〉λ. □
The previous definitions are abstract. So, for understanding them we consider it necessary to give a classical

example. In this thesis we shall consider several diagram algebras which are also cellular algebras. Possibly the
oldest and most studied diagram algebra is the Temperley-Lieb algebra. It arose in statistical mechanics in the
seventies. In the present thesis we shall use the following variation of it.

Let R =C.

DEFINITION 1.2.6. The Temperley-Lieb algebra TLn with loop-parameter −2 is the R-algebra on the generators
U1, . . . ,Un−1 subject to the relations

U2
i =−2Ui if 1 ≤ i < n (1.15)

UiU jUi =Ui if |i − j | = 1 (1.16)

UiU j =U jUi if |i − j | > 1. (1.17)

As already indicated, TLn is a diagram algebra. This fact plays an important role in our thesis, and let us
briefly explain it. The diagram basis for TLn as diagram algebra consists of Temperley-Lieb diagrams on n points,
which are planar pairings between n northern points and n southern points of a rectangle. The multiplication
D1D2 of two diagrams D1 and D2 is given by concatenation of them, with D2 on top of D1. This concatenation
process may give rise to internal loops, which are removed from a diagram by multiplying it by −2. For example,
if we consider the elements

D1 = ∈TL6 and D2 = ∈TL6 (1.18)

we have that

D1D2 = = (−2)2 . (1.19)

The isomorphism between TLn and its diagrammatic version can be reviewed for more details in, for exam-
ple, [26] and [27]. So, under this isomorphism, we have that

1 7→ b b b and Ui 7→ b b b b b b

i

.

. (1.20)

From now on, simply we use 1 and Ui for the diagrams generators of the diagrammatic version of TLn .
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We now return to the cellularity concepts. To make TLn fit into this language we choose the following cell
datum for TLn :

• k= R.
• Λ=Λn := {n,n−2, . . . ,1} (orΛ :=Λn = {n,n−2, . . . ,2,0}) if n is odd (or even), with poset structure inherited

from Z.
• For λ ∈ Λn we choose Tab(λ) to be Temperley-Lieb half-diagrams with λ propagating lines, that is

Temperley-Lieb diagrams on λ northern and n southern points in which each northern point is paired
with a southern point.

• For s, t ∈ Tab(λ) we define Cλ
st to be the diagram obtained from gluing s and the horizontal reflection of

t (denoted by t∗), with s on the bottom. In other words, Cλ
st = st∗. Here is an example of this gluing

process with n = 8 and s, t ∈ Tab(2):

(s, t ) =


,

 7→ Cλ
st = st∗ =

.

(1.21)

With the above cell datum selection for TLn we have the following result.

THEOREM 1.2.7. The above triple (Λn ,Tab,C ) makes TLn into a cellular algebra.

Proof: This follows directly from the definitions. □
Now, considering the importance of ∆

(
λ
)

and its bilinear form 〈·, ·〉λ for the representation theory of TLn

mentioned in the introduction, we need to describe in another way the bilinear form, or in other words, how the
bilinear form is calculated under the cell datum selected. From now on, we denoted by 1n the identity on TLn .

Fix a λ ∈Λ. First, a property in Tab.

LEMMA 1.2.8. Let s ∈ Tab
(
λ
)
. Then

s∗s = (−2)
n−λ

2 1λ. (1.22)

Proof: From the definition of Tab we have that s has n−λ
2 arcs and λ propagating lines, where arc means pairing

between two southern points of s. Furthermore, the s∗s diagram connects each propagation line of s with its own
image under the horizontal reflection. So s∗s again has λ lines of propagation. On the other hand, the diagram
s∗s connects all the arcs of s to its own image under the horizontal reflection, generating a loop for each arc of s.
So, s∗s has exactly n−λ

2 loops, and therefore

s∗s = (−2)
n−λ

2 1λ.

□
Now, a particular description of 〈·, ·〉λ in TLn . For this, we denote coef1λ (D) to the coefficient of 1λ in the

expansion of D in terms of the cellular basis.

LEMMA 1.2.9. Let s, t ∈ Tab
(
λ
)
. Then 〈Cλ

s ,Cλ
t 〉λ = coef1λ

(
Cλ

s∗t∗
)
.

Proof: Let s, t ∈ Tab
(
λ
)
. By Definition 1.2.3 we have that

Cλ
asCλ

tb = 〈Cλ
s ,Cλ

t 〉λCλ
ab mod A<λ (1.23)

for any a,b ∈ Tab
(
λ
)
, and by cell datum setting chosen for TLn we have from (1.23) that

as∗tb∗ = 〈Cλ
s ,Cλ

t 〉λab∗ mod A<λ (1.24)

for any a,b ∈ Tab
(
λ
)
. Now, if we multiply by a∗ on the left side in (1.24) and by b on the right side in (1.24), and

applying Lemma 1.2.8 we have that

s∗t = 〈Cλ
s ,Cλ

t 〉λ1λ mod A<λ, (1.25)

because qr ∈ A<λ for all q ∈ Tab
(
λ
)

and for all r ∈ A<λ. Therefore, the previous equality implies that 〈Cλ
s ,Cλ

t 〉λ is
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the coefficient of 1λ in the diagram s∗t , but s∗t =Cλ
s∗t∗ . This completes the proof. □

The last Lemma is very useful for calculating values of the bilinear form bypassing its definition. It is im-
portant to say that analogues of Lemma 1.2.9 holds for others cellular algebras which we will use in the next
chapter.

3. The Jones-Wenzl elements in Temperley-Lieb algebra

In this section we discuss the Jones-Wenzl elements in Temperley-Lieb diagram algebra TLn , their construc-
tion and some useful properties for our thesis. For this, we consider some notations.

If D1 and D2 are two diagrams of TLn we use the tensor product D1 ⊗D2 for horizontal concatenation, with
D2 on the right of D1. Now, in this case, we consider the following definition of these elements, which was used
in [43].

DEFINITION 1.3.1. Define the Jones-Wenzl elements in TLn via the following recursion relation:

JW1 = 11 (1.26)

and

JWn = JWn−1 ⊗11 + n −1

n

(
JWn−1 ⊗11

)
Un−1

(
JWn−1 ⊗11

)
. (1.27)

In the diagram representation, we use the standard rectangle notation to indicate JWn , as follows:

JW1 =

.

(1.28)

and

JWn

b b b

b b b

=

b b b

b b b

JWn−1 + n −1

n

JWn−1

JWn−1

b b b

b b b

b b b

.

(1.29)

These elements have several useful properties for our thesis.

LEMMA 1.3.2. For a positive integer n > 1 the following equality holds:

(
JWn−1 ⊗12

)
Un =Un

(
JWn−1 ⊗12

)
(1.30)

Proof: Direct from definition. □
LEMMA 1.3.3. For a positive integer n we have the following equalities:

JW2
n = JWn , (1.31)(

Un
(
JWn ⊗11

))2 =−n +1

n
Un

(
JWn ⊗11

)
. (1.32)

and ((
JWn ⊗11

)
Un

)2 =−n +1

n

(
JWn ⊗11

)
Un . (1.33)

In diagrams, equations (1.31), (1.32) and (1.33) are the following equalities respectively:
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=

JWn

b b b

b b b

JWn

b b b

JWn

b b b

b b b

, (1.34)

=

JWn

b b b

b b b

JWn

b b b

JWn

b b b

b b b

−n+1
n

, (1.35)

=

JWn

b b b

JWn

b b b

−n+1
n

b b b

JWn

b b b

b b b

, (1.36)

Proof: By induction on n. We only show the proof of equalities (1.31) and (1.32), because the proof of (1.33) is
similar to the proof of (1.32). We start with the initial case n = 1. For the first equality we have that

JW2
1 = 12

1 = 11 = JW1.

For the second equality, we have that its left side is(
U1

(
JW1 ⊗11

))2 = (
U111 ⊗11

)2 = (
U12

)2 =U2
1 =−2U1

and its right side is

−1+1

1
U1

(
JW1 ⊗11

)=−2U112 =−2U1,

therefore, (1.31) and (1.32) hold for n = 1. Now, we assume by induction that

JW2
n−1 = JWn−1 (1.37)

and (
Un−1

(
JWn−1 ⊗11

))2 =− n

n −1
Un−1

(
JWn−1 ⊗11

)
. (1.38)

By the recursion formula from (1.27) for JWn and applying the idempotence of JWn−1 we have that(
JWn−1 ⊗11

)
JWn = JWn

(
JWn−1 ⊗11

)= JWn . (1.39)

To obtain (1.32), we consider the following equality from the definition:
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Un
(
JWn ⊗11

)=Un
(
JWn−1 ⊗12

)+ n −1

n
Un

(
JWn−1 ⊗12

)
Un−1

(
JWn−1 ⊗12

)
(1.40)

and multiplying (1.40) by Un we have that

Un
(
JWn ⊗11

)
Un =Un

(
JWn−1 ⊗12

)
Un + n −1

n
Un

(
JWn−1 ⊗12

)
Un−1

(
JWn−1 ⊗12

)
Un

(1.30)= −2Un
(
JWn−1 ⊗12

)+ n −1

n

(
JWn−1 ⊗12

)
Un

(
JWn−1 ⊗12

)
.

Therefore, multiplying the last equality by
(
JWn ⊗11

)
we obtain

(
Un

(
JWn ⊗11

))2 =−2Un
(
JWn−1 ⊗12

)(
JWn ⊗11

)+ n −1

n

(
JWn−1 ⊗12

)
Un

(
JWn−1 ⊗12

)(
JWn ⊗11

)
(1.30),(1.39)= −2Un

(
JWn ⊗11

)+ n −1

n
Un

(
JWn−1 ⊗12

)2 (
JWn ⊗11

)
(1.37),(1.30)= −2Un

(
JWn ⊗11

)+ n −1

n
Un

(
JWn ⊗11

)
=−n +1

n
Un

(
JWn ⊗11

)
,

then, by induction, (1.32) holds for every positive integer n. On the other hand:

JW2
n =

((
JWn−1 ⊗11

)+ n −1

n

(
JWn−1 ⊗11

)
Un−1

(
JWn−1 ⊗11

))2

= (
JWn−1 ⊗11

)2 + n −1

n

(
JWn−1 ⊗11

)2
Un−1

(
JWn−1 ⊗11

)+ n −1

n

(
JWn−1 ⊗11

)
Un−1

(
JWn−1 ⊗11

)2

+
(

n −1

n

)2 (
JWn−1 ⊗11

)
Un−1

(
JWn−1 ⊗11

)(
JWn−1 ⊗11

)
Un−1

(
JWn−1 ⊗11

)
(1.37)= (

JWn−1 ⊗11
)+ 2(n −1)

n

(
JWn−1 ⊗11

)
Un−1

(
JWn−1 ⊗11

)+(
n −1

n

)2 (
JWn−1 ⊗11

)(
Un−1

(
JWn−1 ⊗11

))2

(1.38)= (
JWn−1 ⊗11

)+(
2(n −1)

n
+

(
n −1

n

)2 ( −n

n −1

))(
JWn−1 ⊗11

)
Un−1

(
JWn−1 ⊗11

)
= (

JWn−1 ⊗11
)+ n −1

n

(
JWn−1 ⊗11

)
Un−1

(
JWn−1 ⊗11

)
= JWn .

Then, by induction, (1.31) holds for every positive integer n.
□

LEMMA 1.3.4.

Ui JWn = JWnUi = 0

for all 1 ≤ i < n.

Proof: By induction on n. We will show the proof of the equality Ui JWn = 0. The initial case is n = 2, then i = 1.
In this case,

JW2 = 1
2

+
, (1.41)
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so,

U1JW2 =

JW2

= 1
2

+

= +−1 = 0
.

We assume by induction that Ui JWn−1 = 0 for all i < n −1. So,

Ui JWn =Ui
(
JWn−1 ⊗11

)+ n −1

n
Ui

(
JWn−1 ⊗11

)
Un−1

(
JWn−1 ⊗11

)
. (1.42)

Here we have two cases. If i ≤ n −2, then Ui JWn = 0+ n−1
n ·0 ·Un−1

(
JWn−1 ⊗11

) = 0 by hypothesis. On the
other hand, if i = n −1 then we have that

Ui JWn
i=n−1= Un−1

(
JWn−1 ⊗11

)+ n −1

n
Un−1

(
JWn−1 ⊗11

)
Un−1

(
JWn−1 ⊗11

)
=Un−1

(
JWn−1 ⊗11

)+ n −1

n

(
Un−1

(
JWn−1 ⊗11

))2

Lemma 1.3.3= Un−1
(
JWn−1 ⊗11

)+ n −1

n
· −n

n −1
Un−1

(
JWn−1 ⊗11

)
= 0,

and by induction the equality Ui JWn = 0 holds. The proof of JWnUi = 0 is analogue. □

LEMMA 1.3.5.
coef1(JWn) = 1, (1.43)

where coef1(JWn) denotes the coefficient of 1n when JWn is expanded in the diagram basis for TLn .

Proof: By induction on n. The case n = 1 is direct because JW1 = 11. Now, we assume by induction that
coef1(JWn−1). So, by definition of JWn we have that

coef1(JWn) = coef1

(
b b b

b b b

JWn−1

)
+ n −1

n
coef1


JWn−1

JWn−1

b b b

b b b

b b b

 . (1.44)

By hypothesis we have that

coef1

(
b b b

b b b

JWn−1

)
= 1

and for the other term in (1.44) we have that the diagram D =
JWn−1

JWn−1

b b b

b b b

b b b

doesn’t contain the 1n in its expansion

in terms of the basis. If we suppose that D contain the 1n in its expansion in terms of the basis, then the upper
cup and the lower cap in the rightmost side of D must be connected through the rightmost vertical line bewteen
the two JWn−1 elements of D . This fact is illustrated with a blue lines in the following image:

JWn−1

JWn−1

b b b

b b b

b b b

.
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So, if 1n appears in this diagram D , the n−2 vertical lines in the bottom boundary of the JWn−1 (the JWn−1 in
the south of D) should be connected with the n−3 vertical propagating lines from the top boundary of the same
JWn−1 , which is impossible. Therefore, coef1(D) = 0 and by induction the lemma is proven.

□
REMARK 1.3.6. This lemma implies that JWn is a non-zero element of TLn because coef1

(
JWn

) = 1 and 1n ∉
SpanC{U1, ...,Un−1}.

The last three lemmas give us a characterization of the Jones-Wenzl elements. In other words, we have the
following lemma.

LEMMA 1.3.7. Let e be a non-zero element in TLn such that

(1) e2 = e
(2) Ui e = eUi = 0 for all 1 ≤ 1 < n.

Then e = JWn . In other words, JWn is the unique non-zero element of TLn that satisfies (1) and (2).

Proof: Let U the two-sided ideal generated by U1, ...,Un−1. Since e ∈TLn and 1n ∉ U , then there is a scalar α ∈ C
such that

e =α1n +u, (1.45)

where u ∈U . Now, since e is idempotent by (1) we have that

α1n +u = (
α1n +u

)2 =α21n +2αu +u2,

and this implies that α = α2. Therefore, α = 0 or α = 1. If α = 0 then e = u, and by (1) this fact implies that
e = e2 = eu = 0, which is a contradiction. Thus α= 1 and

e = 1n +u. (1.46)

On the other hand, we have by Lemma 1.3.5 that

JWn = 1n +u′, (1.47)

where u′ ∈ U . So, multiplying on the left of (1.46) by JWn and on the right of (1.47) by e we have the following
equalities respectively:

JWne = JWn 1n + JWnu = JWn

JWne = 1ne +u′e = e,

then e = JWn .
□

Now, a simple but very useful property of JWn , called usually absorption.

LEMMA 1.3.8. For all m ≤ n the equality(
JWm ⊗1n−m

)
JWn = JWn (1.48)

holds.

Proof: By induction on n. The initial case n = 1 is trivial. Now, we assume by induction that

(
JWm ⊗1n−1−m

)
JWn−1 = JWn−1 (1.49)

for all 1 ≤ m < n −1. In diagrams the hypothesis is:

=

b b b

b b b

JWn−1

JWm

b b b

b b b

b b b

JWn−1

b b b

b b b

. (1.50)

So, if m < n we have by definition the following:
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(
JWm ⊗1n−m

)
JWn =

b b b

b b b =

b b b

b b b

JWn−1

+ n−1
n

JWn−1

JWn−1

b b b

b b b

b b b

JWn

b b b

b b b

JWm

b b b

JWm

b b b

b b b

JWm

b b b

b b b

Hypothesis or Lemma 1.3.3=
b b b

b b b

JWn−1 + n−1
n

JWn−1

JWn−1

b b b

b b b

b b b

= JWn ,

and this concludes the proof. □
Finally, we will show another recursive definition for the Jones-Wenzl elements, which will very important in

some calculations of this thesis for getting our main result.

LEMMA 1.3.9. For a positive integer n the following recursive formula holds:

JWn

b b b

b b b

=

b b b

b b b

JWn−1 +
n−1∑
j=1

j

n JWn−1

b b b

b b b

j

(1.51)

where the number j indicates the position of the arc and the initial case is JW1 = 11.

Proof: By induction on n. If n = 2 we have from (1.41) that

JW2 = 1
2

+
, (1.52)

and the recursive formula (1.51) we have that

1
2

+
,

then the recursive formula of this lemma holds for n = 2. Now, we suppose by induction that (1.51) holds for n−1,
i.e., we suppose that

JWn−1

b b b

b b b

=
b b b

b b b

JWn−2 +
n−2∑
j=1

j

n −1 JWn−2

b b b

b b b

j

. (1.53)

So, for JWn we have
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JWn
def=

b b b

b b b

JWn−1 + n−1
n

JWn−1

JWn−1

b b b

b b b

b b b

(1.53)=
b b b

b b b

JWn−1 + n −1

n


b b b

b b b

JWn−1

b b b

b b b

JWn−2

+

n−2∑

j=1

j

n− 1
b b b

b b b

JWn−1

b b b

b b b

JWn−2

j


Lemma 1.3.8=
b b b

b b b

JWn−1 + n −1

n


b b b

b b b

JWn−1

b b b

b b b

JWn−1

j

+

n−2∑

j=1

j

n− 1



=
b b b

b b b

JWn−1 + n −1

n


b b b

b b b

JWn−1

j

n−1∑

j=1

j

n− 1



=
b b b

b b b

JWn−1 +
n−1∑
j=1

j

n
JWn−1

b b b

b b b

j

,

and by induction the proof is finished. □

4. Soergel Calculus

To any Coxeter system (W,S), Elias and Williamson associated in [11], a diagrammatic category D(W,S). We
fix S := {s, t } and let W be the Coxeter group on S given by

W := 〈s, t | s2 = t 2 = e〉 (1.54)

that is, W is the affine Weyl group of type Ã1, or the infinite dihedral group with Bruhat order < chosen such that
1 is the minimal element. The definition of D(W,S) depends on the choice of a realization h of (W,S), which is a
representation h of W over C, arising from a choice of simple roots and simple coroots, see [11, Section 3.1]. In
[33], the realization h was chosen to be the geometric representation of W defined over C, see [21, Section 5.3],
with coroots α∨

s ,α∨
t being a basis for h and roots αs ,αt ∈ h∗ given by

αs (α∨
s ) = 2, αt (α∨

s ) =−2, αs (α∨
t ) =−2, αt (α∨

t ) = 2 (1.55)

that is αs = −αt . With this choice of realization of (W,S), the symmetric algebra of the dual representation is
R := S(h∗) =C[αs ], or simply a one-variable polynomial algebra.

In this thesis, we choose for realization h of (W,S) the dual of the geometric representation. To be precise,
we choose h to be the C-vector space of dimension two, containing an element α∨

s = −α∨
t , such that for a basis
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αs ,αt for h∗ the relations (1.55) hold. For this choice of h we have that

R = S(h∗) =C[αs ,αt ] (1.56)

that is R is a two-variable polynomial algebra.

We consider R to be a Z-graded algebra where deg(αs ) = deg(αt ) = 2. The action of W on h∗ is given by the
formulas

sαs =−αs , sαt =αt +2αs , tαt =−αt , tαs =αs +2αt . (1.57)

It extends to an action of W on R and so we have the Demazure operators ∂s ,∂t : R → R defined by:

∂s ( f ) = f − s f

αs
, ∂t ( f ) = f − t f

αt
. (1.58)

We have that
∂s (αs ) = ∂t (αt ) = 2, ∂s (αt ) = ∂t (αs ) =−2. (1.59)

Let us now briefly explain the definition of the diagrammatic Soergel category D(W,S) for our choices. Let exp
be the set of expressions over S, that is words w = si1 si1 · · · siN in the alphabet S. We consider the empty expression
w =; to be an element of exp.

DEFINITION 1.4.1. Let (W,S) be as above. A Soergel diagram for (W,S) is a finite graph embedded in R× [0,1].
The arcs of a Soergel diagram are coloured by either colour r ed or colour blue, corresponding to the elements of
S. The vertices of a Soergel diagram are of the four possible types indicated below, univalent vertices (dots) and
trivalent vertices where all three incident arcs are of the same colour.

, , ,

b b

.

(1.60)

A Soergel diagram has its regions, that is the connected components of the complement of the graph in R×[0,1],
decorated by elements of R. For simplicity, we omit the decoration 1 ∈ R when drawing Soergel diagrams.

A vertex of an arc of a Soergel diagram that belongs to the boundary of the strip R×[0,1] is called a boundary
point. We say that an arc l of D is a boundary dot arc if one of its vertices is a dot and the other one is a bound-
ary point. The left to right reading of the boundary points gives rise to two elements of exp called the bottom
boundary and top boundary of the diagram, respectively.

DEFINITION 1.4.2. The diagrammatic Soergel category D(W,S) is the monoidal category whose objects are the el-
ements of exp and whose morphisms HomD(x, y) are the R-modules generated by all Soergel diagrams with bottom
boundary x and top boundary y, modulo isotopy and modulo the following local relations

b = (1.61)

= (1.62)

b

b
αs= (1.63)

f = sf +
b
b ∂sf

(1.64)
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= 0 (1.65)

where the relations (1.61)–(1.65) also hold if red is replaced by blue.

For f ∈ R and D a Soergel diagram, the product f D is defined as the diagram obtained from D by replacing the
polynomial g of the leftmost region of D by f g . The multiplication D1D2 of diagrams D1 and D2 is given by vertical
concatenation with D2 on top of D1, where regions containing two polynomials are replaced by the same regions,
but containing the product of these polynomials. The monoidal structure is given by horizontal concatenation.
There is a natural Z-grading on D(W,S), extending the grading on R, in which dots, that is the first two diagrams in
(1.60) have degree 1, and the trivalents, that is the last two diagrams in (1.60), have degree −1.

REMARK 1.4.3. For more details concerning the definition of D(W,S) one should consult [33] or the original
paper [11]. Note that apart from the choice of realization of (W,S), the relations appearing in Definition (1.4.2)
also differ slightly from the ones appearing in the corresponding Definition 3.2 in [33]. To be precise, in Definition
3.2 of [33], there is a final relation

f = 0D (1.66)

where D is any Soergel diagram and f is any homogeneous polynomial of strictly positive degree, multiplied on
the left on D .

DEFINITION 1.4.4. We define DC
(W,S) to be the category obtained from D(W,S) by adding relation (1.66).

REMARK 1.4.5. It is shown in [11] that there is an equivalence between D(W,S) and the category of Soergel
bimodules for (W,S). It induces an equivalence between DC

(W,S) and the category of Soergel modules.

Let now n be a fixed non-negative integer and define w ∈ exp of length n via

w := st s · · · (1.67)

such that the first generator of w is s but the last generator depends on the parity of n. We then introduce Ãw as
follows

Ãw := EndD(W,S) (w). (1.68)

By the definitions, Ãw is an R-algebra with multiplication D1D2 given by concatenation of D1 and D2 and
scalar product f D by multiplication of f with the polynomial appearing in the leftmost region of D . Its one-
element is denoted 1, and is as follows

1 := b

1

b b b
b

b b b

2 3 n

b

.

(1.69)

For general (W,S) there is a, somewhat unwieldy, recursive procedure for constructing an R-basis for the
morphisms HomD(x, y), for any x, y ∈ exp. It is a diagrammatic version of Libedinsky’s double leaves basis for
Soergel bimodules defined for the first time in [30], and the basis elements are also called double leaves. The
double leaves basis was used, for example, to calculate counterexamples for the Lusztig’s conjecture, see [31] and
[47]. This fact is an example to show the importance of this concept. Now, returning to our context, for W the
infinite dihedral group, there is however a non-recursive description of the double leaves basis that was shown in
[29] and also was used extensively in [33], and that plays an important role in the present thesis.

The double leaves diagram basis elements for Ãw are built up from top and bottom ‘half-diagrams’, sim-
ilarly to Temperley-Lieb and blob diagrams. Let us explain these half-diagrams, called light leaves, and their
non-recursive description in order to describe the double leaves basis. For this, we need to introduce some com-
binatorial concepts and notations related to subexpressions used in [44] but slightly modified for our selection of
W .
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Continuing with w fixed in (2.21), we define, for all 1 ≤ j ≤ n the element of exp give by

w j = st · · · s︸ ︷︷ ︸
j generators

,

where s = s if j is odd and s = t if j is even, and where we consider the initial case w0 = 1. Also we fix a binary
sequence e = (e1,e2, ...,en), that is, ei ∈ {0,1} for each 1 ≤ i ≤ n, and we define e j := (e1,e2, ...,e j ) for each 1 ≤ j ≤ n.
Additionally, for each j ∈ {1,2, ...,n} we define

w e, j = se1 t e2 se3 · · · se j ∈ exp

and
w e, j = se1 t e2 se3 · · · se j ∈W,

where the last generator in both cases is, again, s = s if j is odd and s = t if j is even. Also we consider the initial
cases

w e,0 = 1 and w e,0 = 1.

For example, if w = st st s and e = (1,0,1,1,1) then we have the following elements using the above notation:

j w e, j w e, j

0 1 1
1 s1 s
2 s1t 0 s
3 s1t 0s1 1
4 s1t 0s1t 1 t
5 s1t 0s1t 1s1 t s

Now, the pair (w ,e) gives rise a sequence of n symbols T = (t1, t2, ..., tn) defined by the following rule:

t j =
{

U if w e, j−1s j > w e, j−1

D otherwise.
(1.70)

where s j is the j -th generator of w , that is, s j = s if j is odd and s j = t if j is even.

With the sequences T and e we define the label sequence Mw ,e = {m1,m2, ...,mn} by concatenating the sym-
bols of T and e, that is, m j = t j e j for each 1 ≤ j ≤ n. For example, if we consider the previous example with
w = st st s and e = (1,0,1,1,1) then we have the following table for the label sequence Mw ,e:

j w e, j−1 w e, j−1s j t j e j

1 1 s U 1
2 s1 = s st U 0
3 s1t 0 = s 1 D 1
4 s1t 0s1 = 1 t U 1
5 s1t 0s1t 1 = t t s U 1

So, in this example we have that Mw ,e = (U 1,U 0,D1,U 1,U 1).

With this notation, we construct a sequence of morphisms LLw ,e, j ∈ HomD

(
w j , w e, j

)
. This is the diagram-

matic construction of light leaves developed in [11] for general coxeter systems, but in this thesis we only need
this construction for W the infinite dihedral group, so, our construction is a particular case of the original dia-
grammatic construction of light leaves. We first let LLw ,e,0 be the empty diagram. The hypothesis is to suppose
recursively that LLw ,e, j−1 has already been constructed. Now, and without loss of generality, we suppose that the
last generator of w is t ( j even). The, LLw ,e, j is obtained from LLw ,e, j−1 by first adding on the right a vertical arc
of colour blue. This arc only depends on the value of m j . There are four cases to consider:

• If m j = U 0 then the new arc is terminated with a blue dot. In other words, LLw ,e, j is the diagram
LLw ,e, j−1 with an extra blue dot on the right.



4. SOERGEL CALCULUS 25

• If m j =U 1 then the new arc is a propagating blue line. In other words, LLw ,e, j is the diagram LLw ,e, j−1

with an extra propagating blue line on the right.
• If m j = D0 then the new arc is a trivalent vertex. In this case, this trivalent vertex is applied to the

rightmost propagating line of LLw ,e, j−1 which is of colour blue, and the right of LLw ,e, j−1, adding a new
blue line.

• If m j = D1 the we proceed as in case D0, replacing the blue trivalent vertex with a blue cap.

The diagrammatic representation of these four case are the following:

LLw,e,j−1

LLw,e,j−1 LLw,e,j−1

b b b

b b b

b LLw,e,j−1

b b b

b b b

U0 = U1 =

D0 = D1 =

b b b b b b

b b b b b b

.

(1.71)

So, in each step of this recursion, we call light leaf morphism associated to the pair
(
w j ,e j

)
to the diagram

LLw ,e, j . In particular, we set LLw ,e := LLw ,e,n as the light leaf morphism associated to w and e.

For example, taking again w = st st s and e = (1,0,1,1,1), with label sequence Mw ,e = (U 1,U 0,D1,U 1,U 1), we
have the following light leaves sequence:

j LLw ,e, j−1 m j New arc to add LLw ,e, j

1 Empty diagram U 1

2 U 0

b

b

3
b

D1 b

4 b U 1
b

5
b

U 1
b

The previous example show the recursive construction of light leaves for a pair
(
w ,e

)
. This procedure implies

a non-recursive construction for the light leaves, but this requires explaining other diagrams.
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By the isotopy relations for Soergel diagrams, we have the following diagram identities

b b b b
b

b
b

b

bbb
= = =

b b b b
b

b
b

b bbbb
b

b
b

b

(1.72)

and we in shall in general represent these diagrams as follows

b b b bb b
.

(1.73)

The diagrams in (1.73) are called hanging full birdcages. We shall also consider non-hanging full birdcages
that look as follows

b b b bb b
.

(1.74)

We sometimes omit the word ’full’ when referring to ’full birdcages’. We say that the birdcages in (1.72), (1.73)
and (1.74) are of colour blue, but shall also allow birdcages of colour red, as follows

b b
b b b b

.
(1.75)

We further allow degenerate, non-hanging and hanging, full birdcages as follows

b

, . (1.76)

We define the length of a full birdcage to be the number of enclosed dots in it, where the birdcages of length
zero are the degenerate ones. A full birdcage which is not degenerate is called non-degenerate. In the following
examples, the first birdcage is of length 4 whereas the last two are of length zero.

b b b b ,

b

, . (1.77)

We also consider top full birdcages, that are obtained from bottom full birdcages by reflecting through a
horizontal axis.

We now introduce the operation of replacing a degenerate non-hanging full birdcage, in other words a bound-
ary dot arc, by a non-hanging non-degenerate full birdcage as follows

b b b b b
7→

b b b b bb b
.

(1.78)

In the notation of [29], a birdcagecage is any diagram that can be obtained by performing the above operation
repeatedly a number of times, for example

b bb bbb
.

(1.79)

With the recursive procedure for constructing a light leaf and the concepts of birdcages we have the following
non-recursive structure for a light leaf construction.
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LEMMA 1.4.6. Let w = st s · · · ∈ exp of lenght n ∈Z+∪ {0} and let e ∈ {0,1}n . Then the diagram for the light leaf
morphism LLw ,e,n have the following structure:

b bb b b bb bb bbbb bbb bb

{ zone A }{ }zone B { zone C } ,

(1.80)

where the bottom boundary is w and the top boundary is w e,n . Zone A consists of a number of non-hanging
birdcagecages whereas zone B consists of a number of hanging birdcagecages, but zone C may consist of at most
one non- hanging birdcagecage. If n = 0 then LLw ,e,n is the empty diagram.

Proof: By induction on n. If n = 0 we have, by recursive construction, that LLw ,e,0 is the empty diagram. We
suppose that LLw ,e,n has the structure as in (1.80). Now, we show that LLw ,e,n+1 has the same structure.

Without loss of generality, we suppose that the last generator of w is t , that is

w = st · · · t︸ ︷︷ ︸
n+1 letters

. The structure of LLw ,e,n+1 depends of the last term mn+1 in the label sequence Mw ,e and the structure of LLw ,e,n :

• If mn+1 =U 0 then w e,n t > w e,n . This implies that the last generator of w e,n and w e,n is s, or w e,n = 1.
So, if w e,n = s, and by hypothesis, since the diagram LLw ,e,n has the structure (1.80), then LLw ,e,n has
in the rightmost a red hanging birdcagecage, and by recursive construction, LLw ,e,n+1 is LLw ,e,n with
an aditional blue dot in the rightmost position, on the bottom boundary. Therefore, LLw ,e,n+1 has the
structure indicated in (1.80), where zone A and zone B are exactly the diagram LLw ,e,n and the zone C is
the new blue dot. The second case is when w e,n = 1, which implies that LLw ,e,n has empty Zone B and
C, and then LLw ,e,n+1 is the diagram LLw ,e,n but with an additional blue dot on the rightmost position.

• If mn+1 =U 1 then we have the case mn+1 =U 0 but replacing the extra blue dot with a propagating blue
line.

• If mn+1 = D0 then w e,n t < w e,n . This implies that the last generator of w e,n and w e,n is t . Therefore,
LLw ,e,n is a diagram where the rightmost letter of its bottom boundary is s and the rightmost letter of
its top boundary is t . This means that LLw ,e,n has in its zone B a hanging birdcagecage in its right-
most position, and also has a non-empty zone C, with a non-hanging red birdcagecage. So, by recursive
construction, LLw ,e,n+1 is the diagram LLw ,e,n with an extra blue trivalent which is connected with the
rightmost hanging birdcagecage in the zone B of LLw ,e,n and on the right of the non-hanging red bird-
cagecage of LLw ,e,n , enclosing this non-hanging red birdcagecage. So, LLw ,e,n+1 has the structure (1.80).
In other words, in this case we have that

LLw ,e,n = Zone A of LLw,e,n Zone B of LLw,e,n

b b b b b b

Zone C of LLw,e,n

.

(1.81)

and

LLw ,e,n+1 = Zone A of LLw,e,n+1 Zone B of LLw,e,n+1

b b b

Zone C of LLw,e,n+1 empty

b b b

.

(1.82)

• If mn+1 = D1 then we have the case mn+1 = D0 but replacing the extra blue trivalent with a blue cap.
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□
Now, with the previous non-recursive construction for light leaves we can define a non-recursive construc-

tion for double leaves. The hanging birdcagecages in zone B of a light leaves diagram define an element v ∈W . In
the above example we have v = t st . The double leaves basis of Ãw is obtained by running over all v ≤ w and over
all pairs of light leaves for Ãw that are associated with that v . For each such pair (D1,D2) the second component
D2 is reflected through a horizontal axis, and the two components are glued together. The resulting diagram is a
double leaf, for example

bb b b bb bbbb

b bb b bb bb bbb bbb bb

{ zone A } { }{ }

b bbb b bb b

{ zone A } { }{ }

b

b

b b

zone B

zone B

zone C

zone C

.

(1.83)

The fundamental result concerning double leaves is the fact that they form an R-basis for Ãw . In fact, a
stronger Theorem holds. Let Λ̃w := {v ∈ W |v ≤ w}, endowed with poset structure via the Bruhat order <. For
v ∈ Λ̃w let Tabw (v) be the set of light leaves for Ãw defining v in the above sense, and for D1,D2 ∈ Tabw (v) let
C v

D1,D2
∈ Ãw be the double leaf obtained by gluing as above. We now have the following Theorem.

THEOREM 1.4.7. The triple (Λ̃w ,Tabw (v),C ) defines a cellular basis structure on Ãw .

Proof: See [29] and [11]. □



CHAPTER 2

Graded sum formula for Ã1-Soergel calculus and the nil-blob algebra

In this chapter we show the content of our work with my thesis advisor Steen Ryom-Hansen.

1. Blob algebras

Throughout we use as ground field the complex numbers C, although several of our results hold in greater
generality. We set

R :=C[x, y]. (2.1)

We consider R to be a (non-negatively) Z-graded C-algebra via

deg(x) = deg(y) = 2. (2.2)

The blob algebra was introduced by Martin and Saleur in [35], as a a way of considering boundary conditions
in the statistical mechanical model of the Temperley-Lieb algebra. Since its introduction, the blob algebra has
been the subject of much research activity in mathematics as well as physics, see for example [14], [34], [36],
[38], [39], [40], [41]. In this thesis, we shall use the following variation of it.

DEFINITION 2.1.1. The two-parameter blob algebra Bx,y
n , or more precisely the blob algebra with loop-parameter

−2, marked loop parameter y and blob-parameter x, is the R-algebra on the generators U0,U1, . . . ,Un−1 subject to
the relations

U2
i =−2Ui if 1 ≤ i < n (2.3)

UiU jUi =Ui if |i − j | = 1 and i , j > 0 (2.4)

UiU j =U jUi if |i − j | > 1 (2.5)

U1U0U1 = yU1 (2.6)

U2
0 = xU0. (2.7)

The nil-blob algebra NBn , that was introduced and studied extensively in [33], may be recovered from B
x,y
n

via specialization, that is
NBn

∼=Bx,y
n ⊗R C (2.8)

where C is made into an R-algebra via x 7→ 0 and y 7→ 0. In other words, Bx,y
n may be considered a deformation of

NBn , and in fact this shall be the point of view of the present thesis.

Another interesting specialization of Bx,y
n is T̃n defined as T̃n := Bx,y

n ⊗R C where C is made into an R-algebra
via x 7→ 1 and y 7→ −2. Let I := 〈U0 −1〉 be the two-sided ideal in T̃n generated by U0 −1. Then

Tn := T̃n/I (2.9)

is the Temperley-Lieb algebra from Definition 1.2.6, but defined over C.

Just as is the case for NBn , one easily checks that Bx,y
n is a Z-graded algebra.

LEMMA 2.1.2. The rules deg(Ui ) = 0 for i > 0 and deg(U0) = 2 define a (non-negative) Z-grading on Bx,y
n .

PROOF. The relations are easily seen to be homogeneous with respect to deg. □

As already indicated in the preliminaries chapter, TLn is a diagram algebra, but Bx,y
n are also a diagram al-

gebra. The diagram basis for Bx,y
n consists of blobbed (marked) Temperley-Lieb diagrams on n points, or blob

diagrams on n points, which are marked planar pairings between n northern points and n southern points of a
rectangle, where only pairings exposed to the left side of the rectangle may be marked, and at most once. There
is thus a natural embedding of Temperley-Lieb diagrams into blob diagrams. The multiplication D1D2 of two
diagrams D1 and D2 is given by concatenation of them, with D2 on top of D1. This concatenation process may

29
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give rise to internal marked or unmarked loops, as well as diagrams with more than one mark. Internal unmarked
loops are removed from a diagram by multiplying it by −2, whereas internal marked loops are removed from a di-
agram by multiplying it by y . Finally, any diagram with r > 1 marks on a diagram is set equal to the same diagram
multiplied by xr−1, but with the (r −1) extra marks removed. For example, for

D1 = b

b

, D2 = b
b

b

b

(2.10)

we have that

D1D2 =
b

b

b

b

b

b

= x2 y
b

b

b

.

(2.11)

Later on, we shall give many more examples.

For the proof of the isomorphisms between Bx,y
n and its diagrammatic version, one may consult the appendix

of [9] or else adapt the more self-contained proof given in [33]. Under the isomorphism we have that

1 7→ b b b (2.12)

and that

U0 7→ b b bb , Ui 7→ b b b b b b

i

.

(2.13)

The number of Temperley-Lieb diagrams and blob diagrams on n points is the Catalan number 1
n+1

(2n
n

)
and(2n

n

)
. In particular TLn and Bx,y

n are free over R of rank

rkTLn = 1

n +1

(
2n

n

)
and rkBx,y

n =
(

2n

n

)
. (2.14)

From Theorem 1.2.7 we have that TLn is a cellular algebra. This result also holds for Bx,y
n . To make Bx,y

n fit
into the cellular algebra language we choose:

• k= R
• Λ= {Λ±n := {±n,±(n −2), . . . ,±1} (or Λ :=Λ±n = {±n,±(n −2), . . . ,±2,0}) if n is odd (or even), with poset

structure given by λ<µ if |λ| < |µ| or if |λ| = |µ| and λ<µ. For example, for n = 6 we have

Λ±6 := {±6,±4,±2,0}, 0 <−2 < 2 <−4 < 4 <−6 < 6 (2.15)

• For λ ∈ Λ±n we choose Tab(λ) to be blob half-diagrams with |λ| propagating lines, that is marked
Temperley-Lieb diagrams on |λ| northern and n southern points in which each northern point is paired
with a southern point and in which only non-propagating pairings exposed to the left side of the rec-
tangle may be marked.

• For s, t ∈ Tab(λ) we define Cλ
st to be the diagram obtained from gluing s and the horizontal reflection of

t , with s on the bottom, and marking the leftmost propagating line if λ< 0. Here is an example of this
gluing process with n = 8 and s, t ∈ Tab(−2).

(s, t ) =
 b

b b

,

 7→
b

b

b

b

.

(2.16)

With this notation we have the following Theorem.
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THEOREM 2.1.3. The above triple (Λ±n ,Tab,C ) makes Bx,y
n into a cellular algebra.

Proof: This also follows directly from the definitions. □
For λ ∈Λn or for λ ∈Λ±n we define tλ ∈ Tab(λ) to be the following half-diagram

tλ = b b b b b b

1 2 k 1 2 |λ|
(2.17)

and set Cλ =Cλ
tλtλ

, that is

Cλ =



U1U3 · · ·U2k−1 = b b b b b b

1 2 k 1 2 |λ|
if λ≥ 0

(U1U3 · · ·U2k−1)U0(U2U4 · · ·U2k )U1U3 · · ·U2k−1 = b b b b b b

1 2 k 1 2 |λ|

b
if λ< 0

(2.18)

where k = (n −|λ|)/2. Thus Cλ is an element of TLn or Bx,y
n , depending on the context. With this we can define

the two-sided cell ideals Aλ and A<λ of TLn (resp. Bx,y
n ) via

Aλ := {aCλb |a,b ∈TLn (resp. Bx,y
n )} and A<λ := {aCµb |a,b ∈Bx,y

n (resp. Bx,y
n ) and µ<λ}. (2.19)

It follows from Definition 1.2.1 that A<λ ⊂ Aλ and so Aλ/A<λ is a TLn-bimodule (resp. Bx,y
n -bimodule). Let

Cλ :=Cλ+ A<λ. We define the cell module ∆TLn (λ) for TLn (resp. ∆Bn(λ) for Bx,y
n ) as

∆TLn (λ) :=TLnCλ (resp. ∆Bn(λ) :=Bx,y
n Cλ) ⊆ Aλ/A<λ. (2.20)

We now have the following Theorem.

THEOREM 2.1.4. Let ∆TLn (λ) be the cell module for TLn . Then ∆TLn (λ) is free over R with basis {C stλ | s ∈ Tab(λ)}
where C stλ :=Cstλ + A<λ. A similar statement holds for ∆Bn(λ).

Proof: This follows from the algorithm given in the proof Theorem 2.5 of [33]. □
REMARK 2.1.5. Our definition (2.20) of the cell modules for TLn and Bx,y

n differs slightly from the definition
given in [15] or the Definition 1.2.2, but in view of the Theorem the definitions coincide.

2. Isomorphism Theorems

We now come to Soergel calculus. In [33], an isomorphism Aw
∼= NBn was established, where Aw is the

endomorphism algebra of a Bott-Samelson object in the Soergel calculus of type Ã1. We aim at generalizing this
result to an isomorphism involving Bx,y

n .

As in the preliminaries chapter, let now n be a fixed non-negative integer and define w ∈ exp of length n via

w := st s · · · (2.21)

such that the first generator of w is s but the last generator depends on the parity of n, and

Ãw := EndD(W,S) (w), (2.22)

where D(W,S) is the diagrammatic Soergel category of Definition (1.4.2).

As in [33] we introduce certain elements of Ãw that shall play a key role throughout. For i = 1, . . . ,n−2, let Ui

be the following element of Ãw

Ui := b

1

b b b
b

b b b

2 3 i n

b

b

(2.23)
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and for i = 0, set

U0 := b

1

b b b
b

2 3 n

b

b
b

b b b

.

(2.24)

The following Theorem is fundamental for this thesis.

THEOREM 2.2.1. There is a homomorphism of R-algebras ϕ :Bx,y
n−1 → Ãw given by Ui 7→Ui for i = 0,1, . . . ,n−2.

Proof: The proof is almost identical to the proof of Theorem 3.4 in [33]. We must check that U0,U1, . . . ,Un−2

satisfy the relations given by the Ui ’s in Definition (2.1.1). The verification of the relations (2.3), (2.4) and (2.5) is
done exactly as in [33] whereas relation (2.6), for example for n = 4, is verified as follows

U1U0U1 =

b

b b

b

b b
=

b

b

b

b
=

b

b

αt = yU1 (2.25)

and (2.7), for example for n = 4, is verified as follows

U 2
0 =

b

b

b

b

=

b

αt

b

= xU0. (2.26)

This proves the Theorem. □
Following [33], we now introduce Aw ⊆ Ãw as follows.

DEFINITION 2.2.2. Let Aw be the span in Ãw of all double leaves with empty zone C, or equivalently, Aw is the
free R-module with basis given by the double leaves of empty zone C.

Our next Theorem is an analogue of Theorem 3.8 and Corollary 3.9 of [33], although the proofs of parts b)
and c) of the Theorem are different from the proofs of the corresponding statements in [33], since the algebras
considered in [33] are C-algebras whereas the algebras in the present thesis are R-algebras. Therefore, in the
present article some extra care is necessary since nonzero coefficients of R need not be invertible. Moreover,
the arguments in [33] depend on the linear algebra fact that injective linear transformations f : V → W between
vector spaces V and W of the same finite dimension are isomorphisms. The analogous statement is false for free
R-modules, which is the main reason why the proofs of the present thesis are different from the ones in [33].

THEOREM 2.2.3.

a) The cardinality of double leaves of empty zone C is
(2n

n

)
and so Aw is free over R of rank rk Aw = rkBx,y

n =(2n
n

)
.

b) Aw is an R-algebra. It is the subalgebra of Ãw generated by U0,U1, . . . ,Un−2.
c) The homomorphism ϕ :Bx,y

n−1 → Ãw from Theorem 2.2.1 induces an isomorphism ϕ :Bx,y
n−1 → Aw .

Proof: To show a) we first note that the cardinality of the set of double leaves of empty zone C is given by
Definition 3.7 in [33] and Theorem 3.8 c) in [33], and so the statements about Aw are a direct consequence of
Definition 2.2.2 and (2.14).

In order to prove b) we define A′
w to be the subalgebra of Ãw generated by U0,U1, . . . ,Un−2 and must show

that A′
w = Aw . We first show that A′

w ⊇ Aw .
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Recall the diagram Cλ ∈Bx,y
n from (2.18). For λ≥ 0 we have that

ϕ(Cλ) =U1U3 · · ·U2k−1 =
b bb

b bb b b b

b b b

b b b

1 2 2k + 1 n

(2.27)

and for λ< 0 we have

ϕ(Cλ) = (U1U3 · · ·U2k−1)U0(U2U4 · · ·U2k )U1U3 · · ·U2k−1 =

b bb

b bb b b b

b b b

b b b

1 2 2k + 1 n

b bb

b bb b b b

b b b

b bb

b b b

b bb

b bb b b b

bb
b b b

b

b

b

b

b

=

1 2 2k + 1 n

.

(2.28)

We also need the diagrams

ϕ(UiUi+2 · · ·Ui+2k ) =
b bb

b bb b b b

b b b

b b b

n

bbb

i i+ 2 + 2k
.

(2.29)

Now, multiplying together appropriate diagrams of the form (2.27) and of the form (2.28) we deduce that any
diagram of the form

b b
b b b b

b b
b b b

b

b b
b b b b

b b
b b b

b

b b
b b b b

b b
b b b

b

b b
b b b b

b b
b b b

b

b b b (2.30)

belongs to A′
w where the number of hanging birdcages on the right is at least one. The number of non-hanging

birdcages on top of (2.30) is the same as on the bottom, but we need to break this symmetry, that is, we must
show that diagrams D as in (2.30), but with unequal numbers of top and bottom non-hanging birdcages in zone
A, also belong to A′

w . Note that the number of top and the number of bottom non-hanging birdcages in zone
A are always of the same parity and so, in order to break this symmetry in zone A, we first give a procedure for
splitting any non-hanging and non-degenerate birdcage in zone in A in three non-hanging birdcages, and still
stay in A′

w .

If the non-hanging birdcage is the leftmost one, it can easily be split in three parts via multiplication by U0,
as illustrated below

b b bb

b b bb b b b

b b b

b b b

b
b

=

b b bb

b b bbb

b b b

b b b

b b b b b b

b b b

.

(2.31)
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Note that this belongs to A′
w . In the non-hanging birdcage is not the leftmost one, we first notice that mul-

tiplication with appropriate Ui ’s has the effect of ’moving’ a dot from one birdcage to its neighbouring birdcage,
as illustrated below in the following two examples.

b b bb

b

b

b

=
b b

b

b

b b b b b b

b

b

b

b

,

b bb

b bb

b bb

b bb

b bb

b bb

b

b

=

b bb

b bb

b bb

b bb

b b

b bb

b
.

(2.32)

Using this we can also ’move’ any non-hanging birdcage to the leftmost position and then multiply it by U0,
to split it in three birdcages. Next, we use (2.32) to move the birdcages to the desired positions. The result of this
belongs to A′

w and so the symmetry in zone A has been broken.

In fact, once we have the right number of birdcages in zone A, we can use successive multiplications of the
types given in (2.32), to obtain any combination of desired birdcage lengths, as opposed to (2.31) that always
produces degenerate birdcages.

Now in (2.30), we must also break the symmetry with respect to birdcage lengths in zone B. But in order to
break this symmetry we proceed just as we did in the last step for zone A, applying (2.32) successively, adjusting
the lengths of the relevant birdcages until they are as desired.

All in all we have now shown that any diagram of the form described in (2.33) belongs to A′
w , where the

number and the lengths of the top and bottom birdcages in zone A may differ, as may the lengths of birdcages in
zone B.

b b b b b

b b
b b b

b

b b
b b b b b b

b b b b

b b
b b b

bb
b b b b

b b b b b

b b b

b b b

b b b

b
b b b b

{ }

{ }

{

{

}

zone A

zone Bzone A

zone B

b b
b b b

bb
b b b b

b b b b b b b b b b

}
(2.33)

Finally, to conclude the proof of A′
w ⊇ Aw , we observe that the process, illustrated in (1.78), of replacing

a degenerate non-hanging full birdcage by a non-hanging non-degenerate full birdcage can be realized as the
multiplication on top or bottom with a diagram of the form (2.29). Below we give an example.

=

b bb

b bb

b bb

b bb

b b

b bb

b

b b

b b

b bb

b bb

b

b bb

b b

b bb

b b
. (2.34)
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In order to prove the other inclusion A′
w ⊆ Aw we need to change the argument of the corresponding state-

ment in [33] since it, as already mentioned, depends on dimension arguments in linear algebra (over C).
We first observe that Ui ∈ Aw for i = 0,1, . . . ,n −2. Hence, to show A′

w ⊆ Aw it is enough to verify that Aw is
invariant under left and right multiplication by the Ui ’s.

Let therefore D be a diagram for Aw . We first choose i > 0 and proceed to give a description of the effect
of multiplying Ui below on D , that is we describe Ui D in terms of D . Let l1, l2 and l3 be the arcs in D that has
bottom boundary points i , i +1 and i +2 of D , respectively. Without loss of generality we may assume that l1 and
l3 are red, and that l2 is blue. Recall that an arc l of D is a boundary dot arc if one of its vertices is a dot and the
other one is a boundary point.

Case 1: This is the case where l1 and l2 have a common vertex in D , or, more generally, that l1 and l2 are con-
nected in D . We then have that l2 is a boundary dot arc. In now follows from the isotopy relations (1.72) and the
relation U 2

i =−2Ui , see Theorem 2.2.1, that Ui D =−2D , since relation (1.64) implies that the scalar −2 moves to
the left of D . Hence we get that Ui D ∈ Aw . Here is an illustration, where we for simplicity leave out the top part
of the diagrams.

b bb

b

=

b b

= b bb−2

b

b bb .
(2.35)

Case 2: This is the case where l2 is a boundary dot arc, whereas l1 and l3 are the rightmost and leftmost arcs of
birdcagecages, respectively. Note that in this situation the bottom boundary points i and i +1 belong to zone A
of D . We here get that Ui D = αt D1 where D1 is the diagram obtained from D by concatenating horizontally the
two birdcagecages, with an extra dot in the middle. Since D1 ∈ Aw , this case is also OK. Here is an illustration,
once again without the top parts of the diagrams.

b

b

b b bb = αt b bb

b

= αt b bb

b

αt b bbb= .
(2.36)

Case 3: This is the case where l2 has a trivalent vertex, whereas l1 and l3 are the rightmost and leftmost arcs
of birdcagecages, respectively. In this case we get Ui D = D1 where D1 is obtained from D by eliminating l2 and
joining the birdcagecages involving l1 and l3, with an extra dot in the middle. Once again, we get that D1 ∈ Aw ,
and so this case is also OK. Here is an illustration.

b

b

b

=

b

b

b

b

b

b

b

=

b

b

b

b

bb . (2.37)

Case 4: This is the case where l1 is the leftmost arc of a birdcagecage, whereas l2 has a trivalent vertex V . Let B1

be the birdcagecage that lies to the southwest of V and let B2 be the birdcagecage that lies to the southeast of V .
Then Ui D = D1 where D1 is obtained from D by joining B1 and l1 and adding a boundary dot arc to the left of
B1. We have that D1 ∈ Aw and so this case is done. Here is an example, without the top parts of the diagrams.

b

b

bb =b bbbb = bbbb
. (2.38)

Case 5: This is the identical to case 4 except that both vertices of l2 are supposed to be boundary points. Let B
be the birdcagecage that lies below l2. Then Ui D = D1 where D1 is obtained from D by splitting l2 in two dot
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boundary arcs, and B is joined with l1. Since D1 ∈ Aw we are done in this case, as well. Here is an example.

b

b

= =b bb b b b b bb b bbb
. (2.39)

Case 6: This is the case where a vertex of l2 is a top boundary point of D . Then l1 and l2 are the rightmost and
leftmost arcs of two birdcagecages B1 and B2. We get that Ui D = D1 where D1 is obtained from D by joining B1

and B2 and splitting l2 in two dot boundary arcs. Since D1 ∈ Aw we have that this case is OK as well. Here is an
example.

b

b

=
b

bb

b

b b

bb

b

b

=
b b

bb b

b
. (2.40)

Case 7: This is the case where l2 is the leftmost arc of a hanging birdcagecage. This case resembles case 6.
We have that l1 and l2 are the rightmost and leftmost arcs of two birdcagecages B1 and B2. Then we get that
Ui D = D1 where D1 is obtained from D by joining B1 and B2 and replacing l2 by a bottom dot boundary arc. We
have D1 ∈ Aw and so this case is OK as well. Here is an example.

b
=

bb

b

b b

bb

b

b

=
b

bb

bb b
. (2.41)

There are a few remaining cases to consider, but they are all small variations of the cases already studied and
so we leave them to the reader.

We next consider i = 0. Let B be the leftmost bottom birdcagecage of D and let l be its leftmost bottom arc. If
D is a boundary dot arc, we have U0D =αs D ∈ Aw . Otherwise we have U0D =αs D1 where D1 is the birdcagecage
obtained from D by replacing l by a boundary dot arc, and here we also have U0D ∈ Aw . Here is an illustration of
this case.

b

b

b =b b bb bb
. (2.42)

Finally, we observe that the description of the right multiplication DUi is completely analogous to the de-
scription of Ui D , and so we have concluded the proof of b).

We now give an alternative proof of A′
w ⊆ Aw , adapting the proof in [33] and using one of the main results in

[11]. Let Q be the quotient field of R and let Q Aw :=Q ⊗R Aw , Q A′
w :=Q ⊗R A′

w and QBx,y
n−1 =Q ⊗R B

x,y
n−1. Since Aw

and Bx,y
n−1 are torsion free R-modules, in fact even free, we may view Aw and Bx,y

n−1 as R-submodules of Q Aw and
QBx,y

n−1, via the map D 7→ 1⊗R D . Similarly, we may view A′
w as an R-submodule of Q A′

w , since A′
w is torsion free,

being a submodule of the free R-module Ãw .

Now the inclusion Aw ⊆ A′
w induces an inclusion Q Aw ⊆ Q A′

w , since Q ⊗R (·) is an exact functor, and the
surjection ϕ : Bx,y

n−1 ↠ A′
w induces a surjection QBx,y

n−1 ↠ Q A′
w . Combining this with a), we deduce that Q Aw =

Q A′
w since both are Q-vector spaces of the same dimension

(2n
n

)
.

Let us now show A′
w ⊆ Aw . As in the first proof of A′

w ⊆ Aw , it is for this enough to check that Ui D ∈ Aw ,
whenever D is a light leaves diagram in Aw . Now using Q Aw =Q A′

w , we find elements qk ∈Q such that

Ui D = ∑
Dk∈Aw

qk Dk (2.43)
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where Dk runs over the light leaves basis for Aw . On the other hand, as was shown in Theorem 6.11 of [11], the
light leaves diagrams {Dl } for Ãw form an R-basis for Ãw , and so there also exist rl ∈ R such that

Ui D = ∑
Dl∈Ãw

al Dl . (2.44)

Comparing (2.43) and (2.43) we deduce that qk ∈ R, and so Ui D ∈ Aw , as claimed.

We remark that, in a suitable sense, the alternative proof of b) is equivalent to the first proof, since the argu-
ments in [11], that hold in the setting of a general Coxeter system (W,S), depend on a case-by-case similar to the
one carried out in our first proof.

To prove c) we argue essentially as in [33], although a little extra care has to be exercised since the algebras
are defined over a commutative ring rather than a field. But by (2.14), a) and b) we have that ϕ is a surjective
homomorphism between free R-modules of the same finite rank. On the other hand, R is a commutative ring
with 1 and so indeed ϕ is an isomorphism, as follows from Vasconcelos’ Theorem, see [48]. The proof of the
Theorem is finished. □

Suppose that w = si1 si2 · · · sin . Then we define Λw ⊆ Λ̃w as the subset of all ’tails’ of Λ̃w , that is

Λw = {v ∈ Λ̃w |v = sik sik+1 · · · sin for k = 1, . . . ,n}. (2.45)

Note that w ∈Λw but 1 ̸∈Λw . For example for n = 7 we have that w = st st st s and so

Λw = {st st st s, t st st s, st st s, t st s, st s, t s, s}. (2.46)

Let Λc
w ⊆ Λ̃w be the subset obtained from Λw by deleting the last generator of each element of Λ̃w . Keeping

the example n = 7 we have Λc
w = {st st st , t st st , st st , t st , st , t ,1}. With this definition we have

Λ̃w =Λw ∪̇Λc
w . (2.47)

The relevance of Λw comes from the following Theorem.

THEOREM 2.2.4. The triple (Λw ,Tabw (v),C ) defines a cellular basis structure on Aw .

Proof: By part b) of Theorem 2.2.3 we know that Aw is a subalgebra of Ãw and so the Theorem follows immedi-
ately from Theorem 2.2.4 and the fact that for D1,D2 ∈ Tabw (v) and v ∈ Λ̃w we have that C v

D1D2
belongs to Aw if

and only if v ∈Λw . □
By Theorem 2.2.3 we know that Bx,y

n−1
∼= Aw and from Theorem 2.1.3 and Theorem 2.2.4 we know that both

algebras are cellular. It now seems plausible that the corresponding cell modules are isomorphic as well. This is
however not automatic since the cellular structure on a cellular algebra is not unique. Our next aim is to show
that the cell modules are indeed isomorphic.

For this we first need to establish a poset isomorphism ψ :Λw
∼=Λ±(n−1). The sets Λw and Λ±(n−1) are both of

cardinality n and the respective order relations are both total, so there is in fact a unique choice of ψ. It is given
by the following Lemma, where l (·) is the usual Coxeter length function on W .

LEMMA 2.2.5. Let ψ :Λw →Λ±(n−1) be the map defined by

ψ(v) =
{

l (v)−1 if v begins with s
−l (v) if v begins with t .

(2.48)

Then ψ is an isomorphism of posets. We denote by ϕ the inverse ϕ=ψ−1 :Λ±(n−1) →Λw .

(The different meanings of the symbol ϕ, for example as the algebra isomorphism B
x,y
n

∼= Aw , but also as the
poset isomorphism Λ±(n−1)

∼=Λw , should not give rise to confusion). For example, if n = 7 we have

ϕ(6,−6,4,−4,2,−2,0) = (st st st s, t st st s, st st s, t st s, st s, t s, s). (2.49)

For v ∈ Λw we now introduce Cv ∈ Aw as the double leaf diagram of the form (2.27) or (2.28) that defines
v ∈W , that is
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Cv =



b b
b b b b

b b
b b b

b

b b b

v

b b
b b b b

b b
b b b

b

b b b

v

(2.50)

where the vertical lines below v in each diagram of (2.50) define v .

We have that Cv = ϕ(Cλ) where ϕ(λ) = v , that is Cv corresponds to the blob algebra element Cλ defined in
(2.18). Let Av and A<v be the cell ideals in Aw given by

Av := {aCv b |a,b ∈ Aw } and A<v := {aCub |a,b ∈ Aw and u < v} (2.51)

and define the cell module
∆w (v) := AwC v ⊂ Av /A<v (2.52)

where C v =Cv + A<v . Let Dv be the half-diagram corresponding to Cv . Then we have the following Theorem.

THEOREM 2.2.6. ∆w (v) is free over R with basis {C D,Dv |D ∈ Tabw (v)} where C D,Dv :=CD,Dv + A<v .

Proof: This follows from the algorithm given in the proof of Theorem 2.2.3. □
We then finally obtain the main result of this section.

THEOREM 2.2.7. Suppose that ϕ(λ) = v. Then the isomorphism ϕ : Bx,y
n−1 → Aw induces an isomorphism ϕ :

∆Bn−1(λ) →∆w (v) of cell modules.

Proof: Since ϕ(Cλ) =Cv we have that ϕ induces ideal isomorphisms Aλ ∼= Av and A<λ ∼= A<v and hence Aλ/A<λ ∼=
Av /A<v . But from this we deduce that ∆w (v) and ∆Bn−1(λ) are isomorphic under ϕ, as claimed. □

For a general cellular algebra A over k with cell modules {∆(λ) |λ ∈Λ} there is a canonical bilinear form 〈·, ·〉λ
on ∆(λ) that plays an important role for the representation theory of A. Let Λ0 = {λ ∈Λ | 〈·, ·〉λ ̸= 0} and define for
λ ∈Λ0 the A-module L(λ) := ∆(λ)/rad〈·, ·〉λ where rad is the radical of 〈·, ·〉λ in the usual sense of bilinear forms.
It is an A-submodule of ∆(λ) because 〈·, ·〉λ is A-invariant, that is 〈x y, z〉λ = 〈x, y∗z〉λ for all x ∈A and y, z ∈∆(λ),
where ∗ is the antihomomorphism of A given in Definition 1.2.1. In the case where k is a field, the A-modules
in the set {L(λ) |λ ∈ Λ0} are all irreducible, and each A-irreducible module occurs exactly once in the set, see
Theorem 3.4 in [15].

Let 〈·, ·〉w
n,v be the bilinear form on ∆w (v) and let 〈·, ·〉Bn−1,λ be the bilinear form on ∆Bn−1(λ). Then we have the

following Theorem.

THEOREM 2.2.8. 〈·, ·〉Bn−1,λ and 〈·, ·〉w
n,v are equivalent under ϕ, in other words

〈ϕ(s),ϕ(t )〉w
n,v = 〈s, t〉Bn−1,λ for s, t ∈∆Bn−1(λ) (2.53)

where ϕ(λ) = v.

Proof: A bilinear and invariant form 〈·, ·〉 on ∆w (v) corresponds to an Aw -homomorphism ∆Bn−1(λ) → ∆B,∗
n−1(λ)

where ∆B,∗
n−1(λ) is the dual of ∆Bn−1(λ). For Q the fraction field of R and Q its algebraic closure we set ∆Q

n−1(λ) :=
∆Bn−1(λ)⊗R Q. Then ∆Q

n−1(λ) is irreducible and so by Schur’s Lemma ∆Q
n−1(λ) →∆

Q,∗
n−1(λ) is unique up to a scalar.

Hence 〈·, ·〉 is unique up to a scalar µ, that is

〈ψ(a),ψ(b)〉Bn−1,λ =µ〈a,b〉w
n,v for a,b ∈∆w,v (λ) (2.54)
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but using a = b =Cv , one checks that µ= 1 and so the Theorem follows. □
The purpose of the present thesis is to study the form 〈·, ·〉w

n,v . In view of Theorem 2.2.8, we can instead study
the form 〈·, ·〉Bn−1,λ, which turns out to be easier to handle.

3. Restriction of ∆Bn(λ) to TLn

As already mentioned, there is an embedding TLn ⊆ Bx,y
n which at the diagrammatic level is an embedding

of Temperley-Lieb diagrams in blob diagrams. This gives rise to a restriction functor Res = Res
B

x,y
n
TLn

from B
x,y
n -

modules to TLn-modules. In this section we study the application of Res on ∆Bn(λ).

Recall from Theorem 2.1.4 that the cell module ∆Bn(λ) for Bx,y
n (resp. ∆TLn (λ) for TLn) has basis {C stλ | s ∈

Tab(λ)}. From now on, if λ ≥ 0 we shall identify C stλ with s so that we consider the basis for ∆Bn(λ) to consist of
half-diagrams. For example, the basis of the Bx,y

5 -module ∆B5 (1) consists of the following half-diagrams

, , , , ,

b ,
b

, b , b ,

bb
.

(2.55)

If λ< 0 we still identify C stλ with s, but with the leftmost propagating line marked. For example, the basis of
the Bx,y

5 -module ∆B5 (−3) consists of the following half-diagrams

b
,

b
,

b
,

b
,

bb
.

(2.56)

Finally, for the TLn-module ∆TLn (λ) we once again identify C stλ with s. Thus, for example the basis of the
TL5-module ∆TL5 (1) consists of the half-diagrams that appear in the first row of (2.55).

In terms of these identifications the action of D ∈ Bx,y
n (resp. D ∈ TLn) on D1 ∈ ∆Bn(λ) (resp. D1 ∈ ∆TLn (λ)) is

given by concatenation with D1 on top of D , followed by the same reduction process of extra blobs and internal
loops, marked or unmarked, that we gave for Bx,y

n (resp. TLn) itself. If the result of this does not belong to the
span of half-diagrams for ∆Bn(λ) (resp. ∆TLn (λ)), we have DD1 = 0.

Suppose that λ ∈Λ±n and set k := n −|λ|
2

. We then define a filtration 0 =F−1(λ) ⊂F0(λ) ⊂ ·· · ⊂Fk (λ) =∆Bn(λ)

of ∆Bn(λ) via

F i (λ) :=
{

spanR {s | s ∈ Tab(λ) has i or less blobs} if λ≥ 0
spanR {s | s ∈ Tab(λ) has i +1 or less blobs} if λ< 0.

(2.57)

For example, for λ as in (2.55) we have that F0(λ) is the span of the diagrams of the first row, F1(λ) is the
span of the diagrams of the first two rows and F2(λ) =∆B5 (1).

The following result is the analogue of Lemma 8.2 from [9].

LEMMA 2.3.1.

a) F i (λ) is a TLn-submodule of Res∆Bn(λ).
b) There is a homomorphism of TLn-modules πi : F i (λ) →∆TLn (|λ|+2i ) that induces an isomorphism

πi : F i (λ)/F i−1(λ) ∼=∆TLn (|λ|+2i ). (2.58)

Proof: a) follows from the fact that the action of TLn does not produce new blobs. To show b), we use the map
πi : F i (λ) →∆TLn (|λ|+2i ) that transforms a marked southern arc to two propagating lines, and removes the mark
on any propagating line. For example, for ∆B5 (1) we have that π1 transforms the diagrams of the second row of
(2.55) to the following diagrams

, , , . (2.59)
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As in [9], one readily checks that πi is a homomorphism of TLn-modules, that induces an isomorphism πi :
F i (λ)/F i−1(λ) ∼=∆TLn (|λ|+2i ). □

Our next goal is to construct sections for the πi ’s from Lemma 2.3.1. For this we need to use the Jones-Wenzl
idempotent JWn for TLn from Definition 1.3.1. We recall that the JWn element satisfies the conditions

coef1(JWn) = 1 and Ui JWn = JWnUi = 0 for all i = 1,2, . . . ,n −1 (2.60)

where coef1(JWn) denotes the coefficient of 1 when JWn is expanded in the diagram basis for TLn .

Additionaly, important properties of the JWn
′s are their idempotency from Lemma 1.3.3, as already men-

tioned, and their invariance under vertical reflection as well as horizontal reflection, that is ∗. Furthermore, they
satisfy the following absorption property

JWn

b b b

b b b

b b b

b b b

b b b

JWm

= JWn

b b b

b b b

(2.61)

where m ≤ n, by Lemma 1.3.8.

We now return to the Bx,y
n -module ∆Bn(λ) and its filtration {F i (λ)}. For i = 0, . . . ,k we define eλi ∈F i (λ) as the

following element

eλi =


b b b b b b b b b

b b b
if λ≥ 0

b b b b b b b b b
b b b b

if λ< 0

(2.62)

that is, the number of blobs on eλi is i if λ ≥ 0 and i +1 if λ < 0. In general, for D any Temperley-Lieb diagram,

we define 1 j D as the left concatenation of j vertical lines on D , and we extend this definition linearly to the
Temperley-Lieb algebra itself. For example, for j = n−|λ|−2i we have 1 j JW|λ|+2i ∈TLn which we depict as follows

1 j JW|λ|+2i =
b b b

b b b

JW|λ|+2i
b b b

1 j

.

(2.63)

With this choice of j we define elements f λi ∈F i (λ) as follows

f λi := (1 j JW|λ|+2i )eλi =



b b b

b b b b b b
b b b

b b b b b b

JW|λ|+2i if λ≥ 0

b b b

b b b b b b
b b b

b b b b b b

JW|λ|+2i

b

if λ< 0.

(2.64)

LEMMA 2.3.2. Let πi : F i (λ) →∆TLn (|λ|+2i ) be the homomorphism from Lemma 2.3.1. We have that

πi (eλi ) =πi ( f λi ). (2.65)

Proof: We show that if D ̸= 1 is any diagram appearing in the expansion of JW|λ|+2i then (1 j D)eλi ∈ F i−1(λ),

where j = n −|λ|−2i , from which the proof of the Lemma follows since kerπi =F i−1(λ) and coef1(JW|λ|+2i ) = 1.
To prove this claim we first consider λ ≥ 0. Any D ̸= 1 in the expansion of JW|λ|+2i contains at least one arc
connecting two northern points. If that arc only involves blobbed arcs in (2.64), illustrated with red below, or
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only involves vertical lines in (2.64), illustrated with blue below, then (1 j D)eλi has strictly less blobs than eλi or

has strictly less propagating lines than eλi , proving the claim in these cases.

b b b

b b b b b b
b b b

b b b b b b

.

(2.66)

If the arc involves both the blobbed arcs in (2.64) and the vertical lines in (2.64), then either we will be in the
previous case or there will be a, possibly different, arc that involves the last blobbed arc and the first vertical line
in (2.64), illustrated with blue below. But then (1 j D)eλi has a vertical blobbed line and is zero in ∆Bn(λ), finishing
the proof of the case λ≥ 0.

b b b

b b b b b b
b b b

b b b b b b

.

(2.67)

The case λ< 0 is shown in a similar way. □
We now define the TLn-module Si (λ) via

Si (λ) :=TLn f λi ⊆F i (λ). (2.68)

Recall the bilinear form 〈·, ·〉Bn,λ on ∆Bn(λ). In terms of half-diagrams D,D1 for ∆Bn(λ), we have that 〈D,D1〉Bn,λ

is given by expanding D∗D1 in terms of the diagram basis for Bx,y
|λ| and taking the coefficient of 1 if λ > 0, the

coefficient of ; if λ= 0 and the coefficient of U0 if λ< 0. For example, for 〈·, ·〉B5,1 we have

〈
b , b

〉
5,1

= coef1

 b

b

=−2x y . (2.69)

On the other hand, a similar description of the bilinear form 〈·, ·〉TLn,λ on ∆TLn (λ) was given in Lemma 1.2.9.
With this notation we can now prove the following Theorem.

THEOREM 2.3.3.

a) We have (eλj )∗TLn f λi = 0 for j < i .

b) We have 〈F i−1(λ),Si (λ)〉Bn,λ = 0.

c) We have Si (λ)∩F i−1(λ) = 0.
d) The TLn-modules Si (λ) and ∆TLn (|λ|+2i ) are isomorphic.

Proof: To show a) we must check that the following diagram is zero for every diagram D for TLn .

b b b

b b b
b b b

b b b

b b b b b b

b b b b b b
b b b

b b b b b b

JW|λ|+2i

b b b
b b b

b b b

1 i

1 j

b
a

D

.

(2.70)

Let a := n − |λ| − 2i + 1 and consider all possible cases for the line L leaving the a’th northern point of D ,
indicated with blue in (2.70).

If L pairs a with a northern point of D which is located to the right of a, then L is a northern arc and so we
get immediately by (2.60) that (2.70) is zero. If L pairs a with a southern point of D which is located strictly to
the right of a, then the area to the right of L has strictly more northern than southern points and so there will be
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a northern arc to the right of a. We then conclude once again by (2.60) that (2.70) is zero. This is the situation
indicated in the figure below.

b b b

b b b
b b b

b b b

b b b b b b

b b b b b b
b b b

b b b b b b

JW|λ|+2i

b b b
b b b

b b b

1 i

1 j

b
a

L

= 0. (2.71)

If L pairs a with a southern point which is located either directly below or to the left of a, then it will be a left
endpoint of one of the southern arcs of D , since the parities of the numbers of northern and southern points of
D to the left of L must be the same. If the right endpoint of that arc is connected to a northern point of D , then
once again by (2.60) we get that (2.70) is zero, so let us assume that it is connected to a southern point of D via a
line A1. That southern point must be a left endpoint of an arc below D since otherwise the number of southern
points below A1 would be odd. If the arc is unmarked and its right endpoint is joined to a northern point of D ,
we get once again by (2.60) that (2.70) is zero, so let us suppose that it is joined to another southern point of D via
a line A2. Repeating the previous argument, the right endpoint of A2 must be the left endpoint of an arc whose
right endpoint, in case the arc is unmarked, is connected by a line A3 to another southern point of D . Repeating
this argument, we produce a series of southern lines A1, A2, . . . , Ak , that finally ends up in either an endpoint of
one of the blobbed southern arcs below D , or in an endpoint of one of the vertical lines below D . But since j < i
we then conclude that not all northern points of D to the right of a can be endpoints of propagating lines, and
so we conclude by (2.60) that (2.70) is zero. Below we indicate the argument.

b b b

b b b
b b b

b b b

b b b b b b

b b b b b b
b b b

b b b b b b

JW|λ|+2i

b b b
b b b

b b b

1 i

1 j

b
aL

A1 A2 A3

= 0. (2.72)

Finally, if L pairs a with a northern point of D to the left of a, the argument is essentially the same as in the
previous case. We indicate it as follows

b b b

b b b
b b b

b b b

b b b b b b

b b b b b b
b b b

b b b b b b

JW|λ|+2i

b b b
b b b

b b b

1 i

1 j

b
aLA1

A2 A3 A4

= 0. (2.73)

To show b), we first observe that, as a TLn-module, F i−1(λ) is generated by {eλj | j < i }, as follows from Lemma

2.3.1. In view of this, b) follows from a) and the definition of 〈·, ·〉Bn,λ.

We next show c). Suppose that there is s ∈ Si (λ)∩F i−1(λ) \ {0}. To get the desired contradiction, we first
claim that the restriction of 〈·, ·〉Bn,λ to F i−1(λ) is non-degenerate. Indeed, any diagram in F i−1(λ) can be viewed

as a diagram for ∆TLn (|λ|), decorated with certain blobs, see for example (2.55) and (2.56). For D a diagram for
F i−1(λ) we denote by TL(D) the associated diagram for ∆TLn (|λ|), obtained by removing the blobs. Then via the



4. DETERMINATION OF ci (x, y) 43

specialization x = 1, y =−2 given in (2.9), we have that(
〈D,D1〉Bn,λ

)
|x=1,y=−2

= 〈TL(D),TL(D1)〉TLn,|λ| (2.74)

as one checks from the definitions. Since 〈·, ·〉TLn,|λ| is non-degenerate, we now deduce from (2.74) that also the

restriction of 〈·, ·〉Bn,λ to F i−1(λ) is non-degenerate, as claimed. Hence, for s ∈ Si (λ)∩F i−1(λ) \ {0} there exists an

s1 ∈F i−1(λ) such that 〈s, s1〉Bn,λ ̸= 0, which is in contradiction with b). This proves c).

To show d) we consider the composition

fi : Si (λ) ⊆F i (λ) −→F i (λ)/F i−1(λ) ∼=∆TLn (|λ|+2i ) (2.75)

where the last isomorphism is given in Lemma 2.3.1. In view of Lemma 2.3.2, we get that fi is surjective. On
the other hand, the kernel of fi is Si (λ)∩F i−1(λ) which is zero by c), and so fi is also injective. The Theorem is
proved. □

COROLLARY 2.3.4. Set as before k := n −|λ|
2

. Then, with respect to 〈·, ·〉Bn,λ, there is an orthogonal direct sum

decomposition of Res∆Bn(λ), as follows

Res∆Bn(λ) = S1(λ)⊕ . . .⊕Sk (λ). (2.76)

Proof: Combining Lemma 2.3.2 with c) of Theorem 2.3.3, we get that

ResF i (λ) = Si (λ)⊕F i−1(λ) (2.77)

and the Corollary follows by induction on this formula. □
The Corollary allows us to diagonalize 〈·, ·〉Bn,λ as follows. The restriction of 〈·, ·〉Bn,λ to Si (λ) defines a TLn-

invariant bilinear form on Si (λ) which by Schur’s Lemma, arguing as in the proof of Theorem 2.2.8, must be
equivalent to 〈·, ·〉TLn,|λ|+2i , that is for s, t ∈ Si (λ) we have that

〈s, t〉Bn,λ = ci (x, y)
〈

fi (s), fi (t )
〉TL

n,|λ|+2i (2.78)

for some ci (x, y) ∈ R. On the other hand, by our choice of ground field C, we have that 〈·, ·〉TLn,|λ|+2i is equivalent

to the standard bilinear form on ∆TLn (|λ| + 2i ) given by the identity matrix. In other words, there is an R-basis
f i

1 , f i
2 , . . . , f i

m for ∆TLn (|λ|+2i ) such that

〈 f i
k , f i

l 〉TLn,|λ|+2i = δkl (2.79)

where δkl is the Kronecker delta. Combining (2.78) and (2.79) we then conclude that also 〈·, ·〉Bn,λ can be diag-

onalized. To be precise, there is an R-basis B = {b1, . . . ,bm} for ∆Bn(λ) such that the matrix MB
n,λ(x, y) = MB

n,λ
:=(

〈bi ,b j 〉Bn,λ

)
i , j=1,...,m

for 〈·, ·〉Bn,λ has the following form

MB
n,λ =


c0(x, y)Id0 0 · · · 0

0 c1(x, y)Id1 · · · 0
...

...
. . .

...
0 0 · · · ck (x, y)Idk

 (2.80)

where di = dim∆TLn (|λ| +2i ) and Idi is the di ×di -identity matrix, whereas the 0’s are 0-matrices of appropriate
dimensions.

4. Determination of ci (x, y)

The purpose of this section is to calculate the ci (x, y)’s from (2.78) and (2.80). This is the key calculation of
the thesis. Quite surprisingly, the result turns out to be given in terms of nice expressions involving the positive
roots for W .

For i = 1,2, . . . , we define αx,i ,αy,i ∈ h∗ via

αx,i := i x + (i −1)y = iαs + (i −1)αt , αy,i := i y + (i −1)x = iαt + (i −1)αs . (2.81)
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By our choice of realization for W , the following formulas for αx,i and αy,i hold, as one proves by induction
using (1.57).

αx,2i−1 = (st )i−1αs , αy,2i = t (st )i−1αs , αy,2i−1 = (t s)i−1αt , αx,2i = s(t s)i−1αt . (2.82)

For a general Coxeter system (W,S) with realization h we define a root β ∈ h∗ to be any element of the form
β= wα where w ∈W and α ∈ h∗ is a simple root. The formulas in (2.82) show that {±αx,i ,±αy,i | i = 1,2, . . .} is the
set of all roots for W , with αx,1 = x =αs and αy,1 = y =αt being the simple roots.

With this notation we can now formulate the following Theorem.

THEOREM 2.4.1.

a) Suppose that λ≥ 0 and that f λi is as in (2.64) but with j = 0, that is f λi = f λk where

f λk =

b b b b b b

b b b b b b

1 2 k

1 2 n

1 2 λ
b b b

JWn

.

(2.83)

Then we have that

〈 f λk , f λk 〉Bn,λ =
1(n
k

) (
αx,λ+2αx,λ+3 · · ·αx,λ+k+1

)
αy,1αy,2 · · ·αy,k (2.84)

where n = 2k +λ. (Note that the right hand side of (2.84) contains k factors αx,l for consecutive l ’s, and
also k factors αy,l , for consecutive l ’s. For k = 0, it is set equal to 1. Note also that

(n
k

)= dim∆Bn(λ)).
b) Let ci (x, y) be as in (2.78) and (2.80). Then up to multiplication by a nonzero scalar in C, we have that

ci (x, y) = (αx,λ+2αx,λ+3 · · ·αx,λ+i+1)αy,1αy,2 · · ·αy,i (2.85)

(where, as before, the product is set equal to 1 if i = 0).

Proof: We first prove a). For simplicity, we set βk,λ := 〈 f λk , f λk 〉Bn,λ and must therefore show that βk,λ satisfies the
formula given in (2.84). By definition βk,λ is the coefficient of 1, or the coefficient of ;, if λ> 0 or if λ= 0, of the
following diagram

b b b b b b

b b b b b b

1 2 k
1 2 λ

b b b

JWn

b b b

.

(2.86)

For example, in view of (1.52) we have that

β1,0 =

b

b

JW2 =

b

b

+ 1
2

b

b

= xy + 1
2y

2 = 1
2αx,2αy,1 . (2.87)

We claim that βk,λ satisfies the following ’deformation’ of the Pascal triangle recursive formula

β1,0 = 1

2
αx,2αy,1, β0,1 = 1, βk,λ =βk,λ−1 +

k2(αy,k )2

n(n −1)
βk−1,λ. (2.88)

From this the proof of the formula (2.84) in a) follows by induction on N := k +λ as follows. The basis of
the induction N = 1 is immediate from (2.87) and the definitions, so let us assume that (2.84) holds for N −1 and
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check it for N , using (2.88). We get

βk,λ =
1(n−1
k

) (
αx,λ+1αx,λ+2 · · ·αx,λ+k

)
αy,1αy,2 · · ·αy,k

+ k2(αy,k )2

n(n −1)
(n−2

k−1

) (
αx,λ+2αx,λ+3 · · ·αx,λ+k

)
αy,1αy,2 · · ·αy,k−1

=
αx,λ+1(n−1

k

) + k2αy,k

n(n −1)
(n−2

k−1

)
(
αx,λ+2 · · ·αx,λ+k

)
αy,1αy,2 · · ·αy,k

= 1

(n −k)
(n

k

) (
nαx,λ+1 +kαy,k

)(
αx,λ+2 · · ·αx,λ+k

)
αy,1αy,2 · · ·αy,k .

(2.89)

On the other hand, using n = 2k +λ we get that

nαx,λ+1 +kαy,k = (2k +λ)αx,λ+1 +kαy,k

= (2k +λ)
(
λ+1)x +λy

)+k
(
k y + (k −1)x

)
= (λ+k)

(
(λ+k +1)x + (λ+k)

)
y = (λ+k)αx,λ+k+1

= (n −k)αx,λ+k+1.

(2.90)

Inserting this in the last expression of (2.89) we get that

βk,λ =
1(n
k

) (
αx,λ+2αx,λ+3 · · ·αx,λ+k+1

)
αy,1αy,2 · · ·αy,k (2.91)

proving the inductive step.

In order to prove the claim (2.88) we first introduce the following diagrammatic notation for βk,λ

βk,λ =
b b b

1 k 1
b b b

b b b
b b b

JWn

b b b

b b b

λ
b

b

(2.92)

where the numbers above the diagram indicate the cardinalities of the arcs and the vertical lines. We next recall
the following recursive formula for calculating JWn , from Lemma 1.3.9:

JWn

b b b

b b b

=

b b b

b b b

JWn−1 +
n−1∑
j=1

j

n JWn−1

b b b

b b b

j

(2.93)

where the number j indicates the position of the arc. Let us use it to show the recursive formula (2.88) for βk,λ.

Concatenating on top and on bottom with the blobbed arcs, the first term of (2.93) becomes

b b b

1 k 1
b b b

b b b
b b b

b b b

b b b

λ
b

b

JWn−1
=βk,λ−1. (2.94)

We next consider the contribution to βk,λ from the terms of the sum in (2.93). We first observe that con-
catenating on top and on bottom with the blobbed arcs, only the terms in the sum in (2.93) where j ≤ 2k can
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contribute to βk,λ since otherwise the concatenation has the form

b b b

1 k
b b b

b b b
b b b

b b b

b b b

j2k + 1

JWn−1

b

b

(2.95)

in which the j ’th northern point is connected to another northern point.
We next consider the contributions for j = 1,3, . . . ,2k − 1. Apart from the coefficients, they are of the form

indicated below (in the cases j = 1 and j = 3).

b

b b b

b b b

b b b

JWn−1

b

bb

b b b

1 k

b b b

b

(2.96)

b

b b b

b b b

b b b

JWn−1

b

bb

b b b

1 k

b b b

b

(2.97)

and are in fact all equal to yβ′
k,λ where β′

k,λ is the diagram

1
b b

b b b

b b b

b b b

b

b

JWn−1

k − 1 1 λ

b b b

b b b

.

(2.98)

In these diagrams, the dashed lines once again refer to the summands of the Jones-Wenzl elements where
the points are connected as indicated.

We then consider the contributions for j = 2,4, . . . ,2k −2. They are all of the form indicated below (for j = 2
and j = 4)

b b b

b b b
b b b

JWn−1

b

b

b b b

kb

b b b

b b

(2.99)
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b b b

b b b
b b b

JWn−1

b

b

b b b

kb

b b b

b b

(2.100)

and are all equal to xβ′
k,λ where β′

k,λ is as before in (2.98). Finally, for j = 2k there is no contribution since the
corresponding diagram is as follows

b b b

b b b
b b b

JWn−1

b

b

b b b

kb

b b b

b b

.

(2.101)

Summing up and taking into account the coefficients j
n appearing in (2.93) we get from all this that

βk,λ =βk,λ−1 +k
(k −1)x +k y

n
β′

k,λ =βk,λ−1 +
k

n
αy,kβ

′
k,λ. (2.102)

We are therefore faced with the problem of calculating β′
k,λ, that is

1
b b

b b b

b b b

b b b

b

b

JWn−1

k − 1 1 λ

b b b

b b b

.

(2.103)

For this we first observe that by the symmetry properties of the Jones-Wenzl idempotents, we have that β′
k,λ

is equal to

(β′
k,λ)∗ =

1

b b

b b b

b b b

b b b

b

b

JWn−1

1 λ
b b b

b b b

k

.

(2.104)

We now expand JWn−1 in (2.104) using (2.93). The first term of (2.93) does not contribute to (2.104) so let us
consider the contribution of the j ’th term of the sum of (2.93), where arguing as in (2.95) we see that only j ≤ 2k
can contribute. Once again, there is a dependency on the parity of j . If j = 1,3, . . . ,2k −1 the contributions are of
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the form indicated below (for j = 1,3 and disregarding the coefficients)

b

b b

b b b

b b b
b

bb

b b b

1 k

b b b

b

JWn−2

(2.105)

b

b b

b b b

b b b
b

bb

b b b

1 k

b b b

JWn−2

b

(2.106)

and are in fact all equal to yβk−1,λ. Similarly, for j = 2,4, . . . ,2k −2 we get contributions of the form

b b

b b b

b b b
b

bb

b b b

b b b

JWn−2

b b

(2.107)

b b

b b b

b b b
b

bb

b b b

b b b

JWn−2

b b

(2.108)

all equal to xβk−1,λ. Once again, there is no contribution for j = 2k. Hence, taking into account the coefficients
j

n−1 , we get that

β′
k,λ =

k

n −1
αy,kβk−1,λ. (2.109)

Combining (2.109) and (2.102) we arrive at the promised recursive formula (2.88) for the βk,λ’s. This proves
a). The proof of b) is immediate from a) and the definitions. □
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Using Theorem 2.4.1 we can now calculate the matrix MB
n,λ for 〈·, ·〉Bn,λ, see (2.80). We illustrate it on MB

5,1.

Recall that the diagram basis for ∆B5 (1) is given in (2.55) and so we get from the Theorem that

MB
5,1 =

I5 0 0
0 αx,3αy,1I4 0
0 0 αx,3αx,4αy,1αy,2I1

 (2.110)

where the 0’s are 0-matrices of appropriate dimensions.

We now consider the situation where λ< 0. We have the following Theorem.

THEOREM 2.4.2.

a) Suppose that λ< 0 and that f λi is as in (2.64) but with j = 0, that is f λi = f λk where

f λk =

b b b b b b

b b b b b b

1 2 k

1 2 n

1 2
b b b

JWn

b

|λ|

.

(2.111)

Then we have that

〈 f λk , f λk 〉Bn,λ =
1(n
k

) (
αx,1αx,2 · · ·αx,k+1

)
αy,1+|λ|αy,2+|λ| · · ·αy,k+|λ| (2.112)

where n = 2k +|λ|. (Note that the right hand side of (2.84) contains k +1 factors αx,l for consecutive l ’s,
but k factors αy,l , for consecutive l ’s. For k = 0, it is set equal to αx,1 = x. Note also that

(n
k

)= dim∆Bn(λ)).
b) Let ci (x, y) be as in (2.78) and (2.80). Then up to multiplication by a nonzero scalar in C, we have that

ci (x, y) = (
αx,1αx,2 · · ·αx,i+1

)
αy,1+|λ|αy,2+|λ| · · ·αy,i+|λ| (2.113)

(where, as before, the product is set equal to x if i = 0).

Proof: The proof is essentially the same as the proof of Theorem 2.4.1. We leave the details to the reader. □
Let us illustrate Theorem 2.4.2 on MB

5,−1 and MB
5,−3. Recall that the diagram basis for ∆B5 (−1) is obtained from

(2.55) by marking the leftmost propagating line of each diagram, whereas the diagram basis for ∆B5 (−3) is given
in (2.56). We have

MB
5,−1 =

αx,1I5 0 0
0 αx,1αx,2αy,2I4 0
0 0 αx,1αx,2αx,3αy,2αy,3I1

 , MB
5,−3 =

(
αx,1I4 0

0 αx,1αx,2αy,4I1

)
. (2.114)

5. Characterization of ci (x, y) in terms of Bruhat order on W

We saw in the Theorems 2.4.1 and 2.4.2 that ci (x, y) has a factorization in terms of roots for W . In this
section we describe the reflections in W that correspond to these roots. It turns out that these reflections can be
described nicely in terms of the Bruhat order on W .

Let β= wα be a root for W where α is a simple root. Then we define the reflection sβ ∈W associated with β

via the formula
sβ := w sαw−1 (2.115)

where sα ∈ S is the generator associated with α. It is shown in section 5.7 of [21] that sβ only depends on β, not
on the particular choices of w and α such that β= wα.

For our W , the reflections sx,i and sy,i for the roots αx,i and αy,i are given by the formulas of the following
Lemma.

LEMMA 2.5.1. Let αx,i and αy,i be the positive roots for W introduced in (2.81) and let sx,i and sy,i be the
associated reflections, for i = 1,2, . . . Then we have that

sx,i = (st )i−1s, sy,i = t (st )i−1. (2.116)

PROOF. This is immediate from (2.81) and the definitions. □
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We now have the following Lemma.

LEMMA 2.5.2. Let v ∈Λw and let λ :=ϕ(v) ∈Λ±(n−1) where ϕ :Λw →Λ±(n−1) is the function defined in Lemma

2.2.5. Set k = n −1−|λ|
2

.

a) Suppose that λ≥ 0. Then the set of reflections sα in W satisfying v < sαv ≤ w is exactly

{sx,λ+2, sx,λ+3, · · · , sx,λ+k+1}∪ {sy,1, sy,2, · · · , sy,k } (2.117)

obtained by transforming the roots of the factors of (2.84) to reflections.
b) Suppose that λ< 0. Then the set of reflections sα in W satisfying v < sαv ≤ w is exactly

{sx,1, sx,2, · · · , sx,k+1}∪ {sy,1+|λ|, sy,2+|λ|, · · · , sy,k+|λ|} (2.118)

obtained by transforming the roots of the factors of (2.112) to reflections.

PROOF. Let us prove a). Since λ≥ 0 we have that v begins with s and that λ= l (v)−1. Viewing v as a ’tail’ of
w , see (2.45), there are k instances in w of s to the left of v and also k instances of t to the left of v . Multiplying
v on the right of the reflections sy,1, sy,2, · · · , sy,k gives the tails from these t ’s, as illustrated below in (2.119) for
n = 20 and λ= 9

s t s t s t s t s t s t s t s t s t s tw =

v

sy,1v

sy,2v

sy,3v

sy,4v

sy,5v

(2.119)

and multiplying v on the right of the reflections sx,λ+2, sx,λ+3, · · · , sx,λ+k+1, gives the tails from the s’s, upon delet-
ing the last generator of w , as illustrated below

s t s t s t s t s t s t s t s t s t s tw =

v

sx,11v

sx,12v

sx,13v
sx,14v

sx,15v .

(2.120)

These products all satisfy the conditions v < sαv ≤ w of the Lemma, and one also checks that they are the
only ones satisfying the conditions. This shows a), and b) is shown the same way. □

6. Graded Jantzen filtrations and sum formulas

In this final section we study the representation theory of Ãw and its specialization ÃCw := Ãw ⊗R C, where
the R-algebra structure on C is given by mapping α∨

s and α∨
t to 0. Note that ÃCw has already been studied in the

literature, in fact for general (W,S) for example in [44] or in [40].

As already mentioned, Ãw is a cellular algebra and hence also ÃCw is a cellular algebra, with cell modules
∆Cw (y) := ∆w (y)⊗R C for y ∈ Λ̃w . Moreover, as already indicated, Ãw and ÃCw are Z-graded algebras with degree
function deg given in (1.4.2). In fact they are graded cellular algebras, that is they fit into the following definition
first formulated by Hu and Mathas, see [20].

DEFINITION 2.6.1. Suppose that k is a commutative ring with identity and that A is a k-algebra which is
cellular on the triple (Λ,Tab,C ). Suppose moreover that A is a Z-graded algebra via A=⊕i∈ZAi . Then we say that
A is a Z-graded cellular algebra if for each λ ∈Λ there is a function deg : Tab(λ) →Z such that for s,t ∈ Tab(λ) we
have that Cst ∈Adeg(s)+deg(t).
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We shall in general refer to Z-graded cellular algebras simply as graded cellular algebras.

The same degree function deg that was used for Ãw also makes Aw and ACw into Z-graded cellular algebras.
On the other hand, to make the blob-algebras Bx,y

n and NBn fit into Definition 2.6.1 we use the function deg :
Tab(λ) →Z given by

deg(t ) : Tab(λ) →Z,deg(t ) =
{

2{number of blobs in t } if λ≥ 0
2{number of blobs in t }+1 if λ< 0

(2.121)

where Tab(λ) refers to blob half-diagrams as in the paragraph prior to equation (2.16). Thus, when viewing Tab(λ)
as the basis elements for ∆Bn(λ) as in (2.55) and (2.56), the function deg assigns degree 1 to a blob on a propagating
line, and degree 2 to a blob on a non-propagating line.

For A a graded cellular algebra over k we let A-mod be the category of A-modules which are free over k with
finite basis consisting of homogeneous elements. For M in A-mod we define its graded rank rkq M ∈Z[q, q−1] via

rkq M := ∑
i∈Z

rk Mi q i (2.122)

where rk Mi is the number of basis elements for M that have degree i .

We shall use the notation Ãg r
w and Ãg r,C

w when referring to Ãw and ÃCw as graded cellular algebras and sim-

ilarly, for v ∈ Λ̃w , we shall use the notation ∆g r
w (v) and ∆g r,C

w (v) for the graded cell modules for Ãg r
w and Ãg r,C

w .
On the blob-algebra side, we shall use the notation B

g r,x,y
n and NB

g r
n for Bx,y

n and NBn , when viewed as graded

cellular algebras, and shall for λ ∈ Λ±n use the notation ∆g r,B
n (λ) and ∆g r,B,C

n (λ) for the graded cell modules for
B

g r,x,y
n and NBg r

n .

The proof of Theorem mainTheoremSection3new shows that Bg r,x,y
n−1

∼= Ag r
w and so also NBg r

n−1
∼= Ag r,C

w . Recall

the map ϕ : Λ±(n−1) → Λw from Lemma 2.2.5 Then, similarly, the proof of Theorem 2.2.7 shows that ∆g r,B
n−1 (λ) ∼=

∆
g r
w (v) where ϕ(λ) = v and so also ∆g r,B,C

n−1 (λ) ∼= ∆g r,C
w (v). However, for v not belonging to the image of ϕ, that is

for v ∈Λc
w , see (2.47), we need to work a little bit to get an analogous description of ∆g r

w (v) and ∆g r,C
w (v).

For A a graded cellular algebra and M =⊕i∈ZMi a graded A-module we define the graded shift M [k] of M as
the graded A-module given by

M [k] =⊕i∈ZM [k]i where M [k]i := Mi−k . (2.123)

The first part of the following Lemma has just been mentioned, but we still include it for later reference. The
second part of the Lemma essentially says that the v ’s in Λc

w do not give rise to ’new’ cell modules for Ag r
w .

LEMMA 2.6.2. Suppose that w = w1s′, that is s′ is the last S-generator of w.

a) For v =ϕ(λ) we have that ∆g r
w (v) ∼=∆g r,B

n−1 (λ).

b) For v ∈Λc
w set v1 := v s′, that is l (v1) = l (v)+1. Then ∆g r

w (v) ∼=∆g r
w (v1)[1] ∼=∆g r,B

n−1 (λ)[1] where ϕ(λ) = v1.

Proof: As mentioned, we only need to prove b). Let D1 be the following diagram

D1 := b b b
b

v

v1

(2.124)

(where we suppose that s′ is blue). For any diagram D for ∆g r
w (v1), we define f (D) := DD1, that is f (D) is obtained

from D by multiplying on top with D1. Then f induces an R-isomorphism ∆w (v1) ∼=∆w (v) which is also a module
isomorphism since left multiplication commutes with right multiplication. But D1 is of degree 1, and so we get
that f :∆g r

w (v1) →∆
g r
w (v)[−1] and hence ∆g r

w (v1)[1] ∼=∆g r
w (v). Combining this with a) we obtain b). □

LEMMA 2.6.3.



52 CHAPTER 2. GRADED SUM FORMULA FOR Ã1-SOERGEL CALCULUS AND THE NIL-BLOB ALGEBRA

a) Suppose that λ ∈Λ±(n−1) with λ≥ 0. Then

rkq ∆
g r,B
n−1 (λ) = rkq ∆

g r,B,C
n−1 (λ) =

n−1−λ
2∑

i=0
rk∆TLn−1(λ+2i )q2i . (2.125)

b) Suppose that λ ∈Λ±(n−1) with λ< 0. Then

rkq ∆
g r,B
n−1 (λ) = rkq ∆

g r,B,C
n−1 (λ) = qrkq ∆

g r,B
n−1 (−λ). (2.126)

Proof: This follows immediately from Lemma 2.3.1. □
For λ ∈Λ±(n−1) let {b1,b2, . . . ,bm} be the R-basis for ∆Bn−1(λ) obtained from (2.80) and Theorem 2.4.1 if λ≥ 0

or from Theorem 2.4.2 if λ< 0. According to these Theorems 〈bi ,bi 〉Bn−1,λ is a product of positive roots for W and

so {b1,b2, . . . ,bm} consists of homogeneous elements since 〈·, ·〉Bn−1,λ is homogeneous. The degree of bi is equal to

number of roots appearing in 〈bi ,bi 〉Bn−1,λ according to Theorem 2.4.1 and 2.4.2.

Let now α be a positive root for W . We then introduce the following Bg r,x,y
n -submodule of ∆g r,B

n−1 (λ)

∆
g r,α
n−1 (λ) := {a ∈∆g r,B

n−1 (λ) |α divides 〈a,b〉Bn−1,λ for all b ∈∆g r,B
n−1 (λ)}. (2.127)

From the above remarks we have that ∆g r,α
n−1 (λ) is a free over R with basis

{bi |α is a factor of 〈bi ,bi 〉Bn−1,λ}. (2.128)

The proof of the following Theorem is a compilation of the results from the previous sections.

THEOREM 2.6.4. Supposing that v =ϕ(λ) and that v < sαv ≤ w we have that

rkq ∆
g r,α
n−1 (λ) = rkq ∆

g r
w (sαv)[l (sαv)− l (v)]. (2.129)

Otherwise, if v < sαv ≤ w is not satisfied, we have ∆g r,α
n−1 (λ) = 0.

Proof: Let k := n−1−λ
2 . Let us first consider the case where λ ≥ 0 and α = αy,i for some i = 1,2, . . . ,k, hence

sα = t (st )i−1, see Lemma 2.116. By Lemma 2.6.2 we have that ∆g r,B
n−1 (λ) ∼=∆g r

w (v). The distinct roots αx, j and αy, j

are irreducible and unassociated elements of R and so it follows from the description in Theorem 2.4.1 of the
matrix MB

n−1,λ in (2.80) that

rkq ∆
g r,α
n−1 (λ) =

k∑
j=i

rk∆TLn−1(λ+2 j )q2 j = q2i
k−i∑
j=0

rk∆TLn−1(λ+2i +2 j )q2 j . (2.130)

Using Lemma 2.6.3 and Lemma 2.2.5 we get that (2.130) is equal to

q2i rkq ∆
g r,B
n−1 (λ+2i ) = q2i−1rkq ∆

g r,B
n−1 (−λ−2i ) = q2i−1rkq ∆

g r
w (t (st )i−1v) = q2i−1rkq ∆

g r
w (sαv). (2.131)

But v begins with s since λ≥ 0 and so the last expression of (2.131) is rkq ∆
g r
w (sαv)[l (sαv)− l (v)] which shows

the Theorem in this case. For an illustration of sαv , see (2.119).

Let us now consider the case where still λ ≥ 0, but α = αx,λ+1+i and hence sα = (st )λ+i s, see Lemma 2.116.
Then α appears in the same blocks as αy,i did in the previous case, and so we get from (2.130) and (2.131) that

rkq ∆
g r,α
n−1 (λ) = q2i−1rkq ∆

g r
w (t (st )i−1v) = q2i rkq ∆

g r
w ((st )i v) (2.132)

where we used Lemma 2.2.5 and b) of Lemma 2.6.3 for the second equality. On the other hand, writing v = us′
with l (u)+1 = l (v) we get from Lemma 2.5.2 and b) of Lemma 2.6.2 that

rkq ∆
g r
w (sαv) = rkq ∆

g r
w ((st )i u) = qrkq ∆

g r
w ((st )i v). (2.133)

Comparing (2.132) and (2.133) we get

rkq ∆
g r,α
n−1 (λ) = q2i−1rkq ∆

g r
w (sαv) = rkq ∆

g r
w (sαv)[l (sαv)− l (v)] (2.134)

which shows the Theorem in this case as well. The remaining cases of the Theorem are proved with similar
techniques. □
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Our next aim is to generalize Theorem 2.6.4 to ∆g r
w (v). This is immediate if v ∈Λw since in that case v ∈ i mϕ,

whereas for v ∈Λc
w we have to work a little bit. For α a positive root we first generalize (2.127) in order to get a

graded submodule ∆g r,α
w (v) of ∆g r

w (v).

∆
g r,α
w (v) := {a ∈∆g r

w (v) |α divides 〈a,b〉w
n,v for all b ∈∆g r

w (v)}. (2.135)

We then have the following Theorem.

THEOREM 2.6.5. Let α be a positive root for W . If v < sαv ≤ w then

rkq ∆
g r,α
w (v) = rkq ∆

g r
w (sαv)[l (sαv)− l (v)] (2.136)

and otherwise ∆g r,α
w (v) = 0.

Proof: As already mentioned, if v ∈Λw the result follows immediately from Theorem 2.6.4, so let us assume that
v ∈Λc

w . As before we write w = w1s′, where s′ is the last S-generator of w and set v1 = v s′. Then l (v1) = l (v)+1
and v1 ∈ Λw . Let D be a diagram basis element for ∆w (v). Then D has nonempty zone C and we define D1 to
be the diagram basis element for ∆w (v1) which is obtained from D by making the last non-hanging birdcage,
corresponding to zone C, hanging. Then D 7→ D1 is a bijection between the diagram basis for ∆w (v) and the
diagram basis for ∆w (v1). On the other hand, using the definition of the bilinear forms we have that

〈D,C〉w
n,v = v(α′)〈D1,C1〉w

n,v1
(2.137)

where α′ is the root corresponding to s′ and so the matrix for 〈·, ·〉w
n,v has the diagonalized form v(α′)MB

n−1,λ

where λ = ϕ(v1). We now assume that λ ≥ 0 such that MB
n−1,λ is given by Theorem 2.4.1. One then checks that

v(α′) =αx,λ+1. Moreover, the set of reflections sα in W satisfying v < sαv ≤ w is the union of sx,λ+1 with the set of
reflections sα satisfying v1 < sαv1 ≤ w , and hence, in view of Lemma 2.5.2, it is equal to

{sx,λ+1, sx,λ+2, sx,λ+3, · · · , sx,λ+k+1}∪ {sy,1, sy,2, · · · , sy,k } (2.138)

which is exactly the set of reflections obtained by transforming the roots of the factors of the diagonal elements
of of v(α′)MB

n−1,λ to reflections.

Let us now show (2.136). If α is a factor of a diagonal element of MB
n−1,λ we are reduced to the previous case

treated in Theorem 2.6.4, as follows

rkq ∆
g r,α
w (v) = qrkq ∆

g r,α
n−1 (λ) = qrkq ∆

g r
w (sαv1)[l (sαv1)− l (v1)] = rkq ∆

g r
w (sαv)[l (sαv)− l (v)] (2.139)

where we used Lemma 2.6.2 for the last step. On the other hand, if α = αx,λ+1 we have that sαv1 = v and so we
get

rkq ∆
g r,α
w (v) = qrkq ∆

g r
n−1(λ) = rkq ∆

g r
w (sαv1)[l (sαv)− l (v)] (2.140)

which shows (2.136) in this case as well. The cases where λ< 0 are treated with similar techniques. □
∆

g r,α
w (v) is free over R and hence we get immediately a specialized version of Theorem 2.6.5.

COROLLARY 2.6.6. Defining ∆g r,α,C
w (v) :=∆g r,α

w (v)⊗R C we have that

rkq ∆
g r,α,C
w (v) = rkq ∆

g r,C
w (sαv)[l (sαv)− l (v)]. (2.141)

The definition of ∆g r,α
w (v) in (2.135) is reminiscent of the Jantzen filtration for Verma modules. To make this

analogy even stronger we let R1 := C[x] and define ∆g r,x
w (v) := ∆g r

w (v)⊗R R1 where R1 is made into an R-module
via αs 7→ x and αt 7→ x. Then {∆g r,x

w (v)|v ∈ Λ̃w } are graded cell modules for Ãg r,x
w := Ãg r

w ⊗R R1. In R1 all the roots
αx,i and αy,i are non-zero scalar multiples of x and so we define for any k = 1,2, . . .

∆
g r,k,x
w (v) := {a ∈∆g r,x

w (v) |xk divides 〈a,b〉w
n,v for all b ∈∆g r,x

w (v)} (2.142)

∆
g r,k,C
w (v) :=π(∆g r,x,k

w (v)) (2.143)

where π : ∆g r,x
w (v) → ∆

g r,x
w (v) ⊗R1 C is the quotient map: here C is made into an R1-module via x 7→ 0. Then

∆
g r,C
w (v) ⊇ ∆g r,1,C

w (v) ⊇ ∆g r,2,C
w (v) ⊇ . . . is a filtration of graded submodules of ∆g r,C

w (v) and we have the following
Corollary to Theorem 2.6.5.

COROLLARY 2.6.7.

a) ∆g r,C
w (v)/∆g r,1,C

w (v) is irreducible or zero.
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b) The following graded analogue of Jantzen’s sum formula holds∑
k>0

rkq ∆
g r,k,C
w (v) = ∑

α>0
v<sαv≤w

rkq ∆
g r,C
w (sαv)[l (sαv)− l (v)] (2.144)

where α> 0 refers to the positive roots of W .

As pointed out in the introduction, analogues of ungraded Jantzen filtrations with associated sum formulas
exist in many module categories of Lie type and give information on the irreducible modules for the category
in question. But although graded representation theories in Lie theory have been known for a long time and
would be very useful for calculating decomposition numbers, to our knowledge graded sum formulas have so far
not been available. The virtue of Corollary 2.6.7 is to show the possible form of graded sum formulas in graded
representation theory.

It should be noted that in the present NBn-situation, the irreducible modules can be read off from Theorem
2.4.1 and Theorem 2.4.2 and are in fact Temperley-Lieb cell modules. See also [39] for a different approach to
this.

We believe that the equalities in Theorem 2.6.5 and Corollary 2.6.6 are valid on module level, but have so far
not been able to prove so. But in the remainder of the article we indicate how to generalize them to enriched
Grothendieck group level. The methods for this are essentially generalizations to the graded case of the methods
in [44], where the corresponding ungraded case is treated.

Let A be a graded cellular algebra over C. Let 〈A−mod〉q be the enriched Grothendieck group for A, that
is 〈A−mod〉q is the Abelian group generated by symbols 〈M〉q , for M running over the modules in 〈A−mod〉q ,
subject to the relations 〈M〉q = 〈M1〉q +〈M2〉q whenever there is a short exact sequence 0 → M1 → M → M2 → 0
in 〈A−mod〉q . The grading shift in A−mod induces a grading shift in 〈A−mod〉q via 〈M〉q [k] := 〈M [k]〉q and so
we get a Z[q, q−1]-structure on A−mod via 〈M〉q +〈N〉q := 〈M ⊕N〉q and qk〈M〉q := 〈M〉q [k].

The following is a natural generalization of the definition of a cellular category, see [50], to the Z-graded case.

DEFINITION 2.6.8. Let k be a commutative ring with identity and let C be a k-linear Z-graded category, that is
for objects m,n in C we have a decomposition

HomC(m,n) =⊕i∈ZHomC(m,n)i . (2.145)

Suppose that C is endowed with a duality ∗. Then C is called a Z-graded cellular category if there exists a poset Λ
and for each λ ∈Λ and each object n in C a finite set Tab(n,λ) which is decomposed as Tab(n,λ) = ·∪i∈ZTab(n,λ)i

together with a map Tab(m,λ) × Tab(n,λ) → HomC(m,n), (S,T ) 7→ Cλ
ST , satisfying Cλ

ST ∈ HomC(m,n)i+ j if S ∈
Tab(n,λ)i and T ∈ Tab(n,λ) j . These data satisfy that (Cλ

ST )∗ =Cλ
T S and that

{Cλ
ST |S ∈ Tab(m,λ),T ∈ Tab(n,λ),λ ∈Λ} is a homogeneous k-basis for HomC(m,n) (2.146)

and for all a ∈ HomC(n, p)i ,S ∈ Tab(m,λ) j ,T ∈ Tab(n,λ)k

aCλ
ST = ∑

S′∈Tab(p,λ)i+ j

ra(S′,S)Cλ
S′,T mod Aλi+ j+k (2.147)

where Aλ is the span of {Cµ

ST |µ<λ,S ∈ Tab(m,µ),T ∈ Tab(p,µ)}.

This following simple fact was already mentioned in [44], in the ungraded case. Let C be a graded cellular
category and let A be a finite subset of the objects of C. Define EndC(A) as the direct sum

EndC(A) :=⊕m,n∈AHomC(m,n). (2.148)

Then EndC(A) has a k-algebra structure as follows

g · f :=
{

g ◦ f if f ∈ HomC(m,n), g ∈ HomC(n, p) for some m,n, p
0 otherwise

(2.149)

and, in view of (2.145) and (2.147), this is a graded k-algebra structure. Moreover, we have the following Theorem.

THEOREM 2.6.9. Let C be a graded cellular category and let A be a finite subset of the objects for C. Define for
λ ∈ Λ the set Tab(λ) := ∪n∈ATab(n,λ). Let for S ∈ Tab(λ),T ∈ Tab(λ) the element Cλ

ST ∈ EndC(A) be defined as the

inclusion of Cλ
ST ∈ HomC(m,n) in EndC(A). Then these data define a graded cellular algebra structure on EndC(A).
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Proof: Just as in the ungraded case considered in [44], this follows immediately from the definitions. □
For a general Coxeter system (W,S), it was shown in [11] that the diagrammatic Soergel categories D(W,S) and

DC
(W,S), see Definition 1.4.2 and Remark 1.4.3, are graded cellular categories in the sense of Definition 2.6.8.

Let us indicate the ingredients that make the categories D(W,S) and DC
(W,S), see Definition 1.4.2 and Remark

1.4.3, fit into Definition 2.6.8, for our choice of (W,S). In case of D(W,S), we use for k the ring R, and for the
objects and morphisms we use the objects and morphisms given in Definition 1.4.2. For the poset Λ we use W
itself, endowed with the Bruhat order poset structure. For w ∈ exp starting with s and in reduced form, that is
w = w , we use for Tab(w , v) the set of birdcages Tabw (v). For w ∈ exp starting with t and in reduced form, we
use for Tabw (v) the corresponding set of birdcages Tabw (v). For w ∈ exp a general object in D(W,S) not in reduced
form, we use the general light leaves construction from [11]. Since we do not need the details of this construction
we skip it at this point. In case of DC

(W,S) we use the same ingredients as for D(W,S), except that for k we replace R
by C.

Let us now fix a finite subset W0 ⊆ W of W such that v ∈ W0,u ≤ v =⇒ u ∈ W0, that is W0 is an ideal in W .
For each z ∈W0 we let z be its (unique) reduced expression. We then set W 0 := {z |z ∈W0} ⊆ exp and define

Ãg r
W0

:= EndD(W,S) (W 0) and Ãg r,C
W0

:= EndDC
(W,S)

(W 0). (2.150)

Note that in this setup we recover the graded cellular algebras Ãg r
w and Ãg r,C

w by taking W0 := {w}.

We now have the following Theorem, which is our main reason for changing to the categorical setting.

THEOREM 2.6.10. Ãg r,C
W0

is a graded quasi-hereditary algebra over C.

Proof: The proof of Theorem 8.5 in [44], corresponding to the ungraded setting, carries over to the present graded
setting. □

Let ∆g r
W0

(v) and ∆g r,C
W0

(v) be the graded cell modules for Ãg r
W0

and Ãg r,C
W0

. There is an R-module decomposition

∆
g r
W0

(v) =⊕z∈W 0
∆

g r
z (v) (2.151)

where we use z instead of w to indicate that z may begin with s as well as t . There is a similar decomposition for

∆
g r,C
W0

(v). Let 〈·, ·〉W0
v be the bilinear form on ∆g r

W0
(v). It is orthogonal with respect to the decomposition in (2.151).

Mimicking what we did for ∆g r
w (v) we choose α a root for W and define for ∆g r,α

W0
(v) via

∆
g r,α
W0

(v) := {a ∈∆g r
W0

(v) |α divides 〈a,b〉W0
v for all b ∈∆g r

W0
(v)} (2.152)

and set

∆
g r,α,C
W0

(v) :=π(∆g r,α
W0

(v)) (2.153)

where π is before. Following [44], we define for z ∈W0 projection maps ϕz as follows

ϕz : 〈Ãg r,C
W0

−mod〉q →〈Ãg r,C
z −mod〉q , 〈∆g r,C

W0
(v)〉q 7→ 〈∆g r,C

z (v)〉q (2.154)

and arguing as in [44], we get the following compatibility at Grothendieck group level

ϕz (〈∆g r,α,C
W0

(v)〉q ) = 〈∆g r,α,C
z (v)〉q . (2.155)

We have natural homomorphisms of Z[q, q−1]-modules

rkW0,q : 〈Ãg r,C
W0

−mod〉q →Z[q, q−1], 〈M〉q 7→ rkq M

rkz,q : 〈Ãg r,C
z −mod〉q →Z[q, q−1], 〈M〉q 7→ rkq M .

(2.156)

Let Φ : 〈Ãg r,C
W0

−mod〉q →⊕z∈W 0
Z[q, q−1] be the Z[q, q−1]-homomorphism whose z’th coordinate is equal to

the composite map rkz,q ◦ ϕz . With this notation we have the following Theorem.

THEOREM 2.6.11. Φ : 〈Ãg r,C
W0

−mod〉q →⊕z∈W 0
Z[q, q−1] is an isomorphism of Z[q, q−1]-modules.
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Proof: Since 〈Ãg r,C
W0

−mod〉q and ⊕z∈W 0
Z[q, q−1] are free Z[q, q−1]-modules of the same rank, it is enough to

show that Φ is surjective, by Vasconcelos’ Theorem once again, see [48]. Let f = ∑
z∈W 0

fz ∈ ⊕z∈W0Z[q, q−1] and

choose fz0
nonzero and z0 minimal with respect to this condition. The z0’th component of Φ(〈∆g r,C

W0
(z0)〉q ) is

rkz0,q (∆z0 (z0)) = 1 and so the z0’th component of Φ( fz0
〈∆g r,C

W0
(z0)〉q ) is fz0

. On the other hand, the z’th com-

ponent of Φ(∆g r,C
W0

(z0)) is rkz,q 〈∆z (z0)〉q which is nonzero only if z0 ≤ z. Hence, we can use induction on f −
Φ( fz0

〈∆g r,C
W0

(z0)〉q ) and get that f ∈ imΦ, as claimed. □
We can now prove the promised Grothendieck group extension of Corollary 2.6.6.

COROLLARY 2.6.12. For v ∈W0 we have ∆g r,α,C
W0

(v) = 0 unless w ≥ sαv > v. If w ≥ sαv > v then

〈∆g r,α,C
W0

(v)〉q = 〈∆g r,C
W0

(sαv)[l (sαv)− l (v)]〉q . (2.157)

Proof: We apply Φ to (2.157) and check that both sides are equal. Using (2.155) and Corollary 2.6.6 we get that

the z’th component of the left hand side is rkq ∆
g r,C
z (sαv)[l (sαv)− l (v)] which by definition of Φ coincides with

the right hand side. We then use Theorem 2.6.11 to conclude the proof. □
Finally, the Grothendieck group extension of Corollary 2.6.7 is proved with the same techniques, upon chang-

ing the ground ring for the category D(W,S) from R to R1. The cell modules for D(W,S) are called ∆g r,x
W0

(v) and we
define for k = 1,2, . . .

∆
g r,k,x
W0

(v) := {a ∈∆g r,x
W0

(v) | 〈a,b〉W0
v ∈ xk R1 for all b ∈∆g r,x

W0
(v)} (2.158)

and set
∆

g r,k,C
W0

(v) :=π(∆g r,k,x
W0

(v)). (2.159)

Mimicking the proof of Corollary 2.6.12 we then have the following generalization of Corollary 2.6.7.

COROLLARY 2.6.13. The following graded analogue of Jantzen’s sum formula holds:∑
k>0

〈∆g r,k,C
W0

(v)〉q = ∑
α>0

v<sαv≤w

〈∆g r,C
W0

(sαv)[l (sαv)− l (v)]〉q . (2.160)



Bibliography

[1] H. H. Andersen, A sum formula for tilting filltrations, Journal of Pure and Applied Algebra 152 (2000), 17-40.
[2] H. H. Andersen, Filtrations of cohomology modules for Chevalley groups, Annales scientifiques de l’É.N.S. 4e série, tome 16, no 4 (1983),

495-528.
[3] H. H. Andersen, J. C. Jantzen, W. Soergel, Representations of quantum groups at a p-th root of unity and of semisimple groups in charac-

teristic p: independence of p, Astérisque 220 (1994) Paris: Société Mathématique de France, p. 321.
[4] A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory, J. Am. Math. Soc. 9(2) (1996), 473-527.
[5] C. Bowman, A. Cox, A. Hazi, Path isomorphisms between quiver Hecke and diagrammatic Bott-Samelson endomorphism algebras,

arXiv:2005.02825, to appear in Advances in Mathematics.
[6] C. Bowman, A. Cox, A. Hazi, D. Michailidis, Path combinatorics and light leaves for quiver Hecke algebras. Math. Z. 300(3) (2022), 2167-

2203.
[7] J. Brundan, A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), 451-484.
[8] G. Burrull, N. Libedinsky, P. Sentinelli, p-Jones-Wenzl idempotents, Advances in Mathematics 352 (2019), 246–264.
[9] A. Cox, J. Graham, P. Martin, The blob algebra in positive characteristic, Journal of Algebra, 266(2) (2003), 584-635.
[10] B. Elias, N. Libedinsky, Indecomposable Soergel bimodules for universal Coxeter groups. With an appendix by Ben Webster, Trans. Am.

Math. Soc. 369(6) (2017), 3883-3910.
[11] B. Elias, G. Williamson, Soergel calculus, Representation Theory 20 (2016), 295-374.
[12] M. Ehrig, C. Stroppel, Koszul gradings on Brauer algebras, Int. Math. Res. Not. 2016 (13) (2016), 3970-4011.
[13] P. Fiebig, M. Lanini, The combinatorial category of Andersen, Jantzen and Soergel and filtered moment graph sheaves, Abh. Math. Semin.

Univ. Hamb. 86(2) (2016), 203-212.
[14] A. M. Gainutdinov, J. L. Jacobsen, H. Saleur, R. Vasseur, A physical approach to the classification of indecomposable Virasoro representa-

tions from the blob algebra, Nuclear Physics B, 873(3) 2013, 614–681.
[15] J. J. Graham, G. I. Lehrer, Cellular algebras, Inventiones Mathematicae 123 (1996), 1-34.
[16] J. J. Graham, G. I. Lehrer, The representation theory of affine Temperley-Lieb algebras, Enseign. Math., II. Sér. 44(3-4) (1998), 173-218.
[17] A. Hazi, P. Martin, A. Parker, Indecomposable tilting modules for the blob algebra, Journal of Algebra 568 (2021), 273-313.
[18] M. Hogancamp, D. E. V. Rose, P. Wedrich, A Kirby color for Khovanov homology, arXiv:2210.05640, to appear in Journal of the European

Mathematical Society.
[19] J. Hu, BGG Category O and Z-Graded Representation Theory, in: East China Normal University Scientific Reports 16, Forty Years of

Algebraic Groups, Algebraic Geometry, and Representation Theory in China.
[20] J. Hu, A. Mathas, Graded cellular bases for the cyclotomic Khovanov-Lauda-Rouquier algebras of type A, Adv. Math., 225 (2010), 598-642.
[21] J. E. Humphreys, Reflection groups and Coxeter groups, volume 29 of Cambridge Studies in Advanced Mathematics. Cambridge University

Press, Cambridge, 1990.
[22] J. Humphreys, Representations of semisimple Lie algebras in the BGG category O, (2008), Graduate Studies in Mathematics 94, Providence,

R.I.: American Mathematical Society, ISBN 978-0-8218-4678-0.
[23] Iohara, K., Koga, Y. Representation Theory of the Virasoro Algebra, Springer Monographs in Mathematics. Springer, London (2011).
[24] J. C. Jantzen, Moduln mit einem höchsten Gewicht, Lect. Notes in Math. 750 Springer-Verlag, 1979.
[25] V. F. R. Jones, Index for subfactors, Invent. Math. 72(1) (1983) 1–25.
[26] L. H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407.
[27] L. H. Kauffman, Statistical mechanics and the Jones polynomial, Braids (Santa Cruz, CA, 1986), Contemp. Math., vol. 78, Amer. Math. Soc.,

Providence, RI, 1988, pp. 263–297.
[28] M. Khovanov, A. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13 (2009), 309-347.
[29] N. Libedinsky, Gentle introduction to Soergel bimodules I: The basics, Sao Paulo Journal of Mathematical Sciences, 13(2) (2019), 499-538.
[30] N. Libedinsky, Sur la catégorie des bimodules de Soergel, Journal of Algebra 320 (2008) 2675-2694.
[31] N. Libedinsky, Light leaves and Lusztig’s conjecture. Adv. Math. 280, 772-807 (2015).
[32] N. Libedinsky, D. Plaza, Blob algebra approach to modular representation theory. Proc. Lond. Math. Soc. (3) 121, No. 3, 656-701 (2020).
[33] D. Lobos, D. Plaza, S. Ryom-Hansen, The nil-blob algebra: an incarnation of type Ã1 Soergel calculus and of the truncated blob algebra,
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