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Introduction

In this thesis, we study the representation theory of the Yokonuma-Hecke algebra Y.,
in type A and of the related Aicardi-Juyumaya algebra &, of braids and ties. In the past few

years, quite a few papers have been dedicated to the study of both algebras.

The Yokonuma-Hecke algebra ), ; was first introduced in the sixties by Yokonuma [44]
for general types as a generalization of the Iwahori-Hecke algebra 7{,, but the recent activity
on ), was initiated by Juyumaya who in [27] gave a new presentation of ), ,. It is a defor-
mation of the group algebra of the wreath product C,1 S, of the cyclic group of order r, C;,
and the symmetric group &;,. On the other hand, it is quite different from the more familiar
deformation of C, &, the Ariki-Koike algebra 7-7,,,”. For example, the usual Iwahori-Hecke
algebra #,, of type A appears canonically as a quotient of ), ,, whereas it appears canoni-

cally as subalgebra of #,. .

Much of the impetus to the recent development on ), comes from knot theory. In the
papers [9], [10], [26] and [28] a Markov trace on ), and its associated knot invariant O is
studied.

The Aicardi-Juyumaya algebra &, of braids and ties, along with its diagram calculus, was
introduced in [I] and [25] via a presentation derived from the presentation of ), ,. The al-
gebra &, is also related to knot theory. Indeed, Aicardi and Juyumaya constructed in [2] a
Markov trace on &,, which gave rise to a three parameter knot invariant A. There seems to

be no simple relation between © and A.

A main aim of this thesis is to show that ), and &, are cellular algebras in the sense
of Graham and Lehrer, [16]. On the way we give a concrete isomorphism between ), and
Shoji’s modified Ariki-Koike algebra # ;. This gives two new proof of a result of Lusztig [31]
and Jacon-Poulain d’Andecy [21], showing that ), is in fact a sum of matrix algebra over

Iwahori-Hecke algebras of type A.

For the parameter g = 1, it was shown in Banjo’s work [4] that the algebra &, is a special
case of P Martin’s ramified partition algebras. Moreover, Marin showed in [32] that &, for
g =1 is isomorphic to a sum of matrix algebras over a certain wreath product algebra, in the
spirit of Lusztig’s and Jacon-Poulain d’Andecy’s Theorem. He raised the question whether
this result could be proved for general parameters. As an application of our cellular basis

for £, we do obtain such a structure Theorem for &,, thus answering in the positive Marin’s
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6 INTRODUCTION

question. Furthermore, we construct a cellular basis for the natural Temperley-lieb quotient

of &, defined by Juyumaya in [24].

Recently it was shown in [9] and [38] that the Yokonuma-Hecke algebra invariant ® can
be described via a formula involving the HOMFLYPT-polynomial and the linking number.
In particular, when applied to classical knots, ® and the HOMFLYPT-polynomial coincide
(this was already known for some time). Given our results on &, it would be interesting to

investigate whether a similar result would hold for A.

The structure of this thesis is as follows. In Chapter 1 we recall some basic combinatorial
objects related to the symmetric group and we also fix some notation. In Section 2 we define
the two combinatorial object most important in the construction of our cellular basis for
Yr.n and &g; the multipartitions (tuple of partitions) and the set partitions of a number. In
Section 3 we recall briefly the definition from [16] of a cellular algebra. Furthermore we give

two examples which were the ones that inspired our main construction.

In Chapter 2 we study the theory of representations of the Yokonuma-Hecke algebra. In
Section 1 we introduce the main objects of study for this chapter. The second part, Section
2, contains the construction of a faithful tensor space module V" for ), ,. The construction
of V®" is a generalization of the &£,-module structure on V®”" that was defined in [39] and it
allows us to conclude that &, is a subalgebra of ), for r = n, and for any specialization of
the ground ring. The tensor space module V®" is also related to the strange Ariki-Terasoma-
Yamada action, [3] and [40], of the Ariki-Koike algebra on V®", and thereby to the action
of Shoji's modified Ariki-Koike algebra H,, on V®", [42]. A speculating remark concerning
this last point was made in [39], but the appearance of Vandermonde determinants in the
proof of the faithfulness of the action of Y, in V®" makes the remark much more precise.
The defining relations of the modified Ariki-Koike algebra also involve Vandermonde deter-
minants and from this we obtain the proof of the isomorphism Y., = X, , by viewing both
algebras as subalgebras of End(V®"). Via this, we get a new proof of Lusztig’s and Jacon-
Poulain d’Andecy’s isomorphism Theorem for ), ,, since it is in fact equivalent to a similar
isomorphism Theorem for #, ,, obtained independently by Sawada-Shoji and Hu-Stoll

The third part of this chapter, Section 3, contains the proof that ), is a cellular algebra
in the sense of Graham-Lehrer, via a concrete combinatorial construction of a cellular basis
for it, generalizing Murphy’s standard basis for the Iwahori-Hecke algebra of type A. The fact
that ), is cellular could also have been deduced from the isomorphism Y., = #H,,, and from
the fact that 7, is cellular, as was shown by Sawada and Shoji in [41]. Still, the usefulness of
cellularity depends to a high degree on having a concrete cellular basis in which to perform
calculations, rather than knowing the mere existence of such a basis, and our construction

should be seen in this light.

Cellularity is a particularly strong language for the study of modular, that is non-semisimple

representation theory, which occurs in our situation when the parameter g is specialized to a
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root of unity. But here our applications go in a different direction and depend on a nice com-
patibility property of our cellular basis with respect to a natural subalgebra of ). ,,. We get
from this that the elements ms of the cellular basis for ), ,, given by one-column standard
multitableaux s, correspond to certain idempotents that appear in Lusztig’s presentation of
Yy in [30] and [31]. Using the faithfulness of the tensor space module V®”" for ), we get
via this Lusztig’s idempotent presentation of ), ,. Thus the third part of this chapter depends
logically on the second part. In the last part of this section we give another application of our
cellular basis for )\ ,,. We provide another proof of the fact that )., can be decomposed into
a direct sum of matrix algebras by giving an explicit isomorphism between certain subalge-
bras of );.,, and certain matrix algebras over tensorial products of Hecke algebras. Moreover,
this isomorphism preserves the cellular structure of these algebras since it sends cellular ba-

sis to cellular basis.

In Section 4 we treat the Jucys-Murphy’s elements for ), ;. They were already introduced
and studied by Chlouveraki and Poulain d’Andecy in [8], but here we show that they are JM-
elements in the abstract sense defined by Mathas, with respect to the cell structure that we

found.

In Chapter 3, we study the representation theory of the algebra of braids and ties. In
Section 1, we recall the definition of the algebra of braids and ties in terms of generators and
relations and we use the tensor representation of ;. , constructed in the above chapter for to
prove that £, can be see as a subalgebra of ., which is not completely obvious. In Section
2, we use the Moebius function for to construct a complete set of central orthogonal idem-
potents {E;|a € Par,} < &,. From the general theory we have as an immediate consequence

the following decomposition:

&= P Eun(@

acPary

where E,E£,(g) are subalgebras of &;,.

In the third part of this chapter we construct a cellular basis for £,. This construction
does not depend logically on the results of Chapter 2, but is still strongly motivated by them.
The generic representation theory of £, was already studied in [39] and was shown to be
a blend of the symmetric group and the Hecke algebra representation theories and this is
reflected in the cellular basis. The cellular basis is also here a variation of Murphy’s standard

basis but the details of the construction are substantially more involved than in the ), ;-case.

In the last section we provide an application of our cellular basis. We show that &, is
isomorphic to a direct sum of matrix algebras over certain wreath product algebras #}’, de-
pending on a partition a. An essential ingredient in the proof of this result is a compatibility
property of our cellular basis for &, with respect to these subalgebras. It appears to be a key
feature of Murphy’s standard basis and its generalizations that they carry compatibility prop-
erties of this kind, see for example [19], [12] and [13], and thus our work can be viewed as a

manifestation of this phenomenon.






CHAPTER 1

Preliminaries

In this chapter we set up the fundamental notation and introduce the objects we wish to

investigate.

Throughout the thesis we fix the rings R := Z|gq, q_l,f, r~L A1) and S:= Zlq, q_l], where
q is an indeterminate, r is a positive integer, ¢ := e?™/" € C and A is the Vandermonde deter-

minant A :=[Jo<jcj<r-1 & = &),
2m

We shall need the quantum integers [m], defined for m € Z by [m], :=

71 ifg#1

and [mlg:=mif g=1.

1. The symmetric group

The symmetric group on n letters, G, is the group consisting of all bijections of the set
{1,2,...,n} endowed with the operation of composition of functions. The elements of G, are
called permutations and we choose the convention that they act on n := {1,2...,n} on the
right.

Let X, :={s1,...,Ss—1} be the set of simple transpositions in &,, that is s; = (i,i + 1) in

cycle notation. Then &, can also be defined as the Coxeter group on X, subject to the rela-

tions
5iSj=58;jSi for [i—j|>1 1.1
S;Si+1Si = Si+18iSj41 fori=1,2,...,n—-2 (1.2)
=1 fori=1,2,...,n—1. (1.3)

14

In particular, for each w € &, there exist i; € {1,2,...,n—1} such that w = s;, 53, --- 55, If
k in minimal we say that w has length k and we write ¢(w) = k. Furthermore, in this case
we say that s; s;, -+-s;, is a reduced expression for w. For example, $2535453525155575657 is a

reduced expression for the permutation
1 2 3 4 6 7
w = € 68.
2 83 415 76

Then we have that £(w) = 10. Note that in general an element of &, will have many reduced
expressions. For instance, by using the relations [[.IIT.2] and [I.3] on the above example, we

have that 545352 5354515557657 is also a reduced expression for w.

9



10 1. PRELIMINARIES

The word form of w € G;, is obtained by listing from left to right the elements iw in
increasing order with respect to i. For example, the word form 534216 represents the bijec-
tionl—5,2—-3,3—4,4—2,5—1 and 6 — 6. Denote by G,ZW the set of elements of &,,,
represented this way.

For w € &, we define the inversion number of w as follows
inv(w) :=card{(i, j)li< j,iw> jw}.

Since G, acts on the right on n, it also acts on the right on &}V, There is also an action of
&, on & given by interchanging the positions of the numbers in each word. To distinguish

the two actions we consider the last action to be a left action. For example
§281 5763124 = 7653124 whereas 5763124 - 515 = 5762314.
For all w € &, we have

. inviw)+1 ifiw<(@+Dw
inv(s;w) = (1.4)
inv(iw)-1 if iw>G+1Dw.

from which it follows that I(w) = inv(w).
Letting long € &, be the element corresponding to n(n—1)---21 € & we get that
inv(long) =l(long) = n(n—1)/2 and for w € &,, we get that

inv(w-long) =inv(long - w) =n(n-1)/2-¢(w). (1.5)

If w=s;, ---s;,s; is areduced expression and if v := s;, w, then the word from for w-long is
obtained from the word form for v-long by acting on the left with s; . But from the above,
we then conclude that the number in v-long at the i;’th position is bigger than the number
at the iy + 1’st position.

For more details on this topic, consult for example [5] (pages 18-21).

2. Young tableaux and set partitions

In this section we introduce the combinatorial objects which we will use to construct the

representations of the two algebras that we will study in the next chapters.

2.1. Combinatorics of Young tableaux. Let N° denote the nonnegative integers. We
next recall the combinatorics of Young diagrams and tableaux. A composition = (41, 2, .- ., 1)
of n €N is a finite sequence in N® with sum 7. The y;’s are called the parts of u. A partition
of n is a composition whose parts are non-increasing. We write ul|=n and A - n if pis a
composition of n and A is a partition of n. In these cases we set |u| := n and |A| := n and
define the length of u or A as the number of parts of p or A. If u = (u1, 42,..., ;) is a compo-
sition of length [ we define the opposite composition u°P as u°? := (u,..., tz, t1). We denote
by Comp,, the set of compositions of n and by Par,, the set of partitions of n. The Young

diagram of a composition  is the subset

w={G)Nll<sj<p;andi=1}
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of N’ xN°, The elements of [u] are called the nodes of u. We represent [u] as an array of

boxes in the plane, identifying each node with a box. For example, if u = (3,2,4) then

For u = n we define a p-tableau as a bijection t: [u] — n. We identify p-tableaux with la-

(1l =

bellings of the nodes of [u]: for example, if p = (1,3) then is a p-tableau. If tis a
u-tableau we write Shape(t) := .

We say that a p-tableau t is row standard if the entries in t increase from left to right
in each row and we say that t is standard if t is row standard and the entries also increase
from top to bottom in each column. The set of standard A-tableaux is denoted Std(A1) and
we write d := |Std(A)] for its cardinality. For example, is row standard and is
standard. For a composition of y of n we denote by t# the standard tableau in which the
integers 1,2,...,n are entered in increasing order from left to right along the rows of [u]. For
example, if u = (2,4) then t# = .

The symmetric group G, acts on the right on the set of u-tableaux by permuting the en-
tries inside a given tableau. Let s be a row standard A-tableau. We denote by d(s) the unique
element of G, such that s = t*d(s). The Young subgroup S, associated with a composition
 is the row stabilizer of t*. Let p = (u1,...,ux) and v = (vy,...,v;) be compositions. We write

pu>vifforall i =1 we have
i i
PNTEDINTG
j=1 j=1

where we add zero parts y; := 0 and v; := 0 at the end of p and v so that the sums are always
defined. This is the dominance order on compositions. We extend it to row standard tableaux
as follows. Given a row standard tableau t of some shape and an integer m < n, welet t | m
be the tableau obtained from t by deleting all nodes with entries greater than m. Then, for
a pair of p-tableaux s and t we write s> t if Shape(s | m) > Shape(t| m) forall m=1,...,n.
We write s >t if s>t and s # t. This defines the dominance order on row standard tableaux.

It is only a partial order, for example

13 24 13 415
2/5|>(3|5| and |[2|5|>|1]|3
14 11 14 12]

_
whereas and are incomparable.

We have that t* > t for all row standard A-tableau {.

An r-multicomposition, or simply a multicomposition, of n is an ordered r-tuple A =
(AM,1@,...,11") of compositions A1) such that ¥7_, |A?| = n. We call A¥) the k’'th compo-
nent of A, note that it may be empty. An r-multipartition, or simply a multipartition, is a
multicomposition whose components are partitions. The nodes of a multicomposition are

labelled by tuples (x, y, k) with k giving the number of the component and (x, y) the node
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of that component. For the multicomposition A the set of nodes is denoted [A]. This is the
Young diagram for A and is represented graphically as the r-tuple of Young diagrams of the

components. For example, the Young diagram of A =((2,3),(3,1),(1,1,1)) is

ELEmf)

We denote by Comp,., the set of r-multicompositions of n and by Par,, the set of r-multipartitions

of n. Let A be a multicomposition of n. A A-multitableau is a bijection t: [A] — n which may
once again be identified with a filling of [A] using the numbers from n. The restriction of
t to A9 is called the i’th component of t and we write t = W @ ¢y where t is the
i'th component of t. We say that t is row standard if all its components are row standard,
and standard if all its components are standard tableaux. If t is a A-multitableau we write

Shape(t) = A. The set of all standard A-multitableaux is denoted by Std(A). In the examples

~J

—

6]
_|11]2]3] 4 _([2]7]8] )
t_(“ ’gg) s= (2785700, 3 D

t is a standard multitableau whereas § is only a row standard tableau. We denote by t* the
A-multitableau in which 1,2,...,n appear in order along the rows of the first component,
then along the rows of the second component, and so on. For example, in we have that
t =t for A = ((3,2),(1,1,2)). For each multicomposition A we define the Young subgroup
S, as the row stabilizer of 4.

Let s be a row standard A-multitableau. We denote by d(s) the unique element of &,
such that s = t*d(s). The set formed by these elements is a complete set of right coset repre-

sentatives of G, in G;. Moreover
{d(s) | s is a row standard A-multitableau}

is a distinguished set of right coset representatives, that is £(wd(s)) = ¢(w)+£(d(s)) for w e G,.

Let A be a multicomposition of n and let t be a A-multitableau. For j =1,...,n we write
pe(j) := k if j appears in the k’th component t*) of t. We call p¢(j) the position of j in t.
When t= t", we write py (j) for pe(j) and say that a A-multitableau t is of the initial kind if
pt(j)=pa() foral j=1,...,n.

Let A=(AM,2@  A0yand p=u?,u®,...,u") be multicompositions of n. We write
A pif AD>p® forall i =1,...,n, this is our dominance order on Comp,,,. If s and t are
row standard multitableaux and m = 1,...,n we define s | m and £ | m as for usual tableaux
and write s > t if Shape(s | m)> Shape(t | m) for all m.

It should be noted that our dominance order > is different from the dominance order on
multicompositions and multitableaux that is used in some parts of the literature, for example

in [11]. Let us denote by > the order used in [11]. Then we have that

112 1(3
(34’)42 |’)
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whereas these multitableaux are incomparable with respect to I>. On the other hand, if s and
t are multitableaux of the same shape and pg(j) = p¢(j) for all j, then we have that s > t if
and only if s > t.

To each r-multicomposition A = AL ... A7) we associate a composition [|[A| of length

r as follows

[A] == A @, A0, (2.2)

Let §|5 be the associated Young subgroup. Then w € &) iff t*w is of the initial kind. For
any A-multitableau s there is a decomposition of d(s) with respect to 6" Al that is

d(s) = d(sy) wg, where d(sg) € 6”/1” and [(d(s)) = I(d(sg)) + (ws). 2.3)

We define in this situation s¢ = t*d(so); it is of the initial kind. Let ¢ be another multitableau
of shape p and let d(t) = d(to) w¢ be its decomposition. Suppose that |A| = |p| and that
ws = wy. Then we have the following compatibility property with respect to the dominance

order

s> tif and only if 59 > to. (2.4)

Let a:=||A|. Let y € S, be as short as possible such that sy is of the initial kind and set
t:=t%d(s)y. Then d(sy) = d(t) and ws = y‘l. If y = 54, 8i,... i, is reduced expression for y
then for all j we have that i; and i; + 1 occur in distinct components of ss;, s;, e Sip (with
ij +1 to the left of i;) as can be seen using the inversion description of the length function

on &, and a similar property holds for ws.

2.2. Set partitions. Recall that a set of subsets A = {I,I,...I;} of n is called a set par-
tition of n if the I j’s are nonempty, disjoint and have union n. For example, {{1,2,3},{4}},
{{1,3},12},{4}} and {{1,3},{2,4}} are set partitions of 4. We refer to the I;’s as the blocks of A
and we denote by SP,, the set of all set partitions of n. There is a natural poset structure on
SP,, defined as follows. Suppose that A ={I},D,,..., It} € SP, and B ={J1,Dp,...,J;} € SP,.
Then the order relation on SP;, is given by A< B if each J; is a union of some of the I;’s.

The following Hasse diagram illustrates the order relation < in SP4

{11,2,3,4}
{2,843 {324y {L45423% {12354} {L24,88) {1342} {{2,3,4{1}
{{1,2}, {3}, {41 {1,3}, {2, {41 2,45, {11, {31} {{2,35, {1}, 14} {14}, {2433
{1}, 12}, 3}, {41}

Finally, to each multicomposition we can associate an unique set partition as we will

explain next. For a composition p = (yy,..., i) we define the reduced composition red u as
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the composition obtained from p by deleting all zero parts y; = 0 from py. We say that a

composition p is reduced if p =red .

For any reduced composition p = (1, i2,..., ) we introduce the set partition Ay :=

(I, I,..., I§) by filling in the numbers consecutively, that is
I := {1,2,...,,[1,1}, b= {/Jl + 1,,U,1 +2,...,,U,1 +,U,2}, etc. (2.5)

and for a multicomposition A € Comp, , we define Ay := Areqia| € SPy,. For example, for
A =((0),(1,2),(0),(1,1),(2,1)) we have that Ay = {{1,2,3},{4,5},16,7,8}}.

3. Cellular algebras

The following definition appeared for the first time in [16].

DEFINITION 1.1. Let R be an integral domain. Suppose that A is an R-algebra which is
free as an R-module. Suppose that (A, =) is a poset and that for each A € A there is a finite
indexing set T(A) (the ’A-tableaux’) and elements cﬁt € A such that

C={c)|AeA ands,te T(V)}

is an R-basis of A. The pair (C,A) is a cellular basis of A if
(i) The R-linear map * : A— A determined by (cﬁt)* = cfﬁ forallAe A andalls,te T(A)
is an algebra anti-automorphism of A.
(ii) Forany A€ A, te T(A) and a € A there exist ry € R such that for all s € T(A)

cha= Y roct, mod A’
veT (1)
where A is the R-submodule of A with basis {cﬁu lpe A, u>A andu,v e T(u)}.

If A has a cellular basis we say that A is a cellular algebra and (A, T,C, %) is called the “cell
datum” of A.

The following is one of the motivational examples of this definition.

EXAMPLE 1. Let H,(q) the associative S-algebra given by generators hy, hy, ..., hy-1 sub-

ject to the relations:

h,‘hthjhi for li—jl>1 3.1
]’l,‘]’li+1hl’ = hi+1]’l,‘]’li+1 for i=1,2,...,.n-2 3.2)
h2=1+(q-q Hh; fori=12,...,n-1. (3.3)

The algebra 1,(q) is called the Iwahori-Hecke algebra of type Ap-1.

Graham and Lehrer showed that H,(q) is a cellular algebra using the Kazhdan-Lusztig
basis for H,(q) and the Robinson-Schensted algorithm. However, in this thesis we are more
interested in another cellular basis for H,(q), which was introduced by Murphy in (37, inde-
pendently of [16].
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Consider A = Par, with the dominance order, T(A) = Std(A) (for each A € A) and the anti-
automorphism * : hy — h,,-1. Let w € &, and suppose that s;, s;, -+ s;, is a reduced expression
for w. Then, we define

hw:=hi hy,---hy and hg=1€S
From Matsumoto’s theorem the elements h,, € H,(q) are well-defined, that is h,, is indepen-
dent of the choice of reduced expression for w. The Murphy cellular basis for H,(q) is given by
the set
={x} |s,teStd(), A e Pary,} (3.4)
where x2, := Wy ¥ahaw and x3:= ¥ yes, q" " hy,.
For example, we describe the Murphy basis for H4(q). In this case, A = {(1%),(2,12),(22),(3,1), (4)}

and

T(ah)= 54_r} T (@) ={55_,56 }

T((3, 1)) :{57 2@‘2'3"58 :@2|4|,59 :@3“”}, T((14)) = {510 :}

Considering these assignations, the elements of the cellular basis are:

. T(@1?) {52— 53=[2
4]

N
El\)»—l

1
xélﬁ)l =1
. 5252 =1+gh . x5352 ha(L+ghy) . x(;;gz) haha(1+qhy)
. ;221533] (I+qh)hy . x(523’152]=h2(1+67h1)h2 . x(524153) hgha(1+ qhy)hy
3
. ;2215; (1+qgh1)hoh3 . x£~|23'1.52]2h2(1+qh1)h2h3 . x(524154) h3ho(1+qhy)hohs
o« xZ) = (1+qh)A+qhs) o xZ) = hy(1+qh1)(1+qh3)
. xgsge (1+qh1)(1+qhg)hy . xﬁege—hg(1+qh1)(1+qhg)h2
o 3D — Z qZ(w)hw
5757 WESs . xﬁgﬁg_h XQ‘% qf(w)hw hohs
weSs

e xZl = X " hy, | hy
5758 weS, o xB®D = hshy Z qf(w)hw

5957
w€63

= h3hy Z qf(w)hw Iy

w€63

. x?#éf( )Y q[(w)hw) hahy

xﬁess

w€63
— (w)
* xs 5 =hy Z q hw
857 (w€63 . sggg—h ho X‘é qf(w)hw hohs
weSs3

* xggls]g =hy ( > q[(W)hw) )

w€63

@ _ l(w)
* Xs10810 = Z q hw
w€64
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EXAMPLE 2. Let R an integral domain. Then, the matrix algebra Mat, (R) is a cellular
algebra with cellular basis
{Mplijeq2,...
Here A = {n}, T(n) ={1,2,...,n} and M* := M" is the transpose of matrix M. Furthermore, it
is easy to verify that the axiom (ii) of Definition [L.1] holds by the fact that M M;; = 61 M;j,

where 8y, is the Dirac’s delta function.

In the sequel, we consider A as a cellular algebra with cellular datum (A, T,C, ) as in
Definition [[L11

DEFINITION 1.2. Foreach A € A we define the cell module C(A) as the left A-module which
is free as R-module, with basis {c;1 | s€ T(A)} and A-left action given by

act="Y ret
teT(M)

where the scalars ry € R are the elements appearing in Definition [LI|(ii).

From the defining axioms it is not hard to prove that for each A € A there exists a sym-

metric and associative bilinear form
(I:CAxCAH)—R (3.5
such that (c?, c{t) i for all 5,t € T(A) is determinate by
<c§, cﬂ),lc{}n = cﬁg cﬁ, mod A%
where u and v are any elements of t(1).
Since (, ), is associative we have that the set

rad(1) :={xe C(A) | {x,y)2 =0, forall ye C(1)} (3.6)

is an A-submodule of C(1) (see [35} Proposition 2.9]). Defining D(A) := C(1)/rad(A) and A :=

{A e A| D(A) # 0} we have the following result

THEOREM 1.1 (Graham-Lehrer). If R is a field and A is finite, then {D(A1) | A € Ao} is a

complete set of pairwise non-isomorphic simple A-modules.

The above theorem classifies all the simple A-modules for a finite dimensional cellular
algebra A, but in practice, it is not easy to determinate the set Ag. For example, in [37]
Murphy characterizes this set for the Hecke algebra of type A,_; in terms of the so-called
e-partitions. In particular, if 7 (S) is the field of fractions of S we have that D(A) = C(A) for all
AePary.



CHAPTER 2

Representation theory of the Yokonuma-Hecke algebra

1. Yokonuma Hecke algebra

DEFINITION 2.1. Let n be a positive integer. The Yokonuma-Hecke algebra, denoted Y., =
Yr.n(q), is the associative R-algebra generated by the elements g1,...,8n-1, t,.-., tn, Subject to

the following relations:

=1 forall i (1.1)

t; tj = l’j t; fOi‘ all i,j (1.2)
tjgl':gitjs,- forall i,j (1.3)
8i8j=8j8i forli—jl>1 (1.4)
8igi+18i = gi+18i8i+1 foralli=1,...,n-2 (1.5)

together with the quadratic relation
gf=1+(q—q_1)eigi forall i (1.6)
where
1 r—1 s s
ei=— Y B, 1.7)
I s=o0
Note that since r is invertible in R, the element e; € J;.,(q) makes sense.

One checks that e; is an idempotent and that g; is invertible in Y, ,,(q) with inverse gl.‘1 =
gi+ (g~ - q)e;, as it is shown in the following calculation
- _ 1 rolr=l+s 1 =l 17=1
€=z 22 tis+pti+(i+p) =2 Z Y = 2T Yttt = - Y tth=e
=0 5=0 I=s 1=0 =0
and
gigi+(q " ~@e)=1+(q-q giei+(q " —qgie; =1.

The study of the representation theory Y, (q) is one of the main themes of the present
thesis. );.,(q) can be considered as a generalization of the usual Iwahori-Hecke algebra #,, =
Hn(q) of type A,_1 since V1,,(q) = Hn(q). In general H,(q) is a canonical quotient of V. ,,(g)
via the ideal generated by all the #; — 1’s. On the other hand, as a consequence of the results

of the present thesis, #,(g) also appears as a subalgebra of ), ,(q) although not canonically.

Yr.n(q) was introduced by Yokonuma in the sixties as the endomorphism algebra of a

module for the Chevalley group of type A,_1, generalizing the usual Iwahori-Hecke algebra

17
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construction, see [44]. This also gave rise to a presentation for V), ,(q). A different presen-
tation for ), ,(q), widely used in the literature, was found by Juyumaya. The presentation
given above appeared first in [8] and differs slightly from Juyumaya’s presentation. In Juyu-
maya’s presentation another variable u is used and the quadratic relation takes the form
gl? =1+ (u—1)e;(g; +1). The relationship between the two presentations is given by u = g

and
gi=8i+(q-1e;gi (1.8)
or equivalently g; = & + (g~! — 1)e; §;, see eg. [9].

In this thesis we shall be interested in the general, not necessarily semisimple, represen-
tation theory of Y, ,(g) and shall therefore need base change of the ground ring. Let K be a
commutative ring, with elements ¢, € K. Suppose moreover that ¢ is an r’th root of unity
and that r and [Jo<;<j<r-1( i _¢Jy are invertible in K (for example K a field with r,¢ € K and

¢ a primitive r’th root of unity). Then we can make K into an R-algebra by mapping g € R to

g€ K, and ¢ € R to ¢ € K. This gives rise to the specialized Yokonuma-Hecke algebra

V@) =Ven(@) @R K.

Let w € &, and suppose that w = s;, s;, -+ s;,, is a reduced expression for w. Then by

m

the relations the element gy, := g;, g, *-- 8i,, does not depend on the choice of the reduced
expression for w. We use the convention that g; := 1. In [26] Juyumaya proved that the

following set is an R-basis for V., (q)
— kl k2 kn
=0 5 1" 8wl wWe Gy, ki,...,kn€ZITZ}. (1.9

In particular, Y, ,(q) is a free R-module of rank " n!. Similarly, yfn(q) is a free over K of rank

r'nl.
Let us introduce some useful elements of ), ,(q) (or yfn(q)). For 1 <i,j < n we define
eij by
1r—1 s —s
eiji==) ;" (1.10)
I =0

These e;;’s are idempotents and e;; =1 and e; ;41 = e;. Moreover e;; = e;; and it is easy to
verify from (L3) that

eij = gigi+1---gj—zej—1g}_12~-g{+11g,-‘1 for i < j. (1.11)

From (.I)-(I.3) one obtains that
tiejj = tjejj forall i, j (1.12)
ejjer = ex1e;j foralli,j, k1 (1.13)

eij8k = 8keCis;,js; toralli,jand k=1,...,n-1. (1.14)
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For any nonempty subset I < n we extend the definition of ¢;; to E by setting

Er= [] e (1.15)

i,jel i<j
where we use the convention that E;:=1if |I| = 1.

We need a further generalization of this. For any set partition A= {l;, l»,..., I} e SP, we
define

Ep:=[]Ey;. (1.16)
i

Extending the right action of &,, on n to a right action on SP, via Aw:={hw,..., [ w} €SP,

for w € G,,, we have the following Lemma.
LEMMA 1. For A€ SP, and w € &, as above, we have that

Eagw = 8gwEaw-

In particular, if w leaves invariant every block of A, or more generally permutes certain of the

blocks of A (of the same size), then E4 and g,, commute.

PROOE. This is immediate from (1.14) and the definitions. O

2. Tensorial representation of V., (q)

In this section we obtain our first results by constructing a tensor space module for the
Yokonuma-Hecke algebra which we show is faithful. From this we deduce that the Yokonuma-
Hecke algebra is in fact isomorphic to a specialization of the ‘modified Ariki-Koike’ algebra,

that was introduced by Shoji in [42] and studied for example in [41].

DEFINITION 2.2. Let V be the free R-module with basis {vf |1<i<n,0<t<r-1}. Then
we define operators T € Endg (V) and G € Endg(V®?) as follows:

(wHT:=¢&! 2.1)
and
v?@vif ift#s
vio v’ ift=si=j
(v; ®V))G:= qs’ ! f . ] 2.2)
vi®v; ift=si>]j

J
_l t t . — . .
(g—q )vi®v}?+v;®vi ift=si<]j.

We extend them to operators T; and G; acting in the tensor space V" by letting T act in

the i’th factor and G in the i’th and i + 1’st factors, respectively.

Our goal is to prove that these operators define a faithful representation of the Yokonuma-

Hecke algebra. We first prove an auxiliary Lemma.
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1
LEMMA 2. LetE; be defined by E; := P Zrm_:lo T"T; . Consider the map

i+1°

0 ift#s

(e vE:=
Lo vf@v]s. if t=s.

Then E; acts in V®" asE in the factors (i,i + 1) and as the identity in the rest.

PROOE. We have that

t

to ot 1 _pte—t t o f _ ¢
(vj®vk)Tl-Ti+l—§§ Vi®U =V ® V.

Thus we get immediately that (vf ® v}‘.)Ei = vl? ® vj. if s=t. Now, if s # f we have that

(v]t. o v)T;T;), = g‘tf—sv]t. QUL = g”_sv]t. B ;.
Since 0 < 1,5 < r — 1, we have that £/~ # 1 which implies that
r—1
Y =@ -1 - =0
m=0
and so it follows that (vl? ® v;)E =0if s#¢. O

REMARK 1. The operators G; and E; should be compared with the operators introduced
in [39] in order to obtain a representation of E,(q) in V®". Let us denote by (~},- and I~E,- the
operators defined in [39]. Then we have that E; = E- and

G =G;+(q ' - DEG;
corresponding to the change of presentation given in (I.10).
THEOREM 2.1. There is a representation p of Vr.,(q) in V®" given by t; — T; and g; — G;.

PROOF. We must check that the operators T; and G; satisfy the relations (L1),..., (I.6)
of the Yokonuma-Hecke algebra. Here the relations (ILI) and (I.2) are trivially satisfied since
the T;’s commute. The relation (L4 is also easy to verify since the operators G; and G; act

as G in two different consecutive factors if |[i — j| > 1.

In order to prove the braid relations (I.5) we rely on the fact, obtained in [39] Theorem
1, that the operators f},-’s and E-’s satisfy the relations for &, (q) (with modified quadratic re-
lation as indicated just below Definition [B.I). In particular, the braid relations éiél’+lél’ =
G;.1G;G;;; hold and also E;G;,1G;G;+1E; = E;+1G;11G;G;+1E;+1 holds, as one sees from

Definition 3.1l Via Remark [Ilwe now get that

GiGi+1G;=(1+(g ' - DE)GiGi+1G; + (7' -~ 1G;Gi41Ei11G) (1 + (g7 = DEy)
=(1+(q' = DEN(GiGi+1Gi + (7' - DGiGin Ein EiG) (1 + (¢7' - DEy)
=(1+(g7 ' = DE41)(Gi+1GiGis1 + (7' = DGi11Gi G EiEiy 1)1+ (g7 = DEji)
=Gi+1G;Gin
and follows as claimed. In a similar way we get that the G;’s satisfy the quadratic relation
(1.6).
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We are then only left with the relation (I.3). We have here three cases to consider:

T,‘GjZGjT,‘ li—jl>1 (2.3)
T;G; =G;Tis1 (2.4)
Ti+1G; = G;T;. (2.5)

The case (Z.3) clearly holds since the operators T; and G; act in different factors of the tensor

{22 ®...® U;]' ". In order to verify the other two cases we may assume that i = 1
n

J1
i1
actions of T; and T are given as the multiplication with the same scalar and so the relations
(2-4) and (2.5) also hold.

Suppose then finally that j; # jo. We then have that

0
product v, ®v

and n = 2. It is enough to evaluate on vectors of the form v; ® v{; € V®2. For jj = jo the

Jj1 J2 _ w102 g 01 _ ;)1 J2
(vl.1 ® Uig)TlGl =¢ v, ® v, = (l/l.1 ® vl.z)Gng
and
Jj1 J2 _ 2 d2 g 01 _ (1 J2
(vl.1 ® Uiz)TgGl =¢ v, ®U; = (vi1 ® vl.z)GlTl
and the proof of the Theorem is finished. O

REMARK 2. Let K be an R-algebra as in the previous section with corresponding special-
ized Yokonuma-Hecke algebra yfn(q). Then we obtain a specialized tensor product represen-
tation p’* : yfn(q) — Endx (V®"). Indeed, the above proof amounts only to checking relations,

and so carries over to yfn(q).
THEOREM 2.2. p and p* are faithful representations.
PROOE. We first consider the faithfulness of p. Recall Juyumaya’s R-basis for V;,,(q)
Bin=lgot]' 1" l0€6,, jic2irz).

For o =s;, ...s;, € &, written in reduced form we define G, := G;, ...G;,,. To prove that p is

faithful it is enough to show that
pBrn) = 1GoT) -+ T |0 € &, i €217

is an R-linearly independent subset of End(V®"). Suppose therefore that there exists a non-
trivial linear dependence
> AjpinoGo T T =0 2.6)
eSS,
Ji€Zlrz

where not every A, i, o € R is zero.

We first observe that for arbitrary a;’s and o € &, the action of G, on the special tensor
Ut ® e ® vfl, having the lower indices strictly decreasing, is particularly simple. Indeed,
since o = s;, ... §;,, is a reduced expression for o we have that the action of G; = G;, ...G;,,
in that case always involves the third case of and thus is given by place permutation, in
other words
a;

an R al - an R al f ai" R
(V" ®-- @V, )Gy = (V" ® - ® V) )U—vl.n ®-®U,

! (2.7)
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for some permutation iy,...,7; of n,...,1 uniquely given by o. Let ¥, be the R-subalgebra of

End(V®") generated by the T;’s. For fixed ki, ..., k, we now define
Vi, = SpanR{vil1 ® - ® vi’; ljr€Zirz}.

Then Vg, ., is a T,-submodule of V®". Given (2.7), to prove that the linear dependence
(Z.6) does not exist, it is now enough to show that Vi, i, is a faithful ‘¥,-module.

For j=0,1,...,r —1 we define wiEVVia
. 1 1
wy = ‘Eoé v,
i=

Then {w;'cl i=0,1,...,r—1,k=1,...,n} is also an R-basis for V, since for fixed k the base
change matrix between {vlicl i=0,1,...,r—1} and {wil j=0,1,...,r—1} is given by a Van-
dermonde matrix with determinant [Jo<;<j<r-1(S i _ ¢Jy which is a unit in R. But then also
{wil1 ®...® wi’ilji € Z/rZ} is an R-basis for Vg, k. On the other hand, for all j we have that
j+1
k

combination in T,

wiT =w;, = where the indices are understood modulo r. Hence, given the nontrivial linear

LA VL
Z A’]ln-u]nTl Tn

Ji€ZIrZ
we get by acting with it on wzl ®...® wz the following nonzero element
n

Jjn

ot
Yo AW ®..0w

) k1
Ji€ZIrZ
This proves the Theorem in the case of p. The case p’C is proved similarly, using that []p<; jsr-1 (4 i

&7) is a unit in K as well. O

2.1. The modified Ariki-Koike algebra. In this subsection we obtain our first main re-
sult, showing that the Yokonuma-Hecke algebra is isomorphic to a variation of the Ariki-
Koike algebra, called the modified Ariki-Koike algebra #,.,,. It was introduced by Shoji. Given
the faithful tensor representation of the previous subsection, the proof of this isomorphism
Theorem is actually almost trivial, but still we think that it is a surprising result. Indeed, the
quadratic relations involving the braid group generators look quite different in the two alge-
bras and as a matter of fact the usual Hecke algebra of type A;_; appears naturally as a sub-
algebra of the (modified) Ariki-Koike algebra, but only as quotient of the Yokonuma-Hecke
algebra.

Let us recall Shoji’s definition of the modified Ariki-Koike algebra. He defined it over the
ring R; := Z[q, q‘l, u, ..., ur, A7, where q,u1,...,u, are indeterminates and A := Hi>j(u,- -
uj) is the Vandermonde determinant. We here consider the modified Ariki-Koike algebra
over the ring R, corresponding to a specialization of Shoji’s algebra via the homomorphism

¢:R) — Rgiven by u; — ¢ and g — gq.

Let A be the square matrix of degree r whose i j-entry is given by A;; = &0 for 1 <

i,j <r,ie. Ais the usual Vandermonde matrix. Then we can write the inverse of A as Al =
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A~!B, where A = Hi>j(¢'i —Ef) and B= (h,-j) is the adjoint matrix of A, and for 1 < i < r define
a polynomial F;(X) € Z[{][X] < R[X] by
Fi(X):= Y hjx/™L
1<is<r
DEFINITION 2.3. The modified Ariki-Koike algebra, denoted M, = Hrn(q), is the asso-

ciative R-algebra generated by the elements hy,...,h, and w,...,w, subject to the following

relations:
(hi—q)(hi+q =0 forall i (2.8)
h,‘hthjhi for li—jI>1 2.9)
hihis1hi=hjy hihiy,  forall i=1,...,n-2 (2.10)
(Wi —&YH - (wi-&)=0 forall i (2.11)
WiW;=jw; forall i,j (2.12)
hjwj=wj1hj+A7% Y (€2 =N (G- q ) Fe @)D Fe @) (2.13)
c1<c2
hjwj-1=w;h; —A‘ZC; (€% =& (G- q ) (@j-1)Fe, () (2.14)
1 2
hjw;=wh; I#£j,j—1 (2.15)

Hrn(qg) was introduced as a way of approximating the usual Ariki-Koike algebra and is
isomorphic to it if a certain separation condition holds. In general the two algebras are not
isomorphic, but related via a, somewhat mysterious, homomorphism from the Ariki-Koike

algebra to H,,,(q), see [42].

Sakamoto and Shoji, [42] and [41], gave a H,,,(q)-module structure on V®" that we now

explain. We first introduce a total order on the vl! s via

1 .1 1 .2 2 r

ULy Usyevoy Upy Uy ey Uiy Ul ey Uy (2.16)
and denote by vy, ..., vy, these vectors in this order. We then define the linear operator H €
End(V®2) as follows:

qri®Uv; ifi=j
(Ul'®l/j)HZ= l/j®l/,' ifi>j

(G-g Hvievi+viev; ifi<j.

We then extend this to an operator H; of V®" by letting H act in the i’th and i + 1’st factors.
This is essentially Jimbo’s original operator for constructing tensor representations for the

usual Iwahori-Hecke algebra 7, of type A. The following result is shown in [42].

THEOREM 2.3. The map p : H;n(q) — End(V®") given by hj — H;, w; — T; defines a
faithful representation of H,n(q).

We are now in position to prove the following main Theorem.



24 2. REPRESENTATION THEORY OF THE YOKONUMA-HECKE ALGEBRA

THEOREM 2.4. The Yokonuma-Hecke algebra Yy, (q) is isomorphic to the modified Ariki-
Koike algebra H,,n(q).

PROOE. By the previous Theorem and Theorem [2.2] we can identify Y, ,(q) and H,,(q)
with the subalgebras p(Vy,,(g)) and p(Hr,»(g)) of End(V®™"), respectively. Hence, in order to
prove the Theorem we must show that p(V;,,(q)) = p(Hr,n(q)). But by definition, we surely
have that the T;’s belong to both subalgebras, since T; = p(¢;) and T; = p(w;).

It is therefore enough to show that the G;’s from p(};,,(q)) belong to p(#, ), and that
the H;’s from p (%) belong to p(V;,1(g)).

On the other hand, the operator G coincides with the operator denoted by S in Shoji’s
paper [42]. But then Lemma 3.5 of that paper is the equality

Gi-1 =H;=A72(q-q7") Y Fe(Ti-1)F(Tp).

c1<c2

Thus, since A™2(g—q 1) ¥¢, <c, Fei (Ti—1) Fe, (T;) belongs to both algebras §(Hr,,(q)) and p(Vr,n(g)),

the Theorem follows. O

Lusztig gave in [30] a structure Theorem for Y., (q), showing that it is a direct sum of
matrix algebras over Iwahori-Hecke algebras of type A. This result was recently recovered by
Jacon and Poulain d’Andecy in [21]. We now briefly explain how this result, via our isomor-

phism Theorem, is equivalent to a similar result for #,.,(g), obtained in [20] and [42]

For a composition p = (u1, g2, ..., 4r) of n of length r, we let H,(g) be the corresponding
Young-Hecke algebra, by which we mean that #,(q) is the R-subalgebra of 7, (g) generated
by the h;’s for i € Z,n&,. Thus H,(q) =Hy, (g) ®...® Hy, (q) where each factor 1y, (q) is a
Iwahori-Hecke algebra corresponding to the indices given by the part u;. Let p,, denote the

multinomial coefficient

= " (2.17)
P\ | ‘

With this notation, the structure Theorem due to Lusztig and Jacon-Poulain d’Andecy is

as follows

Vrn(q) = D Matp,, (H,(q) (2.18)
p=(p, 2, i) EN

where for any R-algebra .4, we denote by Mat,,(A) the m x m matrix algebra with entries in
A.

On the other hand, a similar structure Theorem was established for the modified Ariki-
Koike algebra %, ,(q), independently by Sawada and Shoji in [41] and by Hu and Stoll in
[20]:

Hren(q) = &b Matp, (H,(q)). (2.19)
H=(1,p2,fir)ER
Thus, our isomorphism Theorem [2.4] shows that above two structure Theorems are equiva-

lent.
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We finish this section by showing the following embedding Theorem, already announced

above. It is also a consequence of our tensor space module for Y, ,(g).

THEOREM 2.5. Suppose that r = n. Then the homomorphism ¢ : EX(q) — yfn(q) intro-
duced in Lemmall8 is an embedding.

In order to prove Theorem[3.Jlwe need to modify the proof of Corollary 4 of [39] to make

it valid for general K. For this we first prove the following Lemma.

LEMMA 3. Let K be an R-algebra as above and let A= (I1,...,15) € SP, be a set partition.
Denote by V4 the K-submodule of V®" spanned by the vectors

”@...@U{l

l

Jk

k ®...®v

vire--ev 0<ji<r-1

with decreasing lower indices and satisfying that ji = j; exactly if k and | belong to the same
block I; of A. Let Ex € EX(g) be the element defined the same way as Ex € Yy, (q), that is
via formula (I16). Then for all v € V4 we have that vE4 = v whereas vEg =0 for B € SPy,
satisfying B € A with respect to the order < introduced above.

PROOF. In order to prove the first statement it is enough to show that eg; acts as the
identity on the basis vectors of V4 whenever k and [ belong to the same block of A. But this
follows from the expression for ey; given in (LII) together with the definition (2.2) of the
action of G; on V®" and Lemma (2 Just as in the proof of Theorem 2.2]we use that the action
of G; on v € Vy is just permutation of the i’th and i + 1’st factors of v since the lower indices

are decreasing.

In order to show the second statement, we first remark that the condition B € A means
that there exist k and [ belonging to the same block of B, but to different blocks of A. In
other words ey; appears as a factor of the product defining Ep whereas for all basis vectors
of Vy

pln ®---®v£’c®---®vljl ®® v{l
we have that ji # j;. Just as above, using that the action of G; is given by place permutation
when the lower indices are decreasing, we deduce from this that V4ex; = 0 and so finally that

VaEg =0, as claimed. O

PROOF OF THEOREM It is enough to show that the composition p* o ¢ is injective
since we know from Theorem [2.2] that p’C is faithful. Now recall from Theorem 2 of [39] that
the set {Eagw|A €SPy, w € &,} generates £,(q) over C[q,g™!] (it is even a basis). The proof
of this does not involve any special properties of C and hence {Esg|A € SP,, w e &,} also

generates &£ ﬁf(q) over K.

Let us now consider a nonzero element Y, 4 ', aEAGy in Eﬂf(q). Under p’C o it is

mapped to Y., 4 "'w,AEAGy which we must show to be nonzero.

For this we choose Ag € SP, satisfying ry,a, # 0 for some w € &, and minimal with

respect to this under our order < on SP;,. Let v € Vy, \ {0} where Vjy, is defined as in the
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previous Lemma [I7] Note that the condition r = n ensures that Vy, # 0, so such a v does

exist. Then the Lemma gives us that
v( Y rw,aBaGuw) = v()_ ruw,a,Guw). (2.20)
w,A w

The lower indices of v are strictly decreasing and so each G, acts on it by place permutation.

It follows from this that (ILTT) is nonzero, and the Theorem is proved. O

REMARK 3. The above proof did not use the linear independence of {EAgw|A€ SPp,
w e Sy} over K. In fact, it gives a new proof of Corollary 4 of [39].

In the special case K = Clq,q™'] and r = n the Theorem is an immediate consequence
of the faithfulness of the tensor product V®" as an &,(q)-module, as proved in Corollary 4

of [39]. Indeed, let pglq'q_ll :En(q) — End(V®") be the homomorphism associated with the

Clg.q7t

& : together

En(g)-module structure on V®", introduced in [39]. Then the injectivity of p

Clg,q7?
En

One actually checks that the proof of Corollary 4 of [39] remains valid for K =R and r = n, but

; o -1 . C
with the factorization p = ptlad] °Pciq,q-11 Shows directly that ¢c, .1 is injective.
still this is not enough to prove injectivity of ¢ = @i for a general K since extension of scalars

from R to K is not left exact. Note that the specialization argument of [39] fails for general K.

3. Cellular basis for the Yokonuma-Hecke algebra

The goal of this section is to construct a cellular basis for the Yokonuma-Hecke algebra.
The cellularity of the Yokonuma-Hecke algebra could also have been obtained from the cel-
lularity of the modified Ariki-Koike algebra, see [41], via our isomorphism Theorem from the
previous section. We have several reasons for still giving a direct construction of a cellular
basis for the Yokonuma-Hecke algebra. Firstly, we believe that our construction is simpler
and more natural than the one in [41]. Secondly, our basis turns out to have a nice com-
patiblity property with the subalgebra ¥, of Y, ,(g) studied above, a compatibility that we
would like to emphasize. This compatibiliy is essential for our proof of Lusztig’s presenta-
tion for ), ,(q), given at the end of this section. We also need the cellular basis in order to
show, in the following section, that the Jucys-Murphy operators introduced by Chlouveraki
and Poulain d’Andecy are JM-elements in the abstract sense introduced by Mathas. Finally,
several of the methods for the construction of the basis are needed in the last section where

the algebra of braids and ties is treated.

For our cellular basis for V;.,(q) we use for A the set Par,, of r-multipartitions of n,
endowed with the dominance order as explained in Preliminars and for T(A) we use the set
of standard r-multitableaux Std(A), introduced in the same part. For * : V. ,(q) — V. (q) we
use the R-linear antiautomorphism of Y, ,(g) determined by g/ =g; and 1/ =y for 1 <i<n
and 1 < k < n. Note that * does exist as can easily be checked from the relations defining

Vrn(q).
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We then only have to explain the construction of the basis element itself, for pairs of
standard tableaux. Our guideline for this is Murphy’s construction of the standard basis of

the Iwahori-Hecke algebra #,(q).
For A€ Comp, , we first define

= Y 4" g €Vinla). 3.1)

wEGA
In the case of the Iwahori-Hecke algebra #,(q), and A a usual composition, the element x;

is the starting point of Murphy’s standard basis, corresponding to the most dominant tableau
th.

In our Y;,(q) case, the element xj will only be the first ingredient of the cellular basis

element corresponding to the tableau t*. Let us now explain the other two ingredients.

For a composition u = (uy,..., ux) we define the reduced composition red u as the com-
position obtained from p by deleting all zero parts p; =0 from p. We say that a composition

u is reduced if u =red p.

For any reduced composition g = (1, i2,..., ) we introduce the set partition Ay :=

(I, I, ..., I§) by filling in the numbers consecutively, that is
L:={1,2,....mu}, h:={u1 + 1,1 +2,...,u1 + U2}, etc. (3.2)

and for a multicomposition A € Comp, , we define Ay := Aeqja| € SPn . Thus we get for
any A € Comp, ,, an idempotent E4, € Vy,,(q) which will be the second ingredient of our

Yr.n(q)-element for t1. We shall from now on use the notation
Ep:=Eja,. 3.3)
Clearly t;Ep = Ext; for all i. Moreover E, satisfies the following key property.

LEMMA 4. Let A € Comp,, and let Ap be the associated set partition. Suppose that k
and | belong to the same block of Ap. Then tyEp = 1E,.

PROOE. This follows from the definitions. [l

From Juyumaya'’s basis (I.9) it follows that t; is a diagonalizable element on Y, (q). The

eigenspace projector for the action ; on YV, (q) with eigenvalue &¥ is
1 r—1 i
wig==3 &Ml e Von(@ (3.4)
Jj=0
that is {v € Vrn(@)lt;v =50} = Uik Vrn(q).
For A=AW,...,A") e Comp,,, we define U, as the product

.
Ur:=[] Ui j (3.5)
j=1

- " @) . .
where i; is any number from the j’th component t*” of £* with the convention that ui;j=1

if it is empty.
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We have now gathered all the ingredients of our cellular basis element corresponding to

DEFINITION 2.4. Let A€ Comp, . Then we define my € Vr,,(q) via
my :=UprExrx). (3.6)
The following Lemmas contain some basic properties for m;.

LEMMA 5. The following properties for my are true.

(1) UpEy is an idempotent. It is independent of the choices of i;’s and so also my is

independent of the choices of i;s. .
(2) Fori in the j'th component oft’1 (that is pp(i) = j) we have timpy = myt; =&/ my.
(3) The factors Uy, Ex and x of my commute with each other.
(4) Ifi and j occur in the same block of Ay then mpe;j = e;jmy = my.
(6) Ifi and j occur in two different blocks of Ay then mpe;j =0=e;jm;,.
(6) Forall we &) we have mygy = gumy = q[(“’)m;t.

PROOF. The properties (1) and (2) are consequences of the definitions, whereas (3) fol-
lows from (2) and LemmalIl The property (4) follows from (2) and (3) since UpExe;j = UrEj
in that case. Similarly, under the hypothesis of (5) we have that Uy Epe;; = 0 and so also
(5) follows from (2) and (3). To show (6) we note that for s; € 6" Al we have that E; gl? =
Ex(1+(g-qg~ Y gi). Since &, is a subgroup of &) the statement of (6) reduces to the simi-
lar Iwahori-Hecke algebra statement for x, which is proved for instance in [35, Lemma 3.2].
O

REMARK 4. Note that i and j are in the same block of Ay if and only if they are in the
same component of t*. However, the enumerations of the blocks of Ay and the components
of t} are different since t* may have empty components and so in part (2) of the Lemma we

cannot replace one by the other.
LEMMA 6. Let A € Comp, , and suppose that w € &p,. Then mygu§gi =

magws; if €(ws;) >l (w)
magws; if ¢(ws;) < l(w) and i,i+1 are in different blocks of (Ax) w
ma(gws; + (g — q D gw) if C(ws;) < €(w) and i,i+1 are in the same block of (Ap) w.

PROOF. Suppose that £(ws;) > ¢(w) and let s}, ---s;, be a reduced expression for w. Then

Sj +++8j,. Si is a reduced expression for ws; and so gyws; = gwgs; by definition. On the other

hand, if ¢(ws;) < ¢(w) then w has a reduced expression ending in s;, therefore

Sw&i= gws,-gf = guws;(1+(q— g Veig) = guws +(@—q ) gwei.

On the other hand, from Lemma [Il we have that Ejgye; = gwEa,we; which is equal to
8wEa,w or zero depending on whether i and i +1 are in the same block of Ay or not. This

concludes the proof of the Lemma O

With these preparations, we are in position to give the definition of the set of elements

that turn out to contain the cellular basis for Y, ,(q).



3. CELLULAR BASIS FOR THE YOKONUMA-HECKE ALGEBRA 29

DEFINITION 2.5. Let A € Comp,, and suppose that s and t are row standard multi-
tableaux of shape A. Then we define

Mst = 8y MAd(D)- 3.7)

In particular we have my = mga.

Recall that Murphy introduced the elements xs¢ of the Iwahori-Hecke algebra #,(q), via
Xst = h;(s) XAhd(t) (38)

for 5,t row standard A-tableaux. We consider our elements mg¢ as the natural generalization

of these xs¢ to the Yokonuma-Hecke algebra.
Clearly we have m;‘t = mys, as one sees from the definition of x*.

Let A € Comp,, and set a := |A]. We have a canonical decomposition of the corre-
sponding Young subgroup

Ga=06q, xBq, x...xBq, (3.9

where &, is the subgroup of &, permuting {1,2,..., a1}, whereas G, is the subgroup per-
muting {a; +1,a;+2,...,a;1 +a»}, and so on. Note that this notation deviates slightly from the
notation introduced above where G, is the symmetric group on the numbers {1,2,...,a;};
this kind of abuse of notation, that we shall use frequently in the following, should not cause

confusion. We now define
Ya(q) :=Spanp{UrErgwlw € Gql. (3.10)

We have the following Lemma.

LEMMA 7. Yu(q) is a subalgebra of YV, (q). Its identity element is given by the central
idempotent UpEj. There is an isomorphism between the Young-Hecke algebra Hq(q) and
Ya(q) given by

Holq) — Va(q), gw— UprErgw where we G,. (3.11)

Using the canonical isomorphism Hq(q) = Ha, () ® .- ® He,(q) it is given by
Hor (@) ®--®Ha, (q) — Va(q), a1 ®---®a, — UrExar---a, wherea; € Hy,(q). (3.12)

PROOF. From Lemma B we know that Uy E, is an idempotent. For w € G, it com-
mutes with g, as can be seen by combining the Yokonuma-Hecke algebra relation (I.3) with
Lemma B} and hence it is central. Moreover, for s; € &, we have that Ej gl? =Ep(1+(g-

g~ 1) gi), as mentioned in the proof of Lemma 5} and so we also have
UprEag? =UprEA(L+(q-q 1)g) for s; € Gg.

It follows from this that Y, (g) is a subalgebra of Y, (g) and that there is a homomorphism
from Hq(g) to Vu(q) given by g, — UarEpgw. On the other hand, it is clearly surjective and
using Juyumaya'’s basis (L.9), we get that )y (g) has the same dimension as #H4(g) and so the

Lemma follows. O
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REMARK 5. Suppose still that A € Comp, , with a:=|A|. Ifs and t are A-multitableaux
of the initial kind, we may view mg¢ as usual Murphy elements of the Young-Hecke algebra.
Indeed, in this case d(s) and d(t) belong to G, and hence, using the above Lemma, we have

that g4(s) and gay commute with UpEy. In particular, we have that
Mst = 8y6)UrEaxa8act) = UnEAg ) XA 8d (- (3.13)
We have that G is subgroup of G4 compatible with (3.9) in the sense that
Gy = 61(1) X 61(2) X +ee X 6/1(;'], where GA(i] < 605,»- (3.14)
Here G ) is subject to the same abuse of notation as S o,. We then get a corresponding factor-
ization
XA =X X)@ X0 (3.15)

where x;u) = Zwegw) gw- Sinces and t are of the initial kind we get decompositions, corre-

sponding to the decomposition in (3.9)
ds) = (ds™),d?), -, d6™)  and  d®=(de),dt®), - ,dt™)).  (3.16)
But then from we get a decomposition of msy as follows

Mst = UAEAZ) 1)) XA0 8a(t0) 8 1 42) 4@ 8a(t®) " & gy X410 B () (3.17)

= UAEA X500 () X5@ (@ *** Xg(r) ¢(n)
o ‘ ‘ . . .
where X i) '= & (50) 10 8a 1)) Under the isomorphism of the Lemma, we then get via (3.17)
that mg¢ corresponds to
X ® Xy ¢ @+ ® Xy ¢ € Ha(q) (3.18)

where each X,y € Ha,;(q) is a usual Murphy element. This explains the claim made in the

beginning of the Remark.

Our goal is to show that with s and t running over standard multitableaux for multi-
partitions, the mg¢’s form a cellular basis for ;. ,(g). A first property of mgy is given by the

following Lemma.

LEMMA 8. Suppose that A € Comp, ,, and that s and t are A-multitableaux. If i and j
occur in the same component of t then we have that msee;j = ms¢. Otherwise mgee;j =0. A

similar statement holds for e;jmgy.
PROOF. From the definitions we have and Lemma [I[lwe have that

* *
Mmsieij = 8y XA EAULZav) €ij = 84(5)MACId(1)-1,jd(t)~1 8d(B)-

But i and j occur in the same component of t iff id(t) "' and jd ()~ occur in the same block
of Ay and so the first part of the Lemma follows from (4) and (5) of Lemma[Gl The second
part is proved similarly or by applying * to the first part. 0
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LEMMA 9. Let A € Comp,, and lets and t be row standard A-multitableaux. Then for
h € Y., (q) we have that ms¢h is a linear combination of terms of the form ms, wherev is a

row standard A-multitableau. A similar statement holds for hmsgg.

PROOE. Using Lemma [6lwe get that ms¢h is a linear combination of terms of the form
Mg 8w- For each such w we find a y € G, and a distinguished right coset representative d

of G, in &, such that w = yd and ¢(w) = ¢(y) + ¢(d). Hence, via Lemma [6l we get that
Mmgth = q[(y) Mmger8a = q[(y) Mgy

where v = 4 gaq is row standard. This proves the Lemma in the case mg¢h. The case hmgy¢ is
treated similarly or by applying * to the first case.
]

The proof of the next Lemma is inspired by the proof of Proposition 3.18 of Dipper, James
and Mathas’ paper [11], although it should be noted that the basic setup of [11] is different
from ours. Just like in that paper, our proof relies on Murphy’s Theorem 4.18 in [37], which

is a key ingredient for the construction of the standard basis for #,(q).

LEMMA 10. Suppose that A € Comp, , and thats and t are row standard A-multi-tableaux.
Then there are multipartitions p € Par,,;, and standard multitableaux w and v of shape p,
such thatuts, o>t and such that msy¢ is a linear combination of the corresponding elements

mun .

PROOF. Let a be the composition a = (a1,az,...,a;) := |A| with corresponding Young
subgroup G, = G4, x Gy, x -~ x &4, (where some of the factors &4, may be trivial). Then
there exist A-multitableaux sy and ty of the initial kind together with wg, w¢ € &, such
that d(s) = d(sg)ws, d¥) = d(ty) we and €(d(s)) = £(d(sg)) + ¢ (ws) and £(d(¥)) = £(d (%)) +
¢(wy). Thus, ws and wy are distinguished right coset representatives for S, in G,, and using
Lemmal6} together with its left action version obtained via x, we get that mst = g, Msqto §uw, -
Letsg = (5(()1) ,5(()2) yeen ,5(()” )and ty = (t(()l),t((f) Ve ,t(()r)). Then under the isomorphism of Lemmal 7]

we have that msg,¢, corresponds to
Xg ) ® Xg2 (@ ®+* ® Xg(nyn € Halq) (3.19)

as explained in Remark[5l On each of the factors X () () We NOW use Murphy’s result The-
0 0

orem 4.18 of [37] thus concluding that X, (040 is a linear combination of terms of the form
0 "0
x, @, where u’ and v are standard )’ -tableaux on the numbers permuted by &, and
0 "o
satisfying u(()’) Esé’) and n(()” > t(()’). Letting p := (pé”,pg),...,yé”), up = (uél),uém,...,ug)) and

bo = (n(()l),n(()z),...,ng )) and using the isomorphism of Lemma [7] in the other direction we
then get that ms,¢, is a linear combination of terms my,s, where uy and vy are standard
p-multitableaux such that ug > sy and vy > tyg. Hence mg¢ = g;:,s Mg, t, 8w, 1S a linear combi-

nation of terms g, Myyu,8w,- On the other hand, uy and v are of the initial kind, and so
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we get gi‘us Mygo, 8wy = Mugws,bow; SiNCE Ws and wy are distinguished right coset representa-
tives for G4 in &,. This also implies that ugws > sows =5 and vows > tyws = t proving the

Lemma. [l

COROLLARY 2.1. Suppose that A € Comp,.,, and that s and t are row standard A-multi-
tableaux. If h € Y, ,(q), then mg¢h is a linear combination of terms of the form myy, whereu
and v are standard p-multitableaux for some multipartition p € Par,,, andul>s andv>t. A

similar statement holds for hmsgy.

PROOE. This is now immediate from the Lemmas[9 and O

So far our construction of the cellular basis has followed the layout used in [11], with the
appropriate adaptions. But to show that the mg¢’s generate V., (q) we shall deviate from that
path. We turn our attention to the R-subalgebra 7, of V., generated by #1,t,...,t,. By the
faithfulness of V®", it is isomorphic to the subalgebra ¥, « End(V®") considered above. Our
proof that the elements mg¢ generate ), (q) relies on the, maybe surprising, fact that 7, is
compatible with the {ms¢}, in the sense that the elements {mss} where s is a multitableau

corresponding to a one-column multipartition induce a basis for 7.

As already mentioned, we consider our mg¢ as the natural generalization of Murphy’s
standard basis to Y, ,(g). It is interesting to note that Murphy’s standard basis and its gener-

alization have already before manifested 'good’ compatibility properties of the above kind.

Let us first define a one-column r-multipartition to be an element of Par,, of the form
((11),...,(1°7)) and let Par},n be the set of one-column r-multipartitions. Note that there is

an obvious bijection between Par}'n and the set of usual compositions in r parts. We define
1 ._ 1
std},, = {sls € Std(A) for A€ Par},}.
Note that Std}% + has cardinality r"* as follows from the multinomial formula.

LEMMA 11. For alls € Std!

n,r» We have that mgg belongs to Ty.

PROOE. Let s be an element of Std}”. It general, it is useful to think of d(s) € &, as the
row reading of s, that is the element obtained by reading the components of s from left to

right, and the rows of each component from top to bottom.

We show by induction on ¢(d(s)) that mgs belongs to 7,. If ¢(d(s)) = 0 then x3 =1
and so mgs = UpE, that certainly belongs to 7,. Assume that the statement holds for all
multitableaux s’ € Std}” such that ¢(d(s)) < £(d(s)). Choose i such that i occurs in s to the
right of i+1: such an i exists because ¢(d(s)) # 0. Then we can apply the inductive hypothesis

to §s;, that is mgj; s5; € T, But then

Mss = 8ly(s)MA&d(s) = 8iMss;ss; i = 8iMss;ss, (8 +(q—q Ney). (3.20)

But g;mgs; s5; gl._1 certainly belongs to 75, as one sees from relation (L3). Finally, from Lemma

[Bwe get that mgg;, 55, €; = 0, thus proving the Lemma. 0



3. CELLULAR BASIS FOR THE YOKONUMA-HECKE ALGEBRA 33

LEMMA 12. Suppose that A € Comp,. , and lets and t be A-multitableaux. Then for all

k=1,...,n we have that
k k
Mmste =P Fmeg and trmes = P PO mys.

PROOE. From (L3) we have that g, t = t;,-18w for all w € &,,. Then, by Lemma[5[(2) we
have
Mrg e = MAZd(s) Tk = MAZd(s) t = MA tia(e)-1 (s = EPA KO Vs
On the other hand, since s = t*d(s) we have that p; (kd(s)~!) = ps(k) and hence Mgty =
fps(k’mt,xs. Multiplying this equality on the left by g;(t), the proof of the first formula is

completed. The second formula is shown similarly or by applying * to the first. O

Our next Proposition shows that the set {mgs}, where s € Std}l,,, forms a basis for 7, as
promised. We already know that msg € 7, and that the cardinality of Std}l, . is r’* which is the
dimension of 7, but even so the result is not completely obvious, since we are working over

the ground ring R which is not a field.
PROPOSITION 2.1. {mss|s5€ Std}l’r} is an R-basis for Ty.

PROOF. Recall that we showed in the proof of Theorem 2.2] that

Vi iy = Spang(v] @ v -0 0" | L € 2177}
is a faithful 7,,-module for any fixed, but arbitrary, set of lower indices. Let seq,, be the set of
sequences i = (i, i2,...,ip) of numbers 1 < ijsn. Then we have that

V= P v (3.21)

ieseq,

and of course V®" is a faithful 7,-module, too. For s € Std}” and i € seq,, we define

vi=vlevle. ev"ey; (3.22)
where (j1, j2,..- jn) 1= (ps(1), ps(2),... ps(n)). Then {v7|s € Std}l'r,i € seq,,} is an R-basis for

V®". We now claim the following formula in V;:

¢ v ifs=t
Ul Mgg = - (3.23)
- 0 otherwise.

We show it by induction on ¢(d(s)). If £(d(s)) = 0, then s = t* where A is the shape of 5. We
have xj3 =1 and so mgs = my = Uy Ej. We then get (3.23) directly from the definitions of Uy
and E) together with Lemma 2l

Let now ¢(d(s)) # 0 and assume that (3.23) holds for multitableaux s’ such that ¢(d(s’)) <
£(d(s)). We choose j such that j occurs in s to the right of j+ 1. Using we have that
Mg = §jMss;ss; ngl. On the other hand, j and j + 1 occur in different components of s and
so by Definition 2] of the Y, (g)-action in V®" we get that l/; gj?l = vjss]’ , corresponding to
the first case of (Z.2). Hence we get via the inductive hypothesis that

] - -1_ 59 -1_ .85 -1_5s
ViMss = V; §jMss;s5; 8 —Vl-sj Mss;ss; 8 —vl-sjgj =v;
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which shows the first part of (3.23).

If s # t then we essentially argue the same way. We choose j as before and may apply the
inductive hypothesis to ss;. We have that UE Mgg = vi‘gj Mss;ss; ngl and so need to determine
vl? g;j- This is slightly more complicated than in the first case, but using the Definition 2.2] of

the V., (q)-action in V®" we get that l/l.tgj is always an R-linear combination of the vectors

ts

; ts; . . ..
vl.s{ and vl.s’: indeed in the cases s = t of Definition 2.2l we have that Pts; (8) =pe(s). Buts #t
J

ir;lplies that s ; # tsj and so we get by the inductive hypothesis that
uzm55 = yi‘gjmssjssjg,rjf1 =0 (3.24)
and (3.23) is proved.

From (3:23) we now deduce that Y sesd! l/itm55 = vl? for any t and i, and hence
n,r i - -

Y. mgs=1 (3.25)

seStd}, |

since V®" is faithful and the {vi‘} form a basis for V®". We then get that

h=tl= ) hmes= Y PVmg, (3.26)

sestd),, sestd),,

and hence, indeed, the set {msg|s € Std}z,r} generates 7,. On the other hand, the R-independence
of {mgs} follows easily from (3.23), via evaluation on the vectors vl.t. The Theorem is proved.
[l

THEOREM 2.6. The algebra Yy, (q) is a free R-module with basis
Brp = {mst |5, te Std(A) for some multipartition A of n}.

Moreover, (By,,, Par ;) is a cellular basis of Yy, (q) in the sense of Definition[1.1}

PROOFE. From Proposition[Z.1] we have that 1 is an R-linear combination of elements mgg
where s are certain standard multitableaux. Thus, via Corollary [Z.I] we get that B, spans
Yr.n(q). On the other hand, the cardinality of B,,, is r" n! since, for example, B, , is the set of
tableaux for the Ariki-Koike algebra whose dimension is r”n!. But this implies that B;.,, is an
R-basis for );.,(g). Indeed, from Juyumaya’s basis we know that ), ,(g) has rank N := r"n!

and any surjective homomorphism f: RY — R splits since R is a projective R-module.

The multiplicative property that B;.,,, must satisfy in order to be a cellular basis of ), ,,(¢),
can now be shown by repeating the argument of Proposition 3.25 of [11]. For the reader’s

convenience, we sketch the argument.
Let first )7?,1(6]) be the R-submodule of Y, ,,(q) spanned by
{ms¢|s,t € Std(p) for some p € Par,,, and p> A}.

Then one checks using Lemma [I0] that y,%,l is an ideal of Y;,(g). Using Lemma [10] once

again, we get for h € )V, ,(q) the formula

- VA
mgagh = ; remg, mod Y7,



3. CELLULAR BASIS FOR THE YOKONUMA-HECKE ALGEBRA 35

where 7, € R. This is so because t* is a maximal element of Std(A). Multiplying this equation

on the left with g;( 5 We get the formula
mgth=) romse mod Y},
0
and this is the multiplicative property that is required for cellularity. 0

As already explained in [16], the existence of a cellular basis in an algebra A has strong
consequences for the modular representation theory of A. Here we give two application of
our cellular basis B;,;,;. The first one goes in a somewhat different direction, obtaining from

it Lusztig’s idempotent presentation of ), ,(g), used in [30] and [31].

PROPOSITION 2.2. The Yokonuma-Hecke algebra Yr.,,(q) is isomorphic to the associative
R-algebra generated by the elements {g;li = 1,...,n—1} and {fs|s € Std}”} subject to the fol-

lowing relations:

8igi =88 forli—jl>1 (3.27)

8igi+18i = gi+18i&i+1 foralli=1,...,n-2 (3.28)

fs8i=8&ifss; foralls,i (3.29)

g=1+(q-q " Y 8im6)fsg foralli (3.30)

seStd},

Y fs=1 foralls (3.31)
seStd},

fsfs' =855 fs forall 5,5’ € Std},, (3.32)

1

where 64 ¢ is the Kronecker delta function on Std;, ,

and where we set §;;41(8) :=1 if i and
i +1 belong to the same component (column) of s, otherwise 0 j+1(s) := 0. Moreover, we define
fss,— =fs lf5i,i+1(5) =0.

PROOE. Let ), , be the R-algebra defined by the presentation of the Lemma. Then there
is an R-algebra homomorphism ¢ : V., — V;u(q), given by ¢(g;) := g; and ¢@(fs) := mgs.
Indeed, the mss’s are orthogonal idempotents and have sum 1 as we see from ([3.23) and
(3.25) respectively. Moreover, using (3.20), (3.23) and (3.25) we get that the relations (3.29),
(3300, 3:31) and (3:32) hold with mygs replacing f;, and finally the first two relations hold
trivially.

On the other hand, using we get that ¢ is a surjection and since )}, is gener-
ated over R by the set {gy, fslwe S,,5€ Std}”} of cardinality r"n!, we get that ¢ is also an

injection. 0

REMARK 6. The relations given in the proposition are the relations, for type A, of the alge-
bra H,, considered in 31.2 of [30] see also [34]. We would like to draw the attention to the sum
appearing in the quadratic relation (3.30), making it look rather different than the quadratic
relation of Yokonuma's or Juyumaya’s presentation. In 31.2 of [30], it is mentioned that H,, is

closely related to the convolution algebra associated with a Chevalley group and its unipotent
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radical and indeed in 35.3 of [31l, elements of this algebra are found that satisfy the relations
of H,. However, we could not find a Theorem in loc. cit., stating explicitly that Hy, is isomor-
phic to Yr.,(q). (On the other hand, in [22] Jacon and Poulain d’Andecy have recently given a

simple explanation of the isomorphism Hy, = YV, ,(q)).

3.1. Y;, is a direct sum of matrix algebras. The second application of our cellular basis
is to give an explicit isomorphism between the algebra Y, ,(g) and the direct sum of matrix
algebras Matpp (Hu(gq)) mentioned in Subsection 211 This result was first obtained by Lusztig
in [30] using the above presentation of ), ,(gq). Later, Jacon and Poulain d’Andecy gave an
explicit isomorphism using the Juyumaya’s presentation of Y, (g) and certains idempotents
indexed by the set of irreducible characters of 7,. Unlike Jacon and Poulain d’Andecy’s iso-
morphism, our isomorphism can be established over any specialization of Y, ,(g) and it also
preserves the cellular structure of these two algebras. In order to show this isomorphism, we

need to introduce some notation.

Let A= (I3,...,I;) be an r-tuple of subsets of n. We say that A is an ordered r-set parti-
tion of nif and only if I; NIy = @ when i # k and ]_[;=1 I; =n. Let us denote by SP°(n,r) the
set of ordered r-set partitions of n. Note that each A € SP°(n, r) has associated an unique
set partition of n by considering only the non-empty components of A. We denote by {A} the
set partition associated to A e SP°(n, r). For example, if A= ({1,3,6},9,{2,5}, 9, @,{4}), then
{A} ={{1,3,6},{2,5},{4}}

Now, for each A= (13,...,I,) € SP°™(n, r) we can define
r
lUAIZ E{A} l_[ uid:]d (3.33)
d=1

where i, is any element of the component I;,. Finally, to each r-multicomposition, A =
(AD,...,A1) we can associate an ordered r-set partition (I, ..., I;) satisfying |I;] = A\ for
all j =1,...,r where each non-empty component is defined as in (3.2). We denote this or-
its ord
dered r-set partition by A5™".
As an immediate consequence of the definitions and Lemma [I] we get the following

lemma

LEMMA 13. The following hold
(1) Forall Ae SP°(n,r) and1<i<n-1 we have Uagi = 8&iUas,;, where &, acts on A
by permutation on its numbers.
(2) Forall Ae SP°(n,r) we have that U, = mss where s is the unique multitableau in
Stdy, , such that A= Aj’{dd(s).
(3) Theset{Us| A€ SPOId(n, 1)} is a set of orthogonal idempotents elements of Vr, .

PrROOFE. The statement (1) follows from relation (I.3) and Lemma [Il Suppose that s €
Std}” is a multitableau of shape A. Directly from the definitions we have that x =1 and
lUAgArd = EpU,, then

Mss = 8(5)EAUNXA8(s) = 8a(s)U pora 8dis) = 8 (e 8adls)Ua = Ua
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The last equality follows by an inductive argument over the length of d(s) using the multipli-
cation rule of Lemmal6l The statement (3) follows immediate from the definitions. g

We say that A = (Iy,...,I;) has type a € comp,(n) if (|1],...,|I;]) = a. For each a €
comp,(n), we denote by SPOId(n,a) the set of ordered r-set partitions of n of type a. In
particular, we have that

sPmn =[] SP™mnw (3.34)

aecomp, (n)
Taking all these definitions into account we can rewrite the elements, mélt, of the cellular
basis By, as follows
A %
Mgt = 8a(s) [UA;"I XA 8d(t)

DEFINITION 2.6. Forall a = (m,...,n;) € comp,(n) we define

Ug:= Y U
AeSP (n,q)

From Lemma[I3land (3:25) we have that {U, | @ € comp, (n)} is a complete set of central
orthogonal idempotents of Y, ,. As an immediate consequence we have that ), can be
decomposed as a direct sum of two-sided ideals

yr,n = @ Uayr,n (3.35)
aecomp, (n)

Moreover, each R-subalgebra y,ﬂf,l :=Uq Yy, is a cellular R-algebra with cellular basis
By, ={ms¢|s,te Std(A), A is a multipartition of n of type a}

In particular, y;’fn is a free R-algebra of dimension p,n!, where p,, is the multinomial coeffi-

cient associated with «, defined as in (2.17).

From now on, we focus our study on the subalgebras yffn of Y, . For this, it is conve-
nient to introduce some notation. For each a € comp, (n), we denote by Par,,(a) the set of

r-multipartition of n having type a.

LEMMA 14. Let @ € comp,(n) and suppose that A, p € Par,,(a). Ifs is a row-standar
A-multitableau and t is a row-standar p-multitableau, then
lUAzrd xtﬂsoxtotﬂ l.fw5 = Wt

MyagMite = .
otherwise

where sy and ty are the multitableaux of initial kind associated with s and t, respectively.
PROOE. We know that there exists g-multitableaux so and t; of initial kind together with

distinguished right coset representative ws and wy for G, in &, such that s = sows and

t = tywy¢. By expanding the left-hand side of the statement we have

* * * *
Mg Migp = [UAzrd X2 8d(so) 8ws 8wy gd(to)[UA;rd Xp = xﬁgd(so)gWsUA;fd ws [UAfjd w 8w 8d(tg) Xn
(3.36)
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Since the U4 are orthogonal idempotents, the right-hand side of (3.36) is nonzero if and only
if Ai’ d1yg = A;’[ dws. That is, ws and wy belong to the same orbit of §,\&,. But, by con-
struction, both ws and wy are coset representative of minimal length, which implies that

ws = w¢. Now, if ws = w¢ we have that
UA;fd 8ws g;j/t = UA;fd ws8w;! = [UA;’d‘
Finally, using the above and reordering in the last equality of (3.36), we conclude that
Mg Mite = [UAf{d Xergy Lo th

g

Recall that for each u = (u,...,u,) € comp,(n) we have an Young-Hecke algebra #,,
which is spanned by the elements h;’s such that s; € ZNnS,. Then #, is naturally isomorphic
to the tensorial product of Hecke algebras H,;, with i =1,...,r. We note that 7, can also be
seen as the free R-module with basis {h,, | w € G,}. Moreover, from the general theory of

cellular algebra we have that each #, is a cellular algebra with cellular basis

Ca =10 X2 -0 Isi,ti €Std(Ay), Ai € Parg, i=1,...,r} (3.37)

51t 7s2t

where, for each s,te Std(A) and A € P,,, we denote by x5 the Murphy elements of #,,.

We know that each element of the cellular basis of y,”fn can be written in the following

form

A
mﬁt = g2(5)lUAﬁrd x/lgd(t) = g;:)s lUAﬁrd (g;(so)x/\gd(to))gwt = g;;s lUAer xEOtngt (338)

where ty y §¢ are multitableaux of initial kind and ws, wy are distinguished right coset repre-
sentative for S, in &,,.

Finally, we note that the cardinal of the set {ws | s € Std(A), |A| = a} is equal to the
multinomial coefficient p,. We can introduce an arbitrary total orden on {ws} and denote
by Ms¢ the elementary matrix of Mat ) (Ha(g)) which is equal to 1 at the intersection of the
row and column indexed by wg and wy, and 0 otherwise. Then, the decomposition (3.38)

and Lemma [27] implies the following result.

THEOREM 2.7. Let a € comp, (n). We have the following isomorphism of R-algebras

D : y;?fn — Maty, (Hq)

A _ g%
Mgy = Ews [UA;”’Z Xsoto8we Xsoty Ms,t

PROOF. Since ®, maps a (cellular) basis of y,ﬂf,l to a (cellular) basis of Mat, (Hs), it is
clear that @, is an R-linear isomorphism. To complete the proof of the theorem, we need
only show that ®, preserves multiplication. Let A and g be multipartitions of a-type. From
Lemma [27]it follows that for each pair of standard A-multitableaux s and t, and each pair of
standard p-multitableaux a and b, we have

_ g;:}s [EA/1 XsotoXagbo 8wy if Wt = Waq
ab — 0

A B
mﬁtm

if w¢ # wq
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On the other hand, it is well known that Mg ¢ Mg p = 6taMsp Where 6¢q is the Dirac’s delta

function. Therefore, it is immediate that

XsotoXagbyMsp if we=w
A P
a

Finally, we note that the equality @a(m;‘tmg b) = @a(mgt)d)a(mg b) is obtained by expanding
the product Xxgt,Xq,p, i dD,Z(m;‘t yg p) and then by applying directly the R-linearity of ®,.
0

The following result is immediate from the above theorem and decomposition (3.35).
COROLLARY 2.2. The linear map

D= @ Py Vrn— @ Mat, (Hq)

aecomp, (n) aecomp, (n)

is an isomorphism of R-algebras.

4. Jucys-Murphy elements

In this section we show that the Jucys-Murphy elements J; for ), ,(q), introduced by
Chlouveraki and Poulain d’Andecy in [8], are JM-elements in the abstract sense defined by
Mathas, see [36]. This is with respect to the cellular basis for Y, ,(g) obtained in the previous

section.

We first consider the elements J;. of Yy, (q) given by J; =0 and for k> 1

-1
Jies1 = (€k&kk+1) + €k—1,k+18(k-1k+1) + " + €1 k+18(1,k+1) (4.1

where g(; k+1) is §w for w = (i, k+1). These elements are generalizations of the Jucys-Murphy
elements for the Iwahori-Hecke algebra H,(qg), in the sense that we have Ep ];C = En Ly, where
Ly are the Jucys-Murphy elements for H,(gq) defined in [35].

The elements J; of Y, ,(q) that we shall refer to as Jucys-Murphy elements were intro-

duced by Chlouveraki and Poulain d’Andecy in [8] via the recursion
Ji=1 and Ji1=giJigi fori=1,...,n—-1. (4.2)
The relation between J; and J; is given by
Ji=1+(g*-D]J. (4.3)

In fact, in [8] the elements {Jj,..., ]}, as well as the elements {f,..., t,}, are called Jucys-
Murphy elements for the Yokonuma-Hecke algebra.
The following definition appears for the first time in [36]. It formalizes the concept of

Jucys-Murphy elements.
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DEFINITION 2.7. Suppose that the R-algebra A is cellular with antiautomorphism * and
cellular basis C ={as¢ | A € A,s,t€ T(A)}. Suppose moreover that each set T(A) is endowed with
a poset structure with order relation >,. Then we say that a commuting set L={Ly,...,Lp} S
A is a family of JM-elements for A, with respect to the basis C, if it satisfies that L} = L; for all
i and if there exists a set of scalars {c¢(i) | t € T(A), 1 <i < M}, called the contents of A, such
that for all A € A and te T(A) we have that

asiLi = c(()asi+ Y. Tspdsy mod A (4.4
veT(A)
o>t

for some rsy €R.

Our goal is to prove that the set
Ly, =1L1,....Lon | Ly = Jk, Lpsx = e, 1 < k< n} (4.5)

is a family of JM-elements for ), ,(q) in the above sense. Let us start out by stating the

following Lemma.

LEMMA 15. Leti and k be integers such that1<i<nandl<k<n. Then

(1) gi and Jx commuteifi#k—1,k.

(2) Ly,, is a set of commuting elements.

(3) gi commutes with J;Ji+1 and J; + Jit1.

@ giJi=Jingi+(q ' —@eiliv1 and giJiv1 = Jigi+(q—q eiJis1.

PROOE. For the proof of (1) and (2), see [8, Corollaries 1 and 2]. We then prove (3) using
(1) and (2) and induction on i. For i =1 the two statements are trivial. For i > 1 we have that
8iJiJiv1 =8i(8i-1/i-18i-1)(8i8i-1/i-18i-18i) = 8i8i-1/i-18i8i-18iJi-18i-18i
=8i8i-18i)i-18i-18iJi-18i-18i = 8i-1(8i8i-1Ji-18i-181)Ji-18i-18i
=8i-1Ji+1/Ji-18i-18i = (8i-1Ji-18i-1)Ji+18i = JiJi+18i

and
giUi+Jis)=gili+871igi=giJi+(1+(q—-q Neig)ligi

=Jigi+8iJil+(q—q Veig)=Jigi+8iJigr = Ui+Jir1)8i-

Finally, the equalities of (4) are also shown by using (2) and direct computations, as we

show next
gilig ' =giligi+ (@ —q@e)=Ji1+(q  —qgiJiei=Jis1 +(q "~ @eigil;
and
giling; =8 Ji=(+(q—q Neig)]i=Ji+a—q Heigili
Then, both equalities are obtained by multiplying on the right with g; in the above equalities.
O

Let K be an R-algebra as above, such that g € K*. Let t be a A-multitableau and suppose
that the node of t labelled by (x, y, k) is filled in with j. Then we define the quantum content
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of j as the element c¢(j) := g>V~* € K. We furthermore define res¢(j) := y — x and then have
the formula c¢(j) = g®*t/). When t = t*, we write ¢ (j) for c¢(j).

The next Proposition is the main result of this section.

PROPOSITION 2.3. (Vr,un(q),Br,n) is a cellular algebra with family of JM-elements Ly, ,
and contents given by
ce(k) ifk=1,...,n

di(k) :=
t fpt(k) ifk=n+1,...,2n.

PROOF. We have already proved that B, is a cellular basis for )\ ,(g), so we only need
to prove that the elements of £y, verify the conditions of Definition 2.7

For the order relation >, on Std(A) we shall use the dominance order > on multi-
tableaux that was introduced above. By Lemma [I2] the JM-condition (4.4) holds for k =

n+1,...,2n and so we only need to check the cases k=1,...,n.

Let us first consider the case when t is a standard A-multitableau of the initial kind.
Suppose A = (AY,..., A1), t=tV,...,t")) and @ =||A||, with corresponding Young subgroup
Gq =64, x---x B4, and suppose that k belongs to t®W_ Since t is of the initial kind we have

from B.I7) a corresponding decomposition
mae = UpAEAX 000 X)@ @ *** X0 40 (4.6)

where, as before, A and 19 as indices refer to £} and tlm. Hence, by (1) of Lemma [I5lwe get

that
Mg = UrEAX 0 -+ X040 T Xpaeng+n * Xpm g0 =
4.7)
Xm0 0 UnEa(1+ (g% — D) Xpen gaen) = X0 ¢
where we used Lemma [I] to commute Uy Ej past xjmw -+~ Xmew. On the other hand, by

Lemma [8 together with the definition of J ; we have that
UaEaxyo (1L+ (g2 = DJ}) = UrEaxao o (1 +(g° = DLY) (4.8)

where Li = g NGkt + 8k-1k+1) + -+ Eumk+1) 18 the k’th Jucys-Murphy element as in
[35] for the Iwahori-Hecke algebra corresponding to &,,, permuting the numbers {m, m +
1,...,m+a;—1}. Thus under the isomorphism Hg, (q) ® -+ ® Hg,(q) = Va(q) of Lemma [[lwe
have that the I’the factor of ma¢Jx € Ya(q) is xy0 0 (1 + (6/2 - 1)L§C) € Hq,(q) and so we may
further manipulate that element inside Hq, (q).

Now applying [35} Theorem 3.32] we get that x;u o (1 + (q2 - 1)L§C) is equal to

X0 + (g% = Dlres,o )] gxymem + Z Ay X3y t+ Z Ta by Xa; by
UEStd(ﬂ.(l)) ll],b]EStd(/J(l))
o>t (IS 10!
2(res, (p (k) ! (4.9)
=q"" O 0w+ Y, avxyo, + > Tayby Xa; b,
peStd(AD) ap,byeStd(u®)
o D) PO

for some rg,p,, ap € R where the tableaux a;,b; € Std(,u(l)) involve the numbers permuted by

.. m )
Gy, For a1, b1 and v appearing in the sum seta := I ,...,al,...,t’lr ), b0:=0¢D, ... by,...,t7)
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and c¢:= (tlm,...,n,...,tlm). Then ¢ € Std(A) and a,b € Std(u) where p := (/1“),...,,11”),.../1“)).
Moreover, by our definition of the dominance order we have u> A, ¢>t and so mgp € y,%,l.

On the other hand, we have
UAEAX ¢ Xay by " Xy ) = UAE;Lg,’}(al)xwtm Xy X000 40 8d(by) = Mab

and similarly for m¢ and m) . Using Lemmal[Zin the other direction together with res,u (k) =
res¢ (k) we then get
maddy = cK)mae+ Y, acmpc mod yf}n
ceStd(A)
>t

which shows the Proposition for t of the initial kind.

For t a general multitableau, there exists a multitableau ty of the initial kind together
with a distinguished right coset representative w¢ of G4 in &, such that t = towy. Let
Wt = $i, Si, ... S;, be a reduced expression for w¢. Then we have that i; and i; +1 are lo-
cated in different blocks of tys;, e Sipy for all j =1 and that tys;, ceSipy Sij is obtained from
t1s, ... si;_, by interchanging i; and i; + 1. Using Lemma[8land (4) of Lemma [I5]we now get
that

MatJk = Mato §wJk = Mato St Swy-

Since ty is of the initial kind, we get

madJk = MatS g1 8wy = colhwymag + Y avyMav, | Suw
voeStd(A)
o>ty
=ciymag+ ), apmap
veStd(1)
o>t

where we used that the occurring v are all of the initial kind such that my = my, gw, with

vty and ay = ap,. This finishes the proof of the Proposition. ]

In view of the Proposition, we can now apply the general theory developed in [36]. In
particular, we recover the semisimplicity criterion of Chlouveraki and Poulain d’Andecy, [8],
and can even generalize it to the case of ground fields of positive characteristic. We leave the

details to the reader.



CHAPTER 3

Representation theory of the braids and ties algebra

1. Braids and ties algebra

As mentioned above, the specialized Yokonuma-Hecke algebra yfn(q) only exists if r is
a unit in K. The algebra of braids and ties £,(g), introduced by Aicardi and Juyumaya, is an
algebra related to ), ,,(g) that exists for any ground ring. It has a diagram calculus consisting
of braids that may be decorated with socalled ties, which explains its name, see [1]. Here we

only give its definition in terms of generators and relations.

DEFINITION 3.1. Let n be a positive integer. The algebra of braids and ties, £, =E,(q) , is
the associative S := Z|q, q_l] -algebra generated by the elements g1,...,8n-1,€1,--..,€n—1, Subject

to the following relations:

8i8j = 8j8i forli—jl>1 (1.1
giei = eigi forall i (1.2)
8i8j8i = 8j8i&j forli—jl=1 (1.3)
€igj8i = gj8iej forli—jl=1 (1.4)
eiejgj=e;gje; = gjejej  forli—jl=1 (1.5)
eiej=eje; foralli,j (1.6)
giej=e;g; forli—jI>1 (1.7)
el =e; forall i (1.8)

g =1+(q-q Veig foralli. (1.9)

Once again, this differs slightly from the presentation normally used for &,(q), for ex-
ample in [39], where the variable u is used and the quadratic relation takes the form gl? =
1+(u—1)e;(g;+1). And once again, to change between the two presentations one uses u = g°

and
gi=gi+(q ' ~Deigi (1.10)
For any commutative ring X containing the invertible element g, we define the special-
ized algebra X (g) via £X(q) := £,(q) ®s K where K is made into an S-algebra by mapping

geStoqgek.

43
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LEMMA 16. Let K be a commutative ring containing invertible elements r,¢,A as above.
Then there is a homomorphim ¢ = @i : EN (q) — yfn(q) of K-algebras induced by ¢(g;) := gi

and ¢(e;) 1= e;.

PRroOOE. This is immediate from the relations. O

As a consequence of our tensor space module for Y ,(g), we have the following result.

THEOREM 3.1. Suppose that r = n. Then the homomorphism ¢ : EN(q) — YN, (q) intro-

duced in Lemmall8 is an embedding.

In order to prove Theorem[3.Jlwe need to modify the proof of Corollary 4 of [39] to make

it valid for general K. For this we first prove the following Lemma.

LEMMA 17. Let K be an R-algebra as above and let A= (I1,...,13) € SP, be a set partition.
Denote by V4 the K-submodule of V®" spanned by the vectors

”@...@U{l

l

Jk

v{[’@---@vk ®-®U 0<ji<r-1

with decreasing lower indices and satisfying that ji = j; exactly if k and | belong to the same
block I; of A. Let Ex € EX(q) be the element defined the same way as Ex € Yy, (q), that is
via formula (I.1I6). Then for all v € V4 we have that vE4 = v whereas vEg =0 for B € SP,,
satisfying B € A with respect to the order < introduced above.

PROOF. In order to prove the first statement it is enough to show that eg; acts as the
identity on the basis vectors of V4 whenever k and [ belong to the same block of A. But this
follows from the expression for ey; given in (LII) together with the definition (2.2) of the
action of G; on V®" and Lemma (2 Just as in the proof of Theorem 2.2]we use that the action
of G; on v € V} is just permutation of the i’th and i + 1’st factors of v since the lower indices

are decreasing.

In order to show the second statement, we first remark that the condition B € A means
that there exist k and [ belonging to the same block of B, but to different blocks of A. In
other words ey; appears as a factor of the product defining Ep whereas for all basis vectors
of Vy

J1

Ilg...
8@V,

l

Jk

V)@ ®uUfe-eu

we have that ji # j;. Just as above, using that the action of G; is given by place permutation
when the lower indices are decreasing, we deduce from this that V4e;; = 0 and so finally that
VaEg =0, as claimed. O

PROOF OF THEOREM It is enough to show that the composition p* o ¢ is injective
since we know from Theorem 2.2] that p” is faithful. Now recall from Theorem 2 of [39] that
the set {Eagw|A€ SP,, w e &,} generates £,(q) over Clq,q '] (it is even a basis). The proof
of this does not involve any special properties of C and hence {Exgy|A €SPy, w € G} also

generates Ef(q) over K.
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Let us now consider a nonzero element }.,, 4 rw,aEAaGy in 5,’?(6]). Under p’C o it is

mapped to Y., 4 "w,AEAGy, which we must show to be nonzero.

For this we choose A € SP;, satisfying ry,4, # 0 for some w € &,, and minimal with
respect to this under our order < on SP;,. Let v € Vy, \ {0} where Vj,, is defined as in the
previous Lemma [I7] Note that the condition r = n ensures that Vy, # 0, so such a v does

exist. Then the Lemma gives us that

v( Y. rw,aBaGuw) = v()_ ruw,a,Guw). (1.11)
w,A w
The lower indices of v are strictly decreasing and so each G, acts on it by place permutation.

It follows from this that (ILTT) is nonzero, and the Theorem is proved. O

REMARK 7. The above proof did not use the linear independence of {Eagw|A €SPy,
w e Sy} over K. In fact, it gives a new proof of Corollary 4 of [39].

In the special case K = Clq,q~'] and r = n the Theorem is an immediate consequence
of the faithfulness of the tensor product V®" as an E,(q)-module, as proved in Corollary 4

-1
of 139]. Indeed, let pgq'q I En(q) — End(V®") be the homomorphism associated with the

Clg,q7!

P ] together

En(g)-module structure on V®", introduced in [39]. Then the injectivity of p

Clg,q7?
En

One actually checks that the proof of Corollary 4 of [39] remains valid for K =R and r = n, but

with the factorization p I= pClaal °Pciq,q-1) Shows directly that ¢, 41, is injective.
still this is not enough to prove injectivity of ¢ = @i for a general K since extension of scalars

from R to K is not left exact. Note that the specialization argument of [39] fails for general K.

We shall often need the following relations in &, (q), that have already appeared implic-

itly above

Exgw=8wEaw and EqEp = Ec for we 6, A,BESPy, (1.12)

where C € SP, is minimal with respect to A< C,B< C.

2. Decomposition of £, (q)

In this section we obtain central idempotents of £,(g) and a corresponding subalgebra
decomposition of £,(q). This is inspired by I. Marin’s recent paper [32], which in turn is
inspired by [43] and [17].

Recall that for a finite poset (I, <) there is an associated Méebius function yr :I' xT' — Z.

In our set partition case (SP,,<) the Mdebius function psp, is given by the formula

(D" @h+ if Ac B

usp,(A,B) = .
otherwise

2.1

where r and s are the number of blocks of A and B respectively, and where r; is the number

of blocks of B containing exactly i blocks of A.
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We use the Méebius function u = psp, to introduce a set of orthogonal idempotents
elements of £,(q). This is a special case of the general construction given in loc. cit. For
A €SP, the idempotent E4 € £,(q) is given by the formula

Ea:= ) u(A,B)Es. (2.2)
AcB
For example, we have Eqy,i2),3 = Eqny, 21,80 — Einznen — Enn2sn — Ersyien + 2Ejp,2,3y. We

have the following result.

PROPOSITION 3.1. The following properties hold.
(1) {EAlA €SPy} is a set of orthogonal idempotents of £,(q).

(2) Forallwe &, and Ae SP, we haveEag, = gwEaw-
En ifBcA

(3) Forall Ae SP,, we have EpEg =
0 ifBZA.

PROOE. We have already mentioned (1) so let us prove (2). We first note that the order
relation < on SP,, is compatible with the action of &, on SP, that is A € B if and only if
Aw < Bw for all w € &,,. This implies that u(Aw, Bw) = (A, B) for all w € G,,. From this we
get, via (I.12), that

Eaw=8w Y MABEpw=8uw ), WA, Cw YEc =gy Y wAw, O Ec = guwEaw

AcSB AcCw™! AwcsC
showing (2). Finally, we obtain (3) from the orthogonality of the E4’s and the formula Ep =
Y BcaEa which is obtained by inverting (see also [17]). O

We say that a set partition A= {I;,..., I} of nis of type a € Par, if there exists a permu-
tation ¢ such that (|;,,|,...,|I;, |) = a. For example, the set partitions of 3 of type (2,1) are
{{1,2},{3}}, {{1,3},{2}} and {{2,3},{1}}. For short, we write |A| = a if A€ SP,, is of type a. We
also say that a multicomposition A = (AY,...,A) e Comp, , is of type «a if the associated
set partition A, is of type a.

For each a € Par, we define the following element E, of E

Ey = > Ea (2.3)
AeSPy,|Al=a
Then by Proposition 3.1l we have that {Ey|a € Par,} is a set of central orthogonal idempo-

tents of £,(q), which is complete: } gepar, Eo = 1. As an immediate consequence we get the

following decomposition of £, (g) into a direct sum of two-sided ideals

&= P @ (2.4)

acPary

where we define £ (q) := Ex£,(q). Each £5(q) is an S-algebra with identity E,.

Using the {E4gy}-basis for £,(q), together with part (3) of Proposition 3.1l we get that
the set
{Ea8w | we Sy, |Al = a} (2.5)
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is an S-basis for £7(g). In particular, we have that the dimension of £5(g) is b, (a)n!, where
b, (@) is the number of set partitions of n having type @ € Par,. The numbers b, (a) are the
socalled Faa di Bruno coefficients and are given by the following formula

n!

bnl@) = e () 26)

where @ = (K™,..., k") and k; > ... > k;.

3. Cellular basis for &£, (q)

In the paper [39], the representation theory of £,(g) was studied in the generic case,
where a parametrizing set for the irreducible modules was found. On the other hand, the
dimensions of the generically irreducible modules were not determined in that paper. In this
section we show that £,(q) is a cellular algebra by giving a concrete combinatorial construc-
tion of a cellular basis for it. As a bonus we obtain a closed formula for the dimensions of the
cell modules, which in particular gives a formula for the irreducible modules in the generic
case. Although the construction of the cellular basis for £,(g) follows the outline of the con-
struction of the cellular basis B;,;, for Y, ,(gq), the combinatorial details are quite a lot more
involved and, as we shall see, involve a couple of new ideas.

It should be pointed out that Jacon and Poulain d’Andecy have recently obtained a very
elegant classification of the irreducible modules for £,(q) via Clifford theory, see [22]. Their
approach relies on the connection with the Yokonuma-Hecke algebra and therefore does not

work for all fields. Our cellular algebra approach works, at least in principle, for all fields.

Let us explain the ingredients of our cellular basis for £,,(g). The antiautomorphism = is
easy to explain, since one easily checks on the relations for £,(g) that £,(q) is endowed with

an S-linear antiautomorphism x, satisfying e := e; and g := g;. We have that £}, = E4.

Next we explain the poset denoted A in Definition [LT] of cellular algebras. By gen-
eral principles, it should be the parametrizing set for the irreducible modules for £,(g) in
the generic situation, so let us therefore recall this set £, from [39]. £, is the set of pairs
A= (A | p) where A = AW, ..., A1) is an m-multipartition of n. We require that A be in-
creasing by which we mean that 1) < 1) only if i < j where < is any fixed extension of the
usual dominance order on partitions to a total order, and where we set A < 7 if A and 7 are

partitions such that 1| < |7|.

In order to describe the p-ingredient of A we need to introduce some more notation.
The multiplicities of equal A”’s give rise to a composition of m. To be more precise, let
m; be the maximal i such that AV = 1@ = ... = 1@ let m, be the maximal i such that
AmA) = A m+2) = | = AUm+) and so on until m,. Then we have that m = my +...+ mg. We
then require that pu be of the form u = (u,..., u'?) where each u'? is partition of m;. This

is the description of £, as a set, as given in [39]. If a € Par, we use the notation

En(a):={(/'l|p)€[,n|/'lis of type a}. 3.1)
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We now introduce a poset structure on L£,. Suppose that A = (A | u) and A = (A | @) are
elements of £, such that |A| = HZH We first write A1 A if A = AD,...,A0) and A =
(W,...,W) and if there exists a permutation o such that A4 Amo)y (W, ... ,W)
where > is the dominance order on m-multipartitions, introduced above. We then say that
A>Aif A>1 A orif A=A and p> . As usual we set A> A if A>A or if A = A. This is
our description of £, as a poset. Note that if | A # “ZH then A and A are by definition not

comparable.

REMARK 8. We could have introduced an order >’ on L, by replacing ™1’ by > in the
above definition, that is A > N if A>> A or if A = A and put>. Then >’ is a finer order than
™ but in general they are different. The reason why we need to work with ™’ rather than ">’
comes from the straightening procedure of Lemmal23 below.

We could also have introduced an order on L, by replacing '=" with =1’ in the above
definition, where =1’ is defined via a permutation o, similar to what we did for >;: that is
A>ANifA>1 A orif A=1 A and pi>H. On the other hand, since A and A are assumed to be
increasing multipartitions, we get that '=1’ is just usual equality '=" and hence we would get

the same order on L.
Let us give an example to illustrate our order.

EXAMPLE 3. We first note that (3,3,1) > (3,2,2) in the dominance order on partitions, but
both are incomparable with the partition (4,1,1,1). Suppose now that (3,2,2) < (4,1,1,1) <
(3,3,1) in our extension of the dominance order. We then consider the following increasing

multipartitions of 25
A=(2),2),3,2,2),4,1,1,1),3,3,1)) and A=((2),(2),3,2,2),(3,2,2),4,1,1,1)).

Then we have that A and A are increasing multipartitions, but incomparable in the domi-
nance order on multipartitions. On the other hand A1>1 A via the permutation o = sy and

hence we have the following relation in L,
A=A ((2),(1),(1),(1))) > (X| (((12),(2),(1))) =:A.

For A = (A | p) € L, as above, we next define the concept of A-tableaux. Suppose that t
is a pair t = (¢ |u). Then t is called a A-tableau if t = (tIU, ..., ") is a multitableau of 7 in the
usual sense, satisfying Shape(t) = A, and u is a p-multitableau of the initial kind. As usual,
if ¢ is A-tableau we define Shape(t) := A.

Let Tab(A) denote the set of A-tableaux and let Tab,, := Upeg, Tab(A). We then say that
t = (t | uw) € Tab(A) is row standard if its ingredients are row standard multitableaux in the
usual sense.

We say that t = (t | u) € Tab(A) is standard if its ingredients are standard multitableaux
and if moreover t is an increasing multitableau. By increasing we here mean that whenever

A®D = 10) we have that i < j if and only if min(t%¥) < min(t”) where min(#) is the function
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that reads off the minimal entry of the tableau ¢. We define Std(A) to be the set of all standard

A-tableaux.

EXAMPLE 4. For A = (((1,1),(2),(2),(2, D)| ((1),(1,1),(1))) we consider the following A-
tableaux
t :=((,,,) | (,,))
3.2)
o= ) (o ) )

Then by our definition, t) is a standard A-tableau, but t; is not.

REMARK 9. The use of the function min(-) is somewhat arbitrary. In fact we could have

used any injective function with values in a totally ordered set.

For t = (tW,...,t) and T = (tD,..., (™) we define t1>, T if there exists a permutation
o such that t19),... tm9)y > (t(_l), ... ,t(—’”)) in the sense of multitableaux. We then extend the
order on L, to Tab, as follows. Suppose that ¢t = (t| u) € Tab(A) and t=(t|we Tab(A) and
that A> A. Then we say that ti>t if t>; t or if t = t and u>u. As usual we set t>¢ if t >t or

t = t. This finishes our description of A-tableaux as a poset.

From the basis of £,,(g) mentioned above, we have that dimé&,,(q) = b, n! where b, is the
n’th Bell number, that is the number of set partitions on n. Our next Lemma is a first strong
indication of the relationship between our notion of standard tableaux and the representa-
tion theory of £,(q).

Recall the notation d) := [Std(1)| that we introduced for partitions A. In the proof of the

Lemma, and later on, we shall use repeatedly the formula ¥} )cpg;, di =nl
LEMMA 18. With the above notation we have thaty \c., IStd(A) |2 = b, n!.

PROOE. It is enough to prove the formula

Y IStd(A) = bu(a)n! (3.3)
ALy (@)
where b, (a) is the Faa di Bruno coefficient introduced above. Let us first consider the case

a = (k™), that is n = mk. Then we have

1 n
by (m, k) :=by(a) = ﬁ(kk)

with k appearing m times in the multinomial coefficient. Let {A(V,1® ..., A(@} be the fixed
ordered enumeration of all the partitions of k, introduced above. If A = (A | ) € L, («) then

A has the form
mi mp mgq

)L:(r/l(l) e A ;1(2) N A ;1(d)... /1(‘1)‘)
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where the m;’s are non-negative integers with sum m and g = (u®,u®,...,u@) is a multi-

partition of type || p|| = (m1, ma,..., my). The number of increasing multitableaux of shape A

1 n 4 m,
_ d. .’
ml!...md!(k-uk)jl:[l AW

whereas the number of standard tableaux of shape p is H?Zl d,» and so we get

is

1 m n d m;j
|Std(A)|:ﬁ(ml...md)(k...k)jnldw ) 3.4

By first fixing A and then letting each u'” vary over all possibilities we get that the square

sum of the above |Std(A)|’s is the sum of

2 2m; 2
n d d, [ n |1 m ﬁdzmj
keok| 0y mj! Nkek] mi\my-omg i< AD

with the m;’s running over the above mentioned set of numbers. But by the multinomial

formula, this sum is equal to
n V1[4 " 2 V1 nl n
2 _ m_ N B
(kk) ﬁ(jz_ldam) _(k---k) ﬁk! _%(k---k)_b”(a)n!

and (3.3) is proved in this case.

Let us now consider the general case where a = (k{wl,...,kﬁw’), where k; > --- > k. Set
n; =k;M;, M:= M; +...+ M,. Then n=n; +...+ n, and the Faa di Bruno coefficient b, (a) is

given by the formula

by(a) = ( )bm (M, kl)"'bnr(Mr; kr). (3.5)

nl...nr

Let us now consider the square sum Y ¢z, () IStd(A)|?. For A = (A | p) € Ly () we split A into
multipartitions A,...,A,, where A; = (A1, ..., AM)) A, = AM+D | AM+M2)y and so on.

We split p correspondingly into p;’s and set A; := (A; | u;). Then A; € Ly, ((klM")) and we have

IStd(A)] =
n

" i )|Stdm (ADI -+ 1Stdn, (A (3.6)
ity

where Std,, (A;) means standard tableaux of shape A; on nj. Combining (3.3), (3.5) and
we get that

Y IStd(A) = ntby (@)
AeLy(a)

as claimed. O

COROLLARY 3.1. Suppose that A = (A | p) € L, is above with A = (AY, ..., A") and p =
(,u“),...,,u(q)) and set n; := |/1(i)| and m; := |,um|. Then we have that

n n q
( ) [Tdro [1 dy-
=1 j=1

1
|Std(A)|='— en
1" Fm

myl---mg!



3. CELLULAR BASIS FOR &r(q) 51

PROOE. This follows by combining (3.4) and from the proof of the Lemma. O

We fix the following combinatorial notation. Let A = (A | ) = (AV,..., A"y | (u®, ..., u' D)) e

Lu(a). With A we have associated the set of multiplicities {m;};-1,.. 4 of equal A9’ We now
also associate with A the set of multiplicities {k;};=1,. , of equal block sizes [AD]. That is, k;
is the maximal i such that |AV| = |A@| =... = |1, whereas k, is the maximal i such that
AR+l = 2 a+2)) = = 2ka+D| apnd so on. We can also describe the k;’s in terms of the
type of A, that is a: indeed we have a = (a’f’,...,a{q) with a, > a,_1 >...> ay: recall that A is

increasing. Note that my +mp +---+mg = k1 + ko +--- + k; = m and that |,u(f)| =m; for all j.

Let G5 < G, be the stabilizer subgroup of the set partition Ay={l, I,..., I;;} that was
introduced in (3.2). Then the two sets of multiplicities give rise to subgroups Gf\ and G}
of &, where 61’§ consists of the order preserving permutations of the equally sized blocks
of Aj, whereas &' consists of the order preserving permutations of those blocks of A that
correspond to equal AV’s. Clearly we have 6l < 65‘\ < Gax.

We observe that 65‘\ and &' are products of symmetric groups,
G =6y x...xB), GR=Gp x...xCp, 3.7)

and in fact Gf\ is a Coxeter group on generators B; that we explain shortly, and &Y is a

parabolic subgroup of Gf\. Define subsets S}’ < Sf\ of m via
Sf\ ={iem|i#k +...+kjforall j}, S{":={ieml|i#m+...+m; forall j}. (3.8)

Then forie Sf\ the generator B; of & f\ is the minimal length element of &, that interchanges
the two consecutive blocks I; and I;4; of Ay (of equal size). Moreover, B; is also a generator

for &} if and only if i € &Y. Let us describe B; concretely. Letting a := |I;| we can write
Ii={c+1,c+2,...,c+a}and I;;; ={c+a+1,c+a+2,...,c+2a} 3.9
for some c. With this notation we have
Bi=(c+1,c+a+1)(c+2,c+a+2)---(c+a,c+2a). (3.10)

For i > j we set §;j := Sj¢Si—1+¢..- Sj+c and can then write B; in terms of the s;;’s, and there-
fore in terms of simple transpositions s;, as follows
B =$415a+1,2---S2a-1,a- (3.11)

Our next step is to show that the group algebras S&' and S& f\ can be viewed as subalge-
bras of £,(qg). For this purpose and inspired by the formula B.II) for B;, we define B; € £5(g)

as follows
Bi:=Erga18a+1,2---82a-1,a» &ij'= i+c&i-1+c---&j+c (3.12)
where we from now on use the notation

Ep:=Eq,. (3.13)

We can now state our next result.
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LEMMA 19. Suppose that A = (A | p) € Ly (a). Then we have S-algebra embeddings
(1) 1:S6 — &7(q), viaB; —B; forieS}.
) 1:S6k —£%(q), via B;—B; forieSk.

PROOF. It is enough to prove part (2) of the Lemma since &Y' is simply the parabolic
subgroup of 61]§ corresponding to S}'. Now A is of type a and so the presence of the factor
Ea in B; gives via (Z.5) that B; € £5(q). Hence, in order to show the Lemma we need to check

the following three identities
a) BB B; =B BBy for i,i+1eSk.
b) BZ=E, for ieSk. (3.14)
¢) B;B;=B;B; for |i—j|>1 and i,jeSk.

Let us first take a closer look at the expansion B; = s;, s;, -+ §;, according to the defini-

p
tions of B; and s;;. We claim that this expansion is a reduced expression in the s;’s. Indeed,
let i :=(1,2,...,n) € seq,,. Then the right action of B; on i, according to B; = s;, s;, " Sip)
changes at the j'thstep...ip...ip+1...t0...ip+1...ip..., as one easily checks, and from this
we conclude, via the inversion description of the length function on &, that s;, s, " Siy in-
deed is a reduced expression for B;. On the other hand, by the description of B; in (3.10) we
also have that B; = Sip**" Siy Si- By length considerations this must be a reduced expression

for B; as well, and hence via Matsumuto’s Theorem we get that
Bi =Ergi, -~ 8, 8i (.15
since, after all, the g;’s verify the braid relations.

In order to show a) and c), we now first observe, acting once again on the sequence i
above, that the expansions of each side of these identities in terms of s;’s are also reduced
expressions. On the other hand, by Proposition 3.I(2) we can commute E5 to the right of
B; that is B; := g4,18a+1,2 ' 8§2a-1,a EA and so we get a) and ¢) using Matsumuto’s Theorem

directly on the corresponding reduced expressions.
In order to show b) we have to argue a bit differently. It is enough to show that
B = Ergi iy 81y EAZip iy 8 =En (3.16)

since we can use (3.I5) for the second expression for B;. Commuting g;, past E, this be-

comes

Ergiy - 8ipy g?,,[E(AMs,-p 8ip-1 "8 =EAi " 8ipy (1 +(q-q7"gi, eip) Eansi, 8ip-1 7" 8in
3.17)
by Proposition B.I§2). But i; and ip +1 are in different blocks of (A;L)s,-p and so we have
ei, [E(A/I)Sip =E;, [E(Aﬁ)s,-,, = 0 by Proposition B.1}3). Hence (3.17) is equal to

En&i *** 8ip-1 Ean)si, 8ip-1 "+ 8ir- (3.18)
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With the same reasoning we move 8, past Ecay Sip to arrive at

Ergii++ 8ip-2Ean)siysi,_, Sipa " 8ir (3.19)
and so on until
Ean)siysi, sy = EABay =Ea (3.20)
via Proposition 3.1(2). This proves b).

For By an element of 61’§ written in reduced form as By = B; B;, -+ B;, with i; € Sf\, we

define

By :=B;, By, --- By, EEX (. (3.21)
Then by the above, By, € £7(q) is independent of the chosen reduced expression. Since Ex
commutes with L(SGj‘\) and since ((B;) = B; we have that ((By) = B,.

It only remains to show that the induced homomorphism ¢ : 865“\ — £%(q) is an enbed-
ding. But this follows directly from the basis B := {Eagy,} for £5(g) given in (Z35). Indeed,
we have that ((By) = By, = Exg, € B where y € &, is the element obtained by expanding
By = B, Bi, -+ B
By = By, proving the injectivity of 1. g

. completely in terms of s;’s. From this it also follows that «(By) = «(By) iff

REMARK 10. The identity element ofL(SGf\) is Ex whereas the identity element of £ (q) is

Eq, as was seen implicitly in the proof. In particular, . does not preserve identity elements.

Suppose that y € Gﬁ and let y:=s;, ...s;, be areduced expression. Then we define By :=
B;

the chosen reduced expression.

L ---Bj, and By, :=B;, ...B;,. Note that, by the above Lemma, B, € £,(g) is independent of

Recall that for any S-algebra A, the wreath product algebra A! & is defined as the
semidirect product A%/ x & r where & acts on A®f via place permutation. If A is free over
S with basis B then A& is also free over S with basis (b;; ®---® b,-f) ® w where bij € B and
where w € & . There are canonical algebra embeddings i 4 f : A%l — W& rand jur:S6F—

AU1G r whose images generate A1 G r, subject to the following relations
Jar)igpbiy®--®bi)=isp(bi, , ®®bi )jarw). (3.22)

Recall G5 < G, the stabilzer subgroup of the set partition Ay. With the above notation we
have an isomorphism
SGA =564 16, 0056, 16,. (3.23)

We are interested in the following deformation of SG,
HY(@) =Ha, (@G, ® ®Hqa, ()15, . (3.24)
Recall that we have S&K = Sy, ®---® S&y, by B2). Let
j:S6k =56, @ ® 56, — HL (g) (3.25)
be the embedding induced by the JHa ki ’s and let

i Mo (PR @ @ Ha, ()% — HYT () (3.26)
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be the embedding induced by the i6aivki ’s.
Now Ha, ()% ® ---® H,, (q)®Fr is canonically isomorphic to the Young-Hecke algebra
Haor(q). Moreover, the multiplication map g, *** 8w,, — EA&w, *** §w,, induces an embed-

ding of Hgaor(g) in £5(q). Combining, and using the basis (2.6), we get an embedding
€ MHa (@)°F - @M, ()% — EX(g). (3.27)
With these preparations we can now extend Lemma [I9to %2 (q) as follows.
LEMMA 20. There is a unique embedding
VIHY(g) — EX () (3.28)

such thate: Mg, (6])®k1 ®:-- ®Har(q)®kr — E5(q) factorizes ase =voi and such that: 565“\ —

EX(q) from the previous Lemma factorizes asi=vo j.
PROOE. Let€; : Hg, (q)®k" — &%(g) be the composition of the canonical embedding
Ha (@ = Hay (@ @ 0 Ha ()% @ @ Mg, (@)
with € and let 1; : S&, — £ (q) be the composition of the canonical embedding
S&i, — SG}, ®--- 8 SG), ®---® S&, = SG&K — HY (¢)

with ¢. The existence and uniqueness of v follows from the universal property of the wreath
product. In other words, by (3.22) we must check that

ti(w)ei(gy, ®---® gyk,-) = ei(g},luf1 ®-® gyk_wfl)L,‘(w) (3.29)
where w € S, and the g);’s belong to H4,(q). By the definitions, this becomes the following
equality in £3(q)

ngm e g)’ki =8yp-1"" 'gykl_wq B (3.30)

where the g);’s belong to the distinct Hecke algebras given by the k; distinct Hecke algebra

factors of €;(H 4, (g)®%i) and similarly for the 87,1 ’s.

To verify this we may assume i =1 and r = 1. Let k; := k and a; := a. Assume that
8y, = 8s with s€ {1,...,ka} and a{ s and let B,, = B; where 1 < j < k. Then (3.30) reduces to
proving
a)Bigs=gs+aB; ifse{(j-Da+1,(j-Da+2,...,ja-1}
b)Bjgs=gs-aB; ifse{ja+1,j+2,...,ja+ta-1} (3.31)
c)Bjgs = gsB; otherwise.

Let us assume that j = 1, the other cases are treated similarly. Then in the notation of (3.10)

we have that ¢ =0 and by @12) g;; := gigi-1--- & and

B; :=Earga,18a+1,2 " 82a-1,a-
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We then have to prove

al) ga18a+1,2" " 82a-1,a8s = 8s+a8a18a+1,2 " &a-1,a forsei{l,2,...,a-1}
b1) 8a18a+1,2""*82a-1,a8s = 8s-a8a,18a+1,2" " 82a-1,a forse{a+1,a+2,...,2a-1}

cl) 8a18a+1,2" " 82a-1,a8s = &s8a,18a+1,2 " §2a-1,a otherwise.
(3.32)

But using only braid relations one checks that g, »8s = gs-184,p if s€ {b+1,..., a}, which gives

b1). On the other hand, as mentioned above we have that

N
(8a18a+1,2 " 82a-1,a) = 8a18a+1,2" " &2a-1,a

(actually this can also be shown directly using only the commuting braid relations) and hence

the al) case follows by applying * to the b1) case. The remaining case cl) is easy.

Now the general gy-case of (3.30) follows from a), b) and c) by expanding g, = g, **- &5,
in terms of simple g,’s and pulling B; through all factors. Finally the general B,,-case is ob-

tained the same way by expanding B,, = B;, ---B;, and pulling all factors through.

To show that v is an embedding we argue as in the previous Lemma. Indeed, by con-
struction, the images under v of of the canonical basis vectors of H*"(q) belong to the basis

B for £7(q) and are pairwise distinct, proving that v is an embedding. 0

We are now finally ready to give the construction of the cellular basis for £5(g). As in
the Yokonuma-Hecke algebra case, we first construct, for each A € £,(a), an element my
that acts as the starting point of the basis. Suppose that A = (A | p) is as above with A =
AW, ... Ay and o= (,u(l), .. ,,u(q)). We then define m, as follows

mp :=Erxpby. (3.33)

Let us explain the factors of the product. Firstly, E, is the idempotent defined in 3.I3). Sec-
ondly, x3 € £5(q) is an analogue for £7(q) of the element x; for the Hecke algebra, or the

element m, in the Yokonuma-Hecke algebra case. It is given as

0=k Y 4" Ygu. (3.34)
weGA

Mimicking the argument in (6) of Lemma [5]we get that
XA8w=8wxa=q"Wx, forweS,. (3.35)
Finally, in order to explain the factor by, we recall from 3.7) the decomposition

G =Gy x--xGp, (3.36)

where m; = |u?|. Let xu (1) be the g =1 specialization of the Murphy element corresponding

to the multipartition g, it may be viewed as an element of S&. Then by, is defined as
bp = 1(xp(1) € &5 (q) (3.37)

where 1: SG}' — £/(g) is the embedding from Lemma[T9 Let t" be the A-tableau given in
the obvious way as A= (t)L | t*). Then tA is a maximal A-tableau, that is the only standard
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A-tableau t satisfying ¢ > t" is t" itself. For s = (5| u) a A-tableau we define d(s) := (d(s) |
1(d(w))) where d(s) € &, as usual is given by t*d(s) = s and d(u) € &' by t'd(u) = u. For
simplicity, we often write (d(s)| d(u)) for (d(s) | «(d(u))). Note that since u = (uy,...,u,) is
always of the initial kind, we have a decomposition d(u) = (d(u1),...,d(ug4)), according to
(336D, and also
Baw = Baq) - Bac,-
Finally, we define the main object of this section. For s = (s | u), t = (t| v) row standard A-
tableaux we define
Mgt = gg(s)[EA[Hifi(u)x,lbﬂ[Bd(v) 8dw- (3.38)
Our aim is to prove that the mgg’s, with $ and t running over standard A-tableaux, form
a cellular basis for £7(g). To achieve this goal we first need to work out commutation rules
between the various ingredients of mg. The rules shall be formulated in terms of a certain

o-action on tableaux that we explain now.

LetBy € Gf\. From now on, when confusion should not be possible, we shall writesy for
5By wheres is the first part of a A-tableau and where the action of By is given by the complete
expansion of By in terms of s; .

Let 3 = (s | u) be a A-tableau. We then define a new multitableau yos as follows. Set first
s1:=6y = (55”,...,55’”)). Then yos is given by the formula

yos:=(s,..., 5", (3.39)

With this notation we have the following Lemma which is easy to verify.
LEMMA 21. The map (y,8) — yos defines a left action ofo\ on the set of multitableaux
s such that Shape(s) =1 A where A is the first part of a A-tableau; that is Shape(s) and A are

equal multipartitions up to a permutation. Moreover, if s is of the initial kind then also yos is

of the initial kind, and if y € G{' then yos =s.

EXAMPLE 5. We give an example to illustrate the action. As can be seen, it permutes the

partitions of the multitableau, but keeps the numbers. Consider

. 7[a P
5= ! ! Eﬂ r! an By'_ BIBZBIB4BS-
15

We first note thatsy‘1 =1 [5]6], , , 1(1) 12‘, , . Then we have
— 9]

1] [3] 10(12
yoﬁ:(,;;l; 11 |’ .

Let s and t be A-multitableaux. Then we define xs¢ € £5(qg), just as for the Yokonuma-
Hecke algebra, that is
Xst 1= &) X28d(t) € Ep (). (3.40)

The following remark is an analogue of Remark[5]for the Yokonuma-Hecke algebra.
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REMARK 11. Lets and t be multitableaux of the initial kind and let
ds) = (ds™),ds?), -, d6™)  and  aw =(d),dw®), -, ™)
be the decompositions given in (3.16). Then, under the embedding from (3.20) of the Young-
Hecke algebra
€:Ha(q) — E4(q)

we have that €(X 0 (1) ® Xy 42 @+ ® Xy0m m) = Xgt.
The next Lemma gives the promised commutation formulas.

LEMMA 22. Suppose s = (s |u) and t = (t|v) are A-tableaux such that s and t are of the
initial kind and suppose that By € 65\. Then we have the following formulas in £¥(q).

(1) EABy&as) = Engd(yos)By-
(2) [EA[Bstt = EAXyos,yotlBy.

PROOF. In order to prove (1) we may assume that By, = B;, since y — yos is a left ac-
tion. Now s = (sY,...,50™) is of the initial kind and so we have a decomposition gy =
8a(sv) " 8d(sm) With the g, w,’s belonging to Hecke algebras running over the distinct in-

dices given by the symmetric group factors Sy, of & f\ Then by (3.31) we have that

EAB;i8a(s) = EaBi 845y~ 8a(stmy = EA8aw) " a(etm)Bi

where d(s%) = d@®) for k #i,i +1 and where d(s?), dc D), d(s*D), d(tD) are related as
in (331): each factor g of ds?) is replaced by g4, to arrive at dx*Dy and similarly for
ds") and d(x?). But this means exactly that

8d(Bjos) = 8axW) """ dxm)

and so (1) follows.

On the other hand, applying  to (1) and using that B}, = B,-1, we find [EA[Bng;( Jos) =
[EAgZ(s)[By—l, that is

EABy8 ) = [EAgZ(yw)[By-
(Alternatively, one can also repeat the argument for (1)). Now (3.30) can be formulated as
follows
[EA[Bygk ZEAng;l[By (3.41)

and hence we get ExB,x3 = EpxuBy, where u = Shape(yo t1). In view of the definitions this

shows (2). [l

*

COROLLARY 3.2. The factor xj of mgy commutes with each of the factors B

by and
By of mgs. Furthermore,

Mgy = M. (3.42)
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PROOF. Setting s = t = t" in part (2) of the Lemma we get for By € &} that
EaByxa = [EAxyot/l'yot/l[By =ErxaBy (3.43)

since t! is of the initial kind and therefore yo t* = t* by Lemma This shows the first
claim. To show the second claim, we use the first claim together with ExBy, = B,EA for all

Ve Gﬁ, as follows from Proposition[3.I(1) and the definition of B;, to get

Mgt = 806 Baw PuXaBawEA 8aes) = 80 EAB ) XA buBaw 8aes) = Mis
as claimed. O

We need the following technical Lemma.

LEMMA 23. Suppose that A = (A | p) such that s is a A-multitableau. Let wg be the dis-
tinguished representative for d(s) with respect to S5, that is we have the decomposition
d(s) = d(so) ws, as in 23). Let By € Gj‘\. Then, in £}/ (q) we have the identity B, g, = EAgB,ws
(even though in general l(Byws) # 1(By) + [(ws)). Moreover, for any multitableau to of the
initial kind with respect to A, we have that Er8ato)Byws = Er8aito) By guws-

PrOOF. The ingredients of the proof are already present in the proof of part b) of Lemma
As before we set Ay = {1, Iz,...,I4}, with blocks I;. Let By = s;,...s;, be the expansion
of By according to the definitions and let ws = sj, ... s;; be a reduced expression. The action
of By involves at each step distinct blocks, that is i; and i; + 1 occur in distinct blocks of
(AA)siy ... s;,_, for all k. A similar property holds for ws since it is the distinguished coset
representative for d(s) with respect to G . But the blocks of (A3) By, are a permutation of the
blocks of Ay, thatis (A3)By = Ay as set partitions, and so also the action of the concatenation
Siy ... 8i, Sj; ... §j, on Ay involves at each step distinct blocks.

We now transform s;, ... s;, Sj, ... sj; into a reduced expression for By ws using the Coxeter
relations of type A. We claim that these Coxeter relations map a sequence s, ... s,, having the
property of acting at each step in distinct blocks to another sequence having the same prop-
erty. This is clear for the commuting Coxeter relations s;s; = s;s; and also for the quadratic
relations sl? = 1. In the case of the braid relations s;s;,15; = S;j+15;Si+1 we observe that both
sisi+18; and s;+18;si+1 have the above property with respect to A = {J,..., J,} exactly when
all three numbers i,i +1 and i + 2 occur in three distinct blocks J; of A and so the claim
follows also in that case.

Now by definition By gy, = Eagi, ---&i, &, ---§j, and so the above sequence of Coxteter
relations will transform By gy, to [EAgBy we- Indeed, for each occurence of the relation sl? =1

we have by part (3) of Proposition[3.Jla corresponding relation
Eagi =Ea(l+(q—q eig) =Ea (3.44)

whenever i and i+1 are in distinct blocks of A. This proves the first statement of the Lemma.
The second statement follows from the first since By ws is the distinguished representative
for its class with respect to 6” a|| as follows from the characterization of distinguished rep-

resentatives as row standard tableaux, of shape f§ = ||}L||0p in this case. Indeed, tﬁBy Ws is
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obtained from t# ws by permuting some rows and so one is row standard iff the other is row
standard. 0

The following Lemma is the £7(g)-version of Lemma [ in the Yokonuma-Hecke algebra

case.

LEMMA 24. Suppose that A € L,(a) and that s = (s |u) and t = (t|v) are row standard
A-tableaux. Then for every h € £3(q) we have that mgsh is a linear combination of terms of

the form mgy where v is a row standard A-tableau. A similar statement holds for hmgg.

PROOF. The idea is to repeat the arguments of Lemma [0 It is enough to consider the

mgg h case. Using the Corollary we have that

Mt = 816)EAB 3y X2 buBaw) 8at) = 816) By PuBaw XAEA 8a(o - (3.45)
Since h is general we reduce to the case g = 1, that is t = t*. We may assume that h=FEg,
since such elements form a basis for £7(g). But the E,4’s are orthogonal idempotents, as
was shown in Proposition B.I] and so we may further reduce to the case i = g,. We have

a decomposition v = vyd(v) with vyp € & and v a row standard A-multitableau such that

I(w) = l(vy) + 1(d(v)). Hence via (3.30) we get that mgg g, is a multiple of
8as)Baw LuBawmEAXA8awm) = 846 B awEbpXaBaw 8aw) = Msy (3.46)
where v = (0| V). O

Our next Lemma is the analogue for £5(q) of Lemma It is the key Lemma for our

results on &7 (g).

LEMMA 25. Suppose that A € L,,(a) and that s and t are row standard A-tableaux. Then
there are standard tableaux u and v such that u> s,v >t and such that mgt is a linear

combination of the elements myy .
PROOF. Let A= (A | p), $=(s|u) and t = (£|v). Then we have

Mst = 8a(6)EAB G bpXaBaw) 8aco- (3.47)

Suppose first that standardness fails for s or t. The basic idea is then to proceed as in the
proof of Lemma [I0l There exist multitableaux s¢ and t, of the initial kind together with
ws, w¢ € &, such that d(s) = d(sg)ws, d(t) = dfo)w¢ and £(d(s)) = £(d(sg)) + £(ws) and
(1) = €(d(tp)) + £(wy). That is, ws and wy are distinguished right coset representatives for
d(s) and d(t) with respect to S| and (.47) becomes

Mt = 8w 8aso) EAB ) A DuBaw) 8d(to) §w (3.48)

since the two middle terms commute. Note that the factor Ex commutes with all other except
the two extremal factors of 3.48). Expanding b, B, completely as a linear combination of
By,'s with By, € &' and setting B, := B, we get via Lemma 2I] and Lemma 22] that (3.48)

is a linear combination of terms

gfu; [B;s Yo to By §uw, = gfu; Xsoto By 8w, (3.49)
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where B, = B)_By,. For each appearing By € &' we have by Lemma 23] that

ErgB, 8wi =EAEB,w;-

Thus (3.49) becomes a linear combination of terms

g;kus[EAxﬁofogJ’m (3.50)

where yt1 := Byw¢. We now proceed as in the Yokonuma-Hecke algebra case. Via Remark
[T we apply Murphy’s result [37, Theorem 4.18] on xs,¢,, thus rewriting it as a linear com-
bination of xs,¢, where s; and t; are standard v-multitableaux of the initial kind, satisfying

51 >58¢ and t; > £5. We then get that (3.49) is a linear combination of such terms

g EAXs t; 8ye: - (3.51)

Let v= (v, ..., v'). It need not be an increasing multipartition and our task is to fix this
problem.
We determine a By € Gf\ such that the multipartition v°'¢ := (v(D7 ... v"™%) is increas-

ing. Then, using (2) of Lemma 22]we get that (3.51) is equal to

* * * * *
Sws ByBoXs, t, 8ye1 = 8w, By Xoos),00t, [BUgJ/t,l = 8ys2X0081,00t1 8yt (3.52)

where ys2 := Byws and y¢2 := By yt,1, and where we used Lemma [23] once again. Here
d d . . . .

" y50 and £ yy 5 are standard v°"¢-multitableaux but not necessarily increasing, and so
we must now fix this problem. Let therefore S™ be the subgroup of Gf\ that permutes equal
. d d . .
v’s. We can then find 01,05 € 6["\"/ such that " B, ys,2 and I By, yt,2 are increasing

v974_tableaux. With these choices, (3.52) becomes via Lemma 23]

87ss Xoos1,00t, Boy By, 8y (3.53)

where ys3 := By, Vs,2 and y¢3 := By, y¢2, and where we used (2) of Lemma [22] to show that
oo%1 and oot; are unchanged by the commutation with B,,. We now set s3 := t"mdd (oo
51) ¥s,3 Where d(oos)) is calculated with respect to Shape(oos;) = t"or%f course, and similarly
t3:= " (0 ot))ye3. Then s3 and t3 are increasing standard multitableaux of shape yord

and we get via Lemma [23] that (3.53) is equal to

8 (s5) Xvord Bo By, ats) (3.54)
since g4(oot;) and B, By, commute by Lemma 221

In order to show that (3.47) has the form my stipulated by the Lemma, we must now
treat the factor By, B,,. But since 6™ is a product of symmetric groups, By, B, can be
written as a linear combination of Xy (1), with u’ and v’ running over multitableaux of the
initial kind according to the factors of 6™ and where once again x,y (1) is the usual Murphy

standard basis element, evaluated at 1, for that product. Thus (3.54) becomes

8.(s5) Bur buXyoraBy 8at;) = Muy (3.55)

where u = (s3 | u) and v = (t3 | v/). Note that by the constructions we have that the shape of

s3 and t3 is of type a and that ul> s, v> ¢ and so the Lemma is proved in this case.
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Finally, we must now treat the case where standardness holds for s and t, but fails for

u or v. But this case is much easier, since we can here apply Murphy’s theory directly, thus
expanding the nonstandard terms in terms of standard terms.

O

We are now ready to state and prove the main Theorem of this section.

THEOREM 3.2. Let BTy 1= {mgy |8,t € Std(A), A € L} and BT,¥ := {msq |3, € Std(A),A €
Ln(@)} for a € Par,. Then BT is a cellular basis for £,(q) and BT,® is a cellular basis for
EXq).

PROOE. By the decomposition in (24) it is enough to show that B7,* is a cellular basis
for £5(g). Let Ex be the idempotent corresponding to any element of A € £, (a): in fact E4 is
independent of the choice of A € £, (). Then the set {g,,Fx g, |w, w' € S,} generates £%(q)
over S. Thus letting A = (A | p) € L, () vary over pairs of one-column multipartitions with A
of type a and letting s, t vary over row standard A-tableaux, we get that the corresponding
msg, generate £ (q) over S. Indeed, for such A we have that A is a one-column multipartition
and therefore t* w is row standard for any w. Moreover, for such A the row stabilizer of p is
trivial and therefore by, is just the identity element of G}'. In other words, any g;,,Er g, can
be realized in the form mgy for A-tableaux $ and t.

But then, using the last two Lemmas, we deduce that the elements from B7,* generate
EX(g) over S. On the other hand, by the proof of Lemma [I8] these elements have cardinality
equal to dim&(g), and so they indeed form a basis for £/ (g), as can be seen by repeating
the argument of Theorem

The *-condition for cellularity has already been checked above in (3.42). Finally, to show
the multiplication condition for B7,¥ to be cellular, we can repeat the argument from the
Yokonuma-Hecke algebra case. Indeed, to A = (A | p) € £,(a@) we have associated the A-
tableau t" and have noticed that the only standard A-tableau t satisfying t > t* is t* itself.

The Theorem follows from this just like in the Yokonuma-Hecke algebra case. g

COROLLARY 3.3. The dimension of the cell module C(\) associated with A € L,, is given
by the formula of Corollary[3.1

COROLLARY 3.4. Let a be a partition of n. Recall the set L, (a) introduced in the proof of
Lemmall8 Then BT,® := {mgg |$,t € Std(A), A € L, (@)} is a cellular basis for 7 (q).

Unlike &, the group & f\ has so far not played any important role in the article, but now

it enters the game. We need the following definition.

DEFINITION 3.2. Let A€ Ly(a) for « € Par, and let s = (s | u) be a A-tableau. Then we
say that s (and $) is of wreath type for A if s = sy for some By € 65‘\ where sy a multitableau

of the initial kind. Moreover we define

BT,P%" = {mgt |, t € Std(A) of wreath type for A € L(a)}.
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The next Corollary should be compared with the results of Geetha and Goodman, [15],
who show that A1, is a cellular algebra whenever A is a cyclic cellular algebra; by definition

this means that all cell modules all cyclic.

COROLLARY 3.5. We have that BT,;’"" is a cellular basis for the subalgebra H"(q) of
EX(q), given by Lemmal20

PROOE. Let us first check that BT,"%" < H¥"(q). This is an argument similar to the one
used in the beginning of Lemma 25l Supposing s = (s|u) and ¢ = (t|v) are of wreath type we

may use Lemma [23] to write

Mst = 85 EAB g buXaBaw 8ac
872 811(sy) EAB ) u XA Baw) Sato) 8yt (3.56)
= [BJ’g g2(50)[EA[EBZ(u) bﬂxﬂ[Bd(V)gd(fo)[BJ’t

where By,, By, belong to Gﬁ and so, to are multitableaux of the initial kind. Expanding by
out as a linear combination of B,’s with B, € & KZ this becomes via Lemma 2ZIland Lemma 22

a linear combination of

[Bysg;(go)[EA[BZ(U)[EBJ/XA[Bd(V)gd(to)[EByt = [BJ’5[B}’1 [EAx50t0[By2 [BJ/t (357)

where By,, By, € 8. Since so and to are of the initial kind we now get from Lemma [20] that

(357, and hence also mgt, belongs to HY'"(g), as claimed.

Next it follows from Geetha and Goodman’s results in [15], or via a direct counting argu-
ment, that the cardinality of B7,""is equal to the dimension of #¥"(g). On the other hand,
one easily checks that Lemma [24] holds for B7,""" with respect to h € H"(q). Moreover,
applying the straightening procedure of Lemma [25] on mg¢ for s,t tableaux of wreath type,
the result is a linear combination of m, where u, v are standard tableaux and still of wreath

type. Thus the proof of Theorem [B.2] also gives a proof of the Corollary. g

REMARK 12. Recall that we have a = (af’,...,a{cl) € Par, with 65‘\ = Gy, x -+ x Gy, .
From Geetha and Goodman's cellular basis for H"(q) one may have expected BT, to
be slightly different, namely given by pairs (s | w) such that s is a multitableau of the ini-
tial kind whereas u is an r-tuple of multitableaux on the numbers {a;k;}. For example for
A={(1,D,2,2,20D)] ((1),(1,1),(1))) we would have expected tableaux of the following

form
t:z((”’)‘((’)’()) (3.58)

where the shapes of the multitableaux occurring in u are given by the equally shaped tableaux
of s. On the other hand, there is an obvious bijection between our standard tableaux of wreath
type and the standard tableaux appearing in Geetha and Goodman's basis and so the cardi-

nality of our basis is correct, which is enough for the above argument to work.
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4. £,(q) is a direct sum of matrix algebras

In this section we use the cellular basis for £5(q) to show that £,(q) is isomorphic to a
direct sum of matrix algebras in the spirit of Lusztig and Jacon-Poulain d’Andecy’s result for
the Yokonuma-Hecke algebra.

Suppose that A = (A | p) € L,(a) and that $ = (s | u) is a standard A-tableau. Recall
the decomposition d(s) = d(sp) ws such that s¢ is a multitableau of the initial kind and such
that £(d(s)) = ¢(d(sp)) + ¢(ws). We remark that if 0 € G, permutes the numbers inside the
components of § then ws = wss. Indeed, for such o we have that d(so) = o¢d(s) where
00 € G, is an element permuting the numbers inside the components of ¢!, that is t'og
is of the initial kind. But then d(so) = (0¢d(sp)) ws is the decomposition of d(so) and so
Ws = Wsg, as claimed.

We now explain a small variation of this decomposition. Since s is increasing we have
that i < j if and only if min(s?) < min(s'”)) whenever A® = 1), We now choose By e Gﬁ
such that s := tAByd(s) is increasing in the stronger sense that i < j iff minG"?) < minGE")
whenever |1 =|1")|. Clearly such a B, exists and is unique. We then consider the decom-

position d(s) = d(so) w;. Since d(s) = B,d(s) we have
da(s) =d(s1)zs (4.1)

where zs := wgz and where §; := tAB;ld(Eo) =§oBJ71 is a tableau of wreath type. This gives us
the promised decomposition of d(s). The numbers within the components of t}z4 are just
the numbers within the components of § and so t*z is an increasing multitableau in the

strong sense defined above.

LEMMA 26. With the above notation we have the following properties.

(1) The decomposition in is unique subject to s, being of wreath type and !z,

being increasing in the strong sense.
(2) The zs's appearing in are representatives for distinct coset classes of GA\G,,

where G is the stabilizer group of the set partition Ay, as introduced above.

PROOF. Recall that & is a product of groups (S, x --- x Sg;) x Sk,. Let us prove (2).
Supposing that zs and z¢ belong to the same G4 -coset, we have that zs = 09Bz¢ where the
components of gy belong to the G4, x --- x §4,’s and the components of B belong to the
Sy, ’s, according to the above description of G5. Now both t'zs and t1z; are increasing
multitableaux in the strong sense which implies that B = 1. Hence t*z and t*z; are equal
up to a permutation of the numbers inside their components and so, by the remark prior
to the Lemma, we must have zg; = z¢. This proves part (2) of the Lemma. The uniqueness

statement of (1) is shown by a similar argument. O
For any A-tableau s = (s | u) we define the A-tableau $; via

$1 = (51 |w). (4.2)
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LEMMA 27. Suppose that A = (A | ), A= (X |} € Ly(a), that s = (s | w) is a standard
A-tableau and that t = (£ | v) is a standard N\ -tableau. Then we have that
n’lu«;ASl mtltx lthg = 3t

0 otherwise.

MyagM x = (4.3)
PROOE Both A and A are of type a and so E = Ex. In the decomposition d(s) = d(s1)zs
from (4.I) we have in general that I[(d(s)) # [(d(s1)) + l(zs), but even so mgag = Mmgag 8z, by

Lemma 23] Similarly we have that m z, = mx ¢, 8zt Hence we get via Proposition [3.] that

t

MeAgMy K = Myhg, 8268z, Mey ¢ = Myng, EAgzs 82, Eamyg g 4.4)
= Ming, 825 Ear)2s E(an)2 82 Mg, g1

We now apply the previous Lemma to deduce that E(a,)., Ea,)z = 0 if zs # z¢ and hence also
Merg M x = 0 if zs # z¢, thus showing the second part of the Lemma. Finally, if zs = z¢ we
have that

82sEAn)2EAn)2 82 = EA82s 82, En =En 4.5)
as can be seen, once again, by expanding zs out in terms of simple transpositions and noting
that the action at each step involves different blocks. The first part of the Lemma now follows

by combining (4.4) and (4.5). O

Recall that for any algebra .4 we denote by Maty(A) the algebra of N x N-matrices with

entries in A.

The cardinality of {zs} is b, (a), the Faa di Bruno coefficient. We introduce an arbitrary
total order on {zs} and denote by Ms¢ the elementary matrix of Maty,,(q) (7—[;’ r(q)) which is
equal to 1 at the intersection of the row and column indexed by zs and z¢, and 0 otherwise.

We can now prove our promised isomorphism Theorem.
THEOREM 3.3. Let a be a partition of n. The S-linear map ¥, given by
EX(q) — Matp, (q) (HE" (@), mst — mg,t, Mst
is an isomorphism of S-algebras. A similar statement holds for the specialized algebra over K.

PROOE. Note first that by Corollary[3.5lwe have that mg, 1, € H¥" (q). Furthermore, by the
uniqueness statement of the previous Lemma we have that ¥, maps an S-basis to an S-basis
and so we only need to show that it is a homomorphism, preserving the multiplications on
both sides.

For this suppose that A A€ L,(a). Given a pair of standard A-tableaux s = (s | w;), t =
(t | up) and a pair of standard ‘A-tableaux u = (u | v1), v = (v | vo) we have by the previous

Lemma that
Mgt Muyv  if 2= 2y
Mgt Muvy = .
0 otherwise

(4.6)
g;s (m$1¢1 mulvl)gzb if Zt=2y

0 otherwise.
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Expanding myg, ¢, Mu, v, € Hy' (q) out as alinear combination of cellular basis elements mg, 1,

of 1y () we have that mgtmyy is the corresponding linear combination of g; my, 1, 8z,'s,

0 otherwise.

and so
m, m M, if z¢ =
Wolmsemyy)={  omviee (s (4.7)
0 otherwise.
On the other hand, by the matrix product formula Mg¢Myp = 6,2, Msp we have that
M, ¢, M M, if z¢ = z,
W o (Mst) W a(Muyy) = { st T e e (4.8)

Comparing (A7) and (£.8) we conclude that ¥, is an algebra homomorphism as claimed.

The Theorem is proved. 0

EXAMPLE 6. For n =4 we have that

Partition of 4 | Faa di Bruno coeff. HYT dim&F (q)
a4 1 H1(@) 16y (= S64) 24
2,1%) 6 Hao (@161 @ H1 ()1 52 (2 Ha(q) © SG3) 144
2% 3 Ha ()16 72
(GY) 4 Hs3(@) 1610 H1(g)1 61 (= Hs(q) 96
4) 1 Ha1 61 (= Halq)) 24
Thus,

E1(q) = SG4 @ Mats (Ha(q) ® SS2)) @ Mats (H2(9) 1 S2) ® Maty (Hz(g)) @ Ha(g).

Note that summing up the dimensions of the last column we get 360 = 4!b,,(4) = 24 x 15, which

is the dimension of £4(q) as expected.



Throughout the thesis we adopt the following conventions:

We use the normal frak font, like s, to denote tableaux whose shape is a composi-
tion.

We use the boldfrak font, like s, to denote multitableaux whose shape is a multi-
composition.

We use the mathematical doble-struck font, like s, to denote tableaux whose shape
is an element of £,,.

For A a composition (resp. A a multicomposition, resp. A an element of £,) we
denote by t* (resp. t}, resp. t*) the maximal tableau of shape A (resp. shape A,
resp. shape A) as introduced in the text. Note that t* and t® are not the unique
maximal tableaux of their shape.

For A a composition (resp. A a multicomposition, resp. A an element of £;) we
denote by Std(A) (resp. Std(A), resp. Std(A)) the set of standard A-tableaux (resp.

A-tableaux, resp. A-tableaux).
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