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Introduction

Cellular algebras were introduced by Graham-Lehrer as a general framework for studying modular representation
theory. They are finite dimensional algebras endowed with a basis such that the structure constants with respect
to the basis satisfy certain natural conditions. A cellular algebra A is always equipped with a family {∆(λ)} of
’cell modules’ for λ running over a poset Λ which is part of the cellular basis data. Each cell module ∆(λ) is
endowed with a billinear form 〈·, ·〉 and the irreducible modules {L(λ)} all arise as quotients by the radical of the
form L(λ) = ∆(λ)/rad〈·, ·〉. Using this, there is for a cellular algebra A a concrete way of obtaining the irreducible
A-modules, at least in principle.

Two of the motivating examples for cellular algebra were the Temperley-Lieb algebra TLn with its diagram basis
and the Hecke algebra Hn(q) with its cell basis derived from the Kazhdan-Lusztig basis. In fact, one parameter
Hecke algebras of finite type are always cellular, as was shown by Geck, [13]. For Hecke algebras H(W,S) with
unqueal parameters associated with a finite Coxeter system, Lusztig’s cell theory depends on the choice of a weight
function on W , and conjecturally it leads to a cellular basis as well, see [6]. For the cyclotomic Hecke algebra
Hn(q1, . . . , ql) there is also a concept of a weighting function θ, which plays a key role for the Fock space approach
to the representation theory of Hn(q1, . . . , ql), see [2], [12], [18], [44]. For Hn(Q, q) and for the zero weighting θ0,
Lusztig’s approach does induce a cellular algebra structure on Hn(Q, q) and this was shown in [43] to be compatible
with the diagram basis on blob algebra bn.

In the first part of this thesis we make a complete review of the general concepts described above. We recall
the formal definition of graded cellular algebras, given by Hu and Mathas in [17], where they provide an extension
of the theory of cellular algebras given by Graham and Lehrer (see [14]). Also in the first part of the thesis, we set
up the combinatorial concepts and notations that are needed for our work, including multipartitions, tableaux, and
so on. We also present the various order relations on multipartitions and tableaux that play a role throughout the
paper. They all depend on the choice of a weighting θ ∈ Zl.

For λ ∈ Par1
n we prove a version of Ehresmann’s Theorem relating the order relation Eθ on Tab(λ) with the

Bruhat order on the symmetric group Sn. Although this and a few other of our results are valid for general θ we
soon concentrate on the zero weighting θ0.

The second part of this Thesis is concerned with the generalized blob algebra Bn introduced by Martin and
Woodcock.

The original blob algebra bn = bn(q,m), also known as the Temperley-Lieb algebra of type B, was introduced
by Martin and Saleur via considerations in statistical mechanics. The usual Temperley-Lieb algebra TLn = TLn(q)
can be realized as a quotient of the Hecke algebra Hn(q) of finite type A and similarly it has also been known for
some time that bn is a quotient of the two-parameter Hecke algebra Hn(Q, q) of type B. Since Hn(Q, q) is the special
case l = 2 of a cyclotomic Hecke algebra Hn(q1, . . . , ql) one could now hope that this construction make sense for
any cyclotomic Hecke algebra. Martin and Woodcock showed in [28] that this indeed is the case. They obtain bn as
the quotient of Hn(Q, q) by the ideal generated by the idempotents for the irreducible H2(Q, q)-modules associated
with the bipartitions ((2), ∅) and (∅, (2)) and showed that this idea generalizes to every Hn(q1, . . . , ql). The quotient
algebras of Hn(q1, . . . , ql) that arise this way are the generalized blob algebras Bn = Bn(q1, . . . , ql) of the title. The
parameter l is known as the level parameter and the generalized blob algebras can therefore be considered as the
Temperley-Lieb algebras at level l.

We are interested in the modular, that is non-semisimple, representation theory of Bn. This is the case where the
ground field F is of positive characteristic or where the parameters qi are roots of unity. The modular representation
theories of TLn and bn are well understood and may be considered as approximations of the modular representation
theory of Bn. The modular representation theory of Bn is more complicated. In characteristic 0 it involves Kazhdan-
Lusztig polynomials of type Ã, see [4] and [28], and in characteristic p it involves the p-canonical basis, at least
conjecturally, see [23].
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In the second part of this thesis we define the notation and give the necessary background for the KLR-approach
to the representation theory of generalized blob algebras and then we show that Bn is a cellular algebra with respect
to the zero weighting. There is however neither a natural Temperley-Lieb like diagram basis nor a Lusztig cell theory
available for Bn and in fact our methods for showing cellularity of Bn are completely new. They are based on the
seminal work by Brundan-Kleshchev and Rouquier that establishes an isomorphism between the KLR-algebra Rn
and the cyclotomic Hecke algebraHn(q1, . . . , ql). The KLR-algebraRn is a Z-graded algebra and our graded cellular
basis on Bn inherits this Z-grading, making it a graded cellular basis.

The KLR-algebra has already been used by Hu-Mathas, [17], and by Plaza and Ryom-Hansen, [38], to construct
Z-graded cellular bases for Hn(q1, . . . , ql) and for bn(q), but contrary to the present work those papers rely in a
decisive way on already existing non-graded cellular bases on the algebras in question. Indeed Hu-Mathas rely in
[17] on Murphy’s standard basis for Hn(q1, . . . , ql), and in [38] the diagram basis for bn is needed in order to derive
the graded cellular bases. Note that Murphy’s standard basis only exists for the classical dominance order on Parl,n,
which is unrelated to the zero weighting.

The representation theory of Hn(q1, . . . , ql) is parametrized by l-multipartitions Parl,n of n whereas the rep-
resentation theory of Bn is parametrized by one-column l-multipartitions Par1

n of n. Our Z-graded cellular basis

Cn = {msssttt | λ ∈ Par1
n, sss, ttt ∈ Std(λ)} (0.0.1)

shares notationally several features of Murphy’s standard basis and just like that basis it depends on the existence
of a unique maximal λ-tableau tttλ for each λ ∈ Par1

n, with respect to θ0. For λ 6∈ Par1
n there are in general many

maximal λ-tableaux and so our methods do not generalize to give a cellular basis for Hn(q1, . . . , ql), with respect
to θ0. In particular we do not recover Bowman’s general results from [3] who give cellular bases on Hn(q1, . . . , ql)
for any weighting θ, but at the cost of dealing with the ’fiendishly’ complicated diagram combinatorics of Webster’s
diagrammatic Cherednik algebra, see [45].

In the third and last part of this thesis we investigate three different, although well-known, diagram algebras.
The three diagram algebras arise in three quite different settings. Even so we show in this thesis that the three
algebras are surprisingly closely related.

The first algebra of this algebras is a variation of the blob algebra Bn. This is the Nil-blob algebra NBn.
We provide its definition using a presentation on generators U0,U1, . . . ,Un−1 and a series of relations that are

reminiscent of the relations of the original blob algebra. (We also introduce the extended nil-blob algebra ÑBn by

adding an extra generator Jn which is central in ÑBn). We next go on to prove that NBn is a diagram algebra where
the diagram basis is the same as the one used for the original blob algebra, but where the multiplication rule is
modified. The candidates for the diagrammatical counterparts of the generators Ui’s are the obvious ones, but the
fact that these diagrams generate the diagram algebra is not so obvious. We establish it in Theorem 8.0.5. From

this Theorem we obtain the dimensions of NBn (and ÑBn) and we also deduce from it that NBn is a cellular algebra
in the sense of Graham and Lehrer. Finally, we indicate that this cellular structure is endowed with a family of
JM-elements, in the sense of [32].

Our second diagram algebra has its origin in the theory of Soergel bimodules. Soergel bimodules were introduced
by Soergel in the nineties, first for Weyl groups and then for general Coxeter systems (W,S). Building on the work
of Elias and Khovanov in type An, Elias and Williamson proved that in general the category of Soergel bimodules
D can be described diagrammatically, using generators and relations. For our second diagram algebra we choose
W of type Ã1 and consider a diagrammatically defined subalgebra of the endomorphism algebra EndD(w), where
w is a certain expression over S.

Our third diagram algebra is given by idempotent truncation, of the KLR-version of the generalized blob algebra
Bn at level 2, with respect to a singular weight in the associated alcove geometry.

In the last part of this thesis we show that these three diagram algebras are isomorphic. We do so by giving
a presentation for each of the three algebras, in terms of generators and relations. The three presentations turn
out to be identical and from this we obtain the isomorphisms between the three algebras. As far as we know, the
algebra defined by the common presentation of the three algebras has not appeared before in literature; it is the
nil-blob algebra NBn.

For type Ãn, it is already known that there are connections between the diagrammatical Soergel category D
and the KLR-algebra. For example in positive characteristic, Riche and Williamson showed in [37] that D acts on
the category of tilting modules for GLn, via an action of the KLR-category. Our connection between the diagram
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algebras is however rather inspired by the categorical Blob vs. Soergel conjecture, that was recently formulated
in [23], by Plaza and Libedinsky. If this conjecture were true, the representation theory of the generalized blob
algebra, would be governed by the p-canonical basis for type Ãn. We view the results of the last part of this thesis
as evidence in favor of the categorical Blob vs. Soergel conjecture and in fact they are close to a proof of this
conjecture in type Ã1.
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Chapter 1

Graded cellular algebras and
Jucys-Murphy elements

1.1 Graded cellular algebras

In this section we recall definitions and main results given by Hu and Mathas in [17] on graded cellular algebras,
where they extend Graham and Lehrer’s theory of cellular algebras [14]. We concentrate only in the case of
Z−graded cellular algebras.

Let R be a commutative integral domain with 1. A graded (Z−graded) R−module is an R−module M which
has a direct sum decomposition M =

⊕
d∈ZMd. If m ∈ Md, for some d ∈ Z, then m is homogeneous of degree d

and we set degm = d. If M is a graded R−module let M be the ungraded R−module obtained by forgetting the
grading on M. If M is a graded R−module and s ∈ Z, let M〈s〉 be the graded R−module obtained by shifting the
grading on M up by s; that is, M〈s〉d = Md−s, for d ∈ Z.

A graded R−algebra is a unital associative R−algebra A =
⊕

d∈ZAd which is graded R−module such that
AdAe ⊂ Ad+e, for all d, e ∈ Z. It follows that 1 ∈ A0 and A0 is a graded subalgebra of A. A graded (right)
A−module is a graded R−module M such that M is an A−module and MdAe ⊂ Md+e, for all d, e ∈ Z. Graded
submodules, graded left A−modules and so on are all definied in the obvious way.

Definition 1.1.1. Suppose that A is a Z−graded R−algebra which is free of finite rank over R. A graded cell datum
for A is an ordered quadruple (P, T, C,deg), where (P,B) is the weight poset, T (λ) is a finite set for λ ∈ P, and

C :
∐
λ∈P

T (λ)× T (λ)→ A; (s, t) 7→ cλs,t,

and
deg : T (P)→ Z where T (P) =

∐
λ∈P

T (λ)

are functions such that C is injective and

1. {cλs,t : s, t ∈ T (λ), λ ∈ P} is an R−basis of A.

2. If s, t ∈ T (λ), for some λ ∈ P, and a ∈ A then there exist scalars rt,v(a), which do not depend on s, such that

cλs,ta =
∑
v

rt,v(a)cλs,v (modABλ)

where ABλ is the R−submodule of A spanned by {cµa,b : µB λ and a, b ∈ T (µ)}

3. The R−linear map ∗ : A→ A determined by

(cλs,t)
∗ = cλt,s (λ ∈ P, s, t ∈ T (λ)),

is an anti-isomorphism of A.

4. Each basis element cλs,t is homogeneous of degree deg cλs,t = deg s + deg t, for λ ∈ P and s, t ∈ T (λ).
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A graded cellular algebra is a graded algebra which has a graded cell datum. The basis {cλs,t : s, t ∈ T (λ), λ ∈ P}
is a graded cellular basis of A.

If we omit item 4 of definition 1.1.1 we recover Graham and Leherer’s definition of an (ungraded) cellular algebra.
Therefore, by forgetting the grading, any graded cellular algebra is an (ungraded) cellular algebra in the original
sense of Graham and Lehrer.

Definition 1.1.2. Suppose A is a graded cellular algebra with graded cell datum (P, T, C,deg), and fix λ ∈ P. Then
the graded cell module Cλ is the graded right A−module

Cλ =
⊕
z∈Z

Cλz ,

where Cλz is the free R−module with basis {cλt : t ∈ T (λ),deg(t) = z} and where the action of A on Cλ is given by

cλt a =
∑
v

rt,v(a)cλv

where the scalars rt,v(a) are the scalars appearing in item 2 in definition 1.1.1.

Similarly, let C∗λ be the left graded A−module which, as an R−module is equal to Cλ, but where the action
of A is given by a · x = xa∗, for a ∈ A and x ∈ C∗λ. It follows directly from definition 1.1.1 that Cλ and C∗λ are
graded A−modules.

Let ADλ be the R−module spanned by the elements {cµa,b : µ D λ and a, b ∈ T (µ)}. It is straightforward to

check that ADλ is a graded two-sided ideal of A and that

ADλ/ABλ ∼= C∗λ ⊗R Cλ ∼=
⊕

s∈T (λ)

Cλ〈deg s〉

as graded (A,A)-bimodules for the first isomorphism and as graded right A−modules for the second.
Let t be an indeterminate over N0. If M =

⊕
z∈ZMz is a graded A−module such that each Mz is free of finite

rank over R, then its graded dimension is the Laurent polynomial

dimtM =
∑
k∈Z

(dimRMk)tk.

Corollary 1.1.3. Suppose that A is a graded cellular algebra and λ ∈ P. Then

dimt C
λ =

∑
s∈T (λ)

tdeg s.

Consequently,

dimtA =
∑
λ∈P

∑
s,t∈T (λ)

tdeg s+deg t =
∑
λ∈P

(dimt C
λ)2.

Suppose that µ ∈ P. Then it follows from definition 1.1.1, exactly as in [14], that there is a bilinear form 〈, 〉µ
on Cµ which is determined by

cµasc
µ
tb ≡ 〈cµs , c

µ
t 〉µcµa,b (modABµ),

for any s, t, a, b ∈ T (µ).

Lemma 1.1.4. Suppose that µ ∈ P. Then the radical

Rad(Cµ) = {x ∈ Cµ : 〈x, y〉µ = 0 for all y ∈ Cµ}

is a graded submodule of Cµ.

Proof. See [17].

The last lemma allows us to define a graded quotient of Cµ, for µ ∈ P.

Definition 1.1.5. Suppose that µ ∈ P. Let Dµ = Cµ/Rad(Cµ).

3



By definition Dµ is a graded right A−module. Henceforth, let R = K be a field and A =
⊕

z∈ZAz a graded

cellular K−algebra. Let P0 = {λ ∈ P : Dλ 6= 0}.
Theorem 1.1.6. Suppose that K is a field and A is a graded cellular K−algebra.

1. If µ ∈ P0 then Dµ is an absolutely irreducible graded A−module.

2. Suppose that λ, µ ∈ P0. Then Dλ ∼= Dµ〈k〉, for some k ∈ Z, if and only if λ = µ and k = 0.

3. The set {Dµ〈k〉 : µ ∈ P0 and k ∈ Z} is a complete set of pairwise non-isomorphic graded simple A−modules.

Proof. See [17].

In particular, just as Graham and Lehrer proved (see [14]) in the ungraded case, every field is a splitting field
for a graded cellular algebra.

Corollary 1.1.7. Suppose that K is a field and A is a graded cellular algebra over K. Then {Dµ : µ ∈ P0} is a
complete set of pairwise non-isomorphic ungraded simple A−modules.

Proof. See [17].

1.2 Jucys-Murphy elements

In this section we recall the definition and some main results on Jucys-Murphy elements, given by Mathas and
Soriano in [32]. For the rest of this section let R be a commutative integral domain with 1 and A be a cellular
R−algebra (in the sense of [14]) with cell datum (P, T, C), and where each set T (λ) is a poset (T (λ),B). We also
define a partial order � on T (P), given by

s � t if and only if (shape(s)B shape(t)) or (shape(s) = shape(t) and sB t). (1.2.1)

Definition 1.2.1. A family of Jucys-Murphy elements (or for simplicity JM-elements) is a set {L1, . . . , LM} of
commuting elements of A together with a set of scalars {ut(i) ∈ R : t ∈ T (P) and 1 ≤ i ≤ M}, such that for
every i = 1, . . .M we have L∗i = Li and, for all λ ∈ P and s, t ∈ T (λ),

cλs,tLi = ut(i)c
λ
s,t +

∑
vBt

rt,v(Li)c
λ
s,v (modABλ). (1.2.2)

We call ut(i) the content of t at i.

Implicity the JM-elements depends on the choice of cellular basis for A. Note that we also have a left analogue
to equation (1.2.2):

Lic
λ
s,t = us(i)c

λ
s,t +

∑
uBs

rs,u(Li)c
λ
u,t (modABλ). (1.2.3)

An important application of JM-elements is that they can detect when the modules Dλ are not equal to zero.

Proposition 1.2.2. Let R = K be a field, and A be a cellular K−algebra with a family of JM-elements {L1, . . . , LM}.
Fix λ ∈ P and s ∈ T (λ). Suppose that whenever t ∈ T (P) and s � t then us(i) 6= ut(i), for some 1 ≤ i ≤M. Then
Dλ 6= 0.

Proof. See [32].

The last proposition motivates the following definition

Definition 1.2.3. Let A be a cellular R−algebra with JM-elemnts {L1, . . . , LM}, and let λ ∈ P. We say that the
JM-elements separate T (P) (over R) if whenever s, t ∈ T (P) and s � t then us(i) 6= ut(i) for some 1 ≤ i ≤M.

The separation condition (of definition 1.2.3) also provides a semisimplicity criterion for the algebra A.

Corollary 1.2.4. Suppose that R = K is a field, and A is a cellular K−algebra with a family of JM-elements
{L1, . . . , LM} that separates T (P). Then A is (split) semisimple.

Proof. See [32].
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Chapter 2

Combinatorics and Tableaux

Let us recall the basic combinatorial concepts and notations associated with the representation theory of the
symmetric group Sn and the wreath product Cl oSn.

We denote by N the positive integers and by N0 the non-negative integers. For n ∈ N0, a composition λ
of n is a sequence λ = (λ1, λ2, . . . ) of elements of N0 such that |λ| :=

∑
k λk = n. If k is minimal such that

λi = 0 for all i > k we also write λ = (λ1, . . . , λk) for λ. We say that a composition λ = (λ1, λ2, . . .) of n is a
partition of n if it satisfies that λk ≥ λk+1 for all k ≥ 1.

For integers l > 0 and n ≥ 0, an l-multicomposition of n is an l-tuple of compositions λ = (λ(1), . . . , λ(l)) such

that
∑l
m=1 |λ(m)| = n. An l-multicomposition λ = (λ(1), . . . , λ(l)) of n is called an l-multipartition of n if all its

components λ(i) are partitions. The set of all l-multicompositions of n is denoted by Compl,n and the set of all
l-multipartitions of n is denoted by Parl,n.

Let λ = (λ(1), . . . , λ(l)) be an l-multicomposition. Then λ is called a one-column l-multicomposition if all of its

components λ(i) are one-column compositions, that is each λ(i) is of the form λ(i) = (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
r ) where λ

(i)
j

is either 0 or 1 for all j.
A one-column l-multipartition is a one-column l-multicomposition which is also an l-multipartition. For λ a

one-column l-multipartition each of its components λ(m) is a partition of the form λ(m) = (1, 1, . . . , 1) that is
λ(m) = (1am) where am = |λ(m)|. In other words, a one-column l-multipartition is of the form λ = ((1a1), . . . , (1al))
for certain non-negative integers ai. The set of all one-column l-multipartitions of n is denoted by Par1

n.
We shall hold l fixed throughout the article, and shall therefore frequently refer to l-multicompositions (resp.

l-multipartitions, etc) simply as multicompositions (resp. multipartitions, etc).
Let λ = (λ1, λ2, . . . , λk) be a composition of n. Then we represent λ graphically via its Young diagram [λ]. We

use English notation so it consists of an array of k left adjusted lines of boxes denoted the nodes of the diagram, the
first line containing λ1 nodes, the second line λ2 nodes, and so on. The nodes are labelled using matrix convention,
that is the j’th node of the i’th line of [λ] is labelled (i, j) and in this case we write (i, j) ∈ [λ]. For example, if
λ = (4, 2, 6, 1) then the Young diagram [λ] is

[λ] = .

For an l-multicomposition λ = (λ(1), . . . , λ(l)) we define its Young diagram [λ] to be the l-tuple of Young
diagrams ([λ(1)], . . . , [λ(l)]). The nodes of λ are labelled by the triples (i, j, k) where (i, j) is a node of [λ(k)]. For
example, if λ = ((1, 1, 1, 1), (1), (1, 0, 1)) we have that

[λ] =

 , ,

 (2.0.1)
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or if µ = ((14), (10), (13)) we have that

[µ] =

 , ∅,

 . (2.0.2)

For a multipartition λ we define the i’th row of λ as the set of nodes of the form (i, j, k).

There is a well known way to make Compl,n into a poset, the associated order relation being the dominance
order on Compl,n studied for example in [8]. However, this is not the only interesting order relation on Compl,n.

Let us fix a tuple θ = (θ1, . . . , θl) ∈ Zl, called a weighting. Let γ = (i, j, b) and γ′ = (i′, j′, b′) be nodes
of multipartitions λ and µ, or more generally elements of N × N × {1, . . . , l}. Then we write γ Cθ γ′ if either
(θb + j − i) < (θb′ + j′ − i′) or if (θb + j − i) = (θb′ + j′ − i′) and b > b′. (The last inequality is not an error). We
write γ Eθ γ′ if γ Cθ γ′ or if γ = γ′.

This defines an order on N×N×{1, . . . , l} that we extend to multipartitions as follows. Suppose that λ ∈ Compl,n
and µ ∈ Compl,m. Then we write λEθ µ if for each γ0 ∈ N× N× {1, . . . , l} we have that

|{γ ∈ [λ] : γ Bθ γ0}| ≤ |{γ ∈ [µ] : γ Bθ γ0}|. (2.0.3)

This order relation Cθ depends highly on the initial choice of weighting θ. When restricted to Parl,n and choosing
θ such that θi > θi+1 + n for all i we recover the dominance order used in [DJM] which we refer to as E∞. This is
the separated case, but in this article we shall be mostly interested in another limit case, namely the one given by
the zero weighting θ = (0, 0, . . . , 0). We refer to the corresponding order as E0.

Note that for l = 1, we have that Eθ is just the usual dominance order, for any θ.

In general, the order Eθ is only a partial order on the nodes of Parl,n or N × N × {1, . . . , l}, but it becomes a
total order upon restriction to the nodes of Par1

n or N×{1}×{1, . . . , l}. Using this we can prove the following useful
Lemma that we shall use implicitly throughout the paper. It says that λEθ µ if and only if µ can be obtained from
λ by moving nodes of λ upwards.

Lemma 2.0.1. Suppose that λ,µ ∈ Par1
n. Then λ Eθ µ if and only if there is a bijection Θ : [λ] → [µ] such that

Θ(γ)Dθ γ for all γ ∈ [λ].

Proof. As mentioned Eθ is a total order on the nodes of N × {1} × {1, . . . , l} and so there is an order preserving
bijection from these nodes to N, where N is endowed with the opposite of the natural order, that is ’1’ is the maximal
element. Using this, we may view λ and µ as ordered subsets of N. But in this situation one easily checks the
equivalence of (2.0.3) with the existence of Θ.

To illustrate the difference between E∞ and E0 we consider their restriction to Par1
n. In each case there is a

unique maximal element but the two maximal elements are different. The unique maximal elements with respect
to E∞ is

µmax,∞n := ((1n), ∅, ∅, . . . , ∅)) (2.0.4)

To describe µmax,0n , the unique maximal element with respect to E0, we use integer division to write n = ql + r
where q, l ∈ Z such that 0 ≤ r < l. Then we have that µmax,0n is given by

µmax,0n = (

r terms︷ ︸︸ ︷
(1q+1), . . . , (1q+1),

l−r terms︷ ︸︸ ︷
(1q), . . . , (1q)). (2.0.5)

For example, for n = 7 and l = 3 we have that

µmax,∞n =


, ∅, ∅


, µmax,0n =

 , ,

 . (2.0.6)
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In general, with respect to E∞ the big multipartitions tend to have their center of mass to the left of the
diagram, whereas with respect to E0 the big multipartitions tend to have their center of mass in the middle of the
diagram.

For l = 2, the restriction of E0 to Par1
n is the total order used for example in [38] and [43]. Here is the n = 3

case: (
∅, (13)

)
E0

(
(13), ∅

)
E0

(
(1), (12)

)
E0

(
(12), (1)

)
. (2.0.7)

For l ≥ 3, the restriction of E0 to Par1
n is only a partial order. Here we illustrate the n = l = 3 case:

((1), (1), (1))

((12), (1), ∅)

((1), (12), ∅) ((12), ∅, (1))

((1), ∅, (12)) (∅, (12), (1))

((13), ∅, ∅) (∅, (1), (12))

(∅, (13), ∅)

(∅, ∅, (13)).
(2.0.8)

Let λ be a composition of n. A tableau of shape λ or simply a λ-tableau is a bijection t : {1, . . . , n} → [λ]. In
this case we write shape(t) = λ. A λ-tableau t is represented graphically via a labelling of the nodes of [λ] using the
numbers {1, 2, . . . , n} where the labelling of the node (i, j) is given by t−1(i, j). In this case we say that the (i, j)’th
node of t is filled in with t−1(i, j) via t. Let λ be an l-multicomposition. The concept of λ-tableaux is defined the
same way as for ordinary λ-tableaux, that is a λ-tableau is a bijection ttt : {1, . . . , n} → [λ].

A λ-tableau t is called standard if the corresponding labelling of [λ] has increasing numbers from left to right
along rows and from top to bottom along columns. Similarly, for a tableau ttt of a multicomposition λ we say that
it is standard if all its components are standard. For a composition λ, we denote by Tab(λ) and Std(λ) the set
of all λ-tableaux and the set of all standard λ-tableaux and we use a similar similar notation for λ-tableaux of a
multicomposition λ.

For a composition λ and a λ-tableau t and 1 ≤ k ≤ n we denote by t |k the restriction of t to the set {1, 2, . . . , k}.
A similar notation is used for tableaux for multipartitions. Let µ be as in (2.0.2). Then the following are µ-tableaux

ttt =


1

4

5

7

, ∅,

2

3

6

 , sss =


1

5

4

6

, ∅,

3

2

7

 (2.0.9)

but only the first is standard. Note that for all 1 ≤ k ≤ n we have that shape(t |k) is a multipartition, but in the
case of sss we have

shape(sss |4) = ((1, 0, 1), ∅, (1, 1))

which is not a multipartition, only a multicomposition.
We extend the order Eθ to tableaux for multipartitions n, as follows. Let λ and µ be multicompositions of m

and n and let sss and ttt be tableaux of shapes λ and µ. Then we write tttEθ sss if for all 1 ≤ k ≤ min(m,n) we have that

shape(ttt |k)Eθ shape(sss |k).

For example, considering the tableaux sss and ttt from (8.0.25) we have that sssC0 ttt.

Let λ ∈ Parl,n be a multipartition and let γ ∈ N×N×{1, . . . , l}\ [λ]. Then we say that γ is an addable node for
λ if [λ]∪ γ is the Young diagram of a multipartition. Dually we say that γ ∈ [λ] is a removable node for λ if [λ] \ γ
is the Young diagram of a multipartition. The set of addable (removable) nodes for λ is totally ordered under Eθ.

7



For λ ∈ Parl,n we now define multipartitions λθ,0, . . . ,λθ,n ∈ Parl,n recursively via λθ,0 := (∅, . . . , ∅) and for
i > 0 via [λθ,i] := [λi−1] ∪ γθ,i where γθ,i ∈ [λ] satisfies the condition that it is the largest addable node for λi−1,
with respect to Eθ. We denote by tttλθ the λ-tableau which is given by tttλθ (i) = γθ,i. If θ = θ∞ we write tttλ∞ for tttλθ and
if θ = θ0 we write tttλ0 for tttλθ .

Suppose that λ ∈ Par1
n. Then tttλ∞ is the unique maximal element in Tab(λ) and Std(λ) with respect to E∞.

It is the λ-tableau obtained by filling in the nodes of [λ] from left to right along the columns. For example, for
λ = ((13), (13), (12)) it is

tttλ∞ =

 1

2

3

,

4

5

6

,

7

8

 . (2.0.10)

Let still λ ∈ Par1
n. Then tttλ0 is the unique maximal element in Tab(λ) and Std(λ) with respect to E0. It is the

λ-tableau tttλ in which 1, . . . , n are filled in increasingly along the rows of λ. For example, for λ = ((13), (13), (12))
it is

tttλ0 =

 1

4

7

,

2

5

8

,

3

6

 . (2.0.11)

The tableau tttλθ plays an important role in our paper, especially for θ = θ0, so let us prove formally the claim on
maximality of tttλθ .

Let first Sn be the symmetric group on n := {1, . . . , n}, and let S = {s1, . . . , sn−1} be its subset of simple
transpositions, i.e. for each k = 1, . . . , n−1 we have that sk = (k, k+1). It is well known that Sn is a Coxeter group
on S. For any multicomposition λ of n we have that Sn acts on the right on Tab(λ) by permuting the entries inside a
given tableaux. Thus, if w = si1si2 · · · siN where sij ∈ S and if ttt ∈ Tab(λ) we have that tttw = (· · · ((tttsi1)si2 · · · )siN ).

We next need to introduce yet another order on Tab(λ). Let λ be a multipartition and let ttt,sss be λ-tableaux.

For s ∈ S we define ttt
s→ sss if sss = ttts and sss Bθ ttt. We let �θ be the order on Tab(λ) induced by ttt

s→ sss for all s ∈ S,
that is sss �θ ttt if there is a finite sequence

ttt0
si1→ ttt1

si2→ · · · sik→ tttk

with ttt0 = ttt and tttk = sss. We call �θ the weak order on Tab(λ). It is clear that sss �θ ttt⇒ sssBθ ttt, but the converse is
false in general. Consider for example µ = ((13), (13), (12)) and the µ-tableaux

ttt =

 1

6

5

,

2

4

8

,

3

7

 , sss =

 1

6

5

,

2

7

8

,

3

4

 .

Then with respect to θ = (0, 0, . . . , 0) we have that tttBθ sss but ttt �θ sss.

We can now prove the promised claim for tttλθ .

Lemma 2.0.2. Suppose that λ ∈ Par1
n.

a) Let ttt ∈ Tab(λ) and set sss = tttsk. Suppose that ttt(k)Cθ ttt(k + 1). Then we have that ttt ≺θ sss.
b) We have that tttλθ is the unique maximal element in Tab(λ) and Std(λ) with respect to ≺θ and Cθ.

Proof. The nodes of λ are totally ordered with respect to Cθ, and we have

tttλ(i)Cθ ttt
λ(j) iff i > j.

Let ω be the one-column partition ω := (1n). The nodes of ω are also totally ordered, with respect to the usual
dominance order C, and hence there is a unique order preserving bijection

Φθ : Tab(λ)→ Tab(ω). (2.0.12)
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For example, for θ = θ0 and λ = ((15), (12), (16)) we have that ω = (113) and so

Φθ :



2

1

3

7

11

,

4

6

,

5

9

10

13

8

12


7→



2

4

5

1

6

9

3

10

7

13

11

8

12



. (2.0.13)

Note that Φθ(ttt
λ
θ ) = tω. Let us now prove a) of the Lemma. We have that

Φθ(ttt) =



ttt−1(tttλθ (1))

ttt−1(tttλθ (2))

k + 1

ttt−1(tttλθ (j))

k

ttt−1(tttλθ (n))


, Φθ(sss) =



ttt−1(tttλθ (1))

ttt−1(tttλθ (2))

k

ttt−1(tttλθ (j))

k + 1

ttt−1(tttλθ (n))


(2.0.14)

and so we have
Φθ(shape(sss |j)) = Φθ(shape(ttt |j)) (2.0.15)

for all j 6= k and
Φθ(shape(sss |k))B Φθ(shape(ttt |k)) (2.0.16)

and so a) follows. In order to prove b) of the Lemma, we get from a) that for any λ-tableau ttt 6= tttλθ there is a
sequence of simple reflections si1 , . . . , siN such that

tttCθ tttsi1 Cθ tttsi1si2 Cθ . . .Cθ tttsi1si2 · · · siN = tttλθ , (2.0.17)

that is ttt ≺θ tttλθ . Since this holds for any ttt 6= tttλθ we deduce that tttλθ is the unique maximal tableau in Tab(λ) with
respect to both ≺θ and Cθ. In order to show that tttλθ is also the unique maximal tableau in Std(λ) we use that if
ttt ∈ Std(λ) then each term of the chain (2.0.17) also belongs to Std(λ). The Lemma is proved.

We observe that if λ is not a one-column multipartition then there is in general not a unique maximal element
in Std(λ) with respect to ≺0 or C0. Consider for example λ = ((1), (2)) with its two standard λ-tableaux

tttλ =
(

1 , 2 3
)
, sss =

(
3 , 1 2

)
. (2.0.18)

These are both maximal in Std(λ) with respect to ≺0 and C0. This observation is the main reason why the methods
of our paper do not generalize in a straightforward way to general multipartitions.

Let l(·) be the length function on Sn, viewed as a Coxeter group, and let < be the Bruhat order on Sn with
the convention that the identity element 1 ∈ Sn is the largest element. Let λ be a usual partition. For t ∈ Tab(λ)
we define d(t) ∈ Sn by the condition tλd(t) = t. Since the action of Sn is transitive and faithful we have that d(t)
is well defined and unique. For λ a one-column multipartition and ttt ∈ Tab(λ) we define d(ttt) in a similar way, using
tttλθ . Our next aim is to show a compatibility between the Bruhat order on Sn and the order Cθ on Tab(λ). In the
case of the usual dominance order C on Tab(λ) this result was proved originally by Ehresmann. In fact we shall
deduce our version of the Theorem from the original Ehresmann Theorem. Let us recall it.
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Theorem 2.0.3. Suppose that λ is a partition of n and that s, t ∈ Tab(λ) are row standard. Then we have that
d(s) < d(t) if and only if sC t.

Here is our generalization of this Theorem.

Theorem 2.0.4. Let λ be a one-column multipartition of n and suppose that ttt and sss are λ-tableaux. Then
d(sss) < d(ttt) if and only if sssCθ ttt.

Proof. Again let ω be the one-column partition ω = (1n) and let Φθ : Tab(λ) → Tab(ω) be the order preserving
bijection that was introduced in the proof of Lemma 2.0.2. Recall that in general Φ(tttλθ ) = tω. But from this it
follows that for any ttt ∈ Tab(λ) we have d(ttt) = d(Φθ(ttt)). On the other hand, we have that sss Cθ ttt if and only if
Φ(sss)C Φ(ttt) and so the Theorem follows from the original Ehresmann Theorem, that is Theorem 2.0.3.

Let λ ∈ Par1
n. Then we conclude from the Theorem that the order relations Cθ on Tab(λ) are all isomorphic.

However, the restrictions of the order relations Cθ to the relevant subsets Std(λ) are not isomorphic.

In general Eθ is not a total order on the set of tableaux, only a partial order. On the other hand, on the set
of tableaux of one-column multipartitions of n there is related stronger order <θ which is a total order. It is the
lexicographical order, defined via

ttt <θ sss if there is 1 ≤ k ≤ n such that ttt |j= sss |j for j < k but ttt |k Cθ sss |k . (2.0.19)

It induces a total order on one-column multipartitions of n via

λ <θ µ iff tttλθ <θ ttt
µ
θ . (2.0.20)

There is an extension of <θ to the set of all one-column multipartitions that shall be of importance to us. It is
given as follows. Let λ and µ be one-column multipartitions of m and n and assume that m < n. Then we define

λ <θ µ iff tttλθ ≤θ tttµθ |m . (2.0.21)

For example if γ is an addable node for λ and µ is defined via [µ] := [λ] ∪ γ then we always have that λ <θ µ. In
general for k < n we define

λ|k= shape(tttλθ |k). (2.0.22)

Suppose that λ and µ are multipartitions of m and n and that m < n. Then by definition λ ≤θ µ|m iff λ <θ µ.

In the following we shall be mostly interested in the orders related to the zero weighting and when we write C,
<, ≺, tttλ, etc we refer to C0, <0, ≺0, tttλ0 , etc. We shall also mostly be interested in one-column multipartitions and
therefore ’multipartitions’ shall in the following refer to ’one-column multipartitions’, unless otherwise stated.
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Part II

Graded cellular basis and Jucis-Murphy
elements for generalized blob algebras
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Chapter 3

Generalized blob algebras

In this chapter we define the family of algebras that we are interested in. Let F be a field of characteristic p, where
p is either a prime or zero, and suppose that q ∈ F \ {1} is a primitive e’th root of unity. (Thus if p > 0 we have
gcd(e, p) = 1). Let Ie := Z/eZ. Fix a positive integer l. The elements of i = (i1, . . . , in) of Ine are called residue
sequences modulo e, or simply residue sequences. For i ∈ (i1, . . . , in) ∈ Ine and j ∈ Ie, we define the concatenation
ij ∈ In+1

e via ij := (i1, . . . , in, j). The symmetric group Sn acts on the left on Ine via permutation of the coordinates
Ine , that is sk · i := (i1, . . . , ik+1, ik, . . . , in).

Let κ̂ = (κ̂1, . . . , κ̂l) ∈ Zl where l is as before. Such a κ̂ is denoted a multicharge. We let κi ∈ Ie be the image
of κ̂i under the natural projection and define κ := (κ1, . . . , κl) ∈ Ine . We shall throughout choose a representative
for each κi, also denoted by κi, between 0 and e− 1.

Definition 3.0.1. We say that κ̂ is strongly adjacency-free if it satisfies

i) κ̂i+1 − κ̂i ≥ n
ii) κi − κj 6= 0,±1 mod e for all i 6= j

iii) κ1 6= κl + 2 mod e

iv) κ1 < κ2 < . . . < κl.

We shall in the following always assume that κ̂ is strongly adjacency-free; in particular the inequality e > 2l will
always hold.

Our notion of a strongly adjacency-free multicharge is a generalization of the notion of an adjacency-free mul-
ticharge, which was introduced in [23] although already implicitly present in [28] and [38]. The difference between
the two notions are the conditions iii) and iv) which are omitted in [23]. These extra conditions will be useful later
on for our analysis of Garnir tableaux.

We can now define our main object of study.

Definition 3.0.2. Given integers e, l, n > 1 and a strongly adjacency-free multicharge κ̂ the generalized blob algebra
BFl,n(κ) = Bn of level l on n strings is the unital, associative F-algebra on generators

{ψ1, . . . , ψn−1} ∪ {y1, . . . , yn} ∪ {e(i) | i ∈ Ine }

subject to the following relations
e(i)e(j) = δi,je(i) (3.0.1)

e(i) = 0 if i1 6∈ {κ1, . . . , κl} (3.0.2)

e(i) = 0 if i1 ∈ {κ1, . . . , κl} and i2 = i1 + 1 (3.0.3)

y1e(i) = 0 if i1 ∈ {κ1, . . . , κl} (3.0.4)

∑
i∈Ine

e(i) = 1 (3.0.5)
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yre(i) = e(i)yr (3.0.6)

ψre(i) = e(sk · i)ψr (3.0.7)

yrys = ysyr (3.0.8)

ψrys = ysψr if s 6= r, r + 1 (3.0.9)

ψrψs = ψsψr if |s− r| > 1 (3.0.10)

ψryr+1e(i) = (yrψr − δir,ir+1
)e(i) (3.0.11)

yr+1ψre(i) = (ψryr − δir,ir+1
)e(i) (3.0.12)

ψ2
re(i) =


0 if ir = ir+1

e(i) if ir 6= ir+1, ir+1 ± 1
(yr+1 − yr)e(i) if ir+1 = ir + 1
(yr − yr+1)e(i) if ir+1 = ir − 1

(3.0.13)

ψrψr+1ψre(i) =

 (ψr+1ψrψr+1 − 1)e(i) if ir+2 = ir = ir+1 − 1
(ψr+1ψrψr+1 + 1)e(i) if ir+2 = ir = ir+1 + 1

(ψr+1ψrψr+1)e(i) otherwise.
(3.0.14)

The above definition of Bn is the one used in [3] and [23], but it is not the original definition of the generalized
blob algebra as presented in [28]. We will prove that the two definitions do coincide. The case when l = 2 is the
original blob algebra, we will use this particular case in the last part of this thesis.

Let us take the opportunity to give the precise definition of the KLR-algebra, already mentioned above. It was
introduced independently in [20] and [39].

Definition 3.0.3. The cyclotomic KLR-algebra of type A
(1)
e−1, or simply the KLR-algebra, is the F-algebra Rn on

generators
{ψ1, . . . , ψn−1} ∪ {y1, . . . , yn} ∪ {e(i) | i ∈ Ine }

subject to the same relations as for the blob algebra Bn except for relation (3.0.3) which is omitted.

Let π : Rn → Bn be the projection map from the KLR-algebra to Bn. Then, for simplicity of notation, we shall
in general write x for π(x) when x ∈ Rn.

It follows from the relations that there is an antiinvolution ∗ of Bn, and of Rn, that fixes the generators.

There is a diagrammatical way to view this definition which is of importance for our work. It was introduced
by Khovanov and Lauda in [20]. A Khovanov-Lauda diagram D, or simply a KL-diagram, on n strings consists of
n points on each of two parallel edges (the top edge and the bottom edge) and n strings connecting the points of
the top edge with the points of the bottom edge. Strings may intersect, but triple intersections are not allowed.
Each string may be decorated with a finite number of dots, but dots cannot be located on the intersection of two
strings. Finally, each string is labelled with an element of Ie. This defines two residue sequences t(D), b(D) ∈ Ine
associated with the diagram D obtained by reading the residues of the extreme points from left to right. For the
details concerning this definition, the reader should consult [20].

Example 3.0.4. Let e = 4 and n = 6. Let D be the following KL-diagram:

0 3 0 2 2 1
.

In this case the bottom sequence is b(D) = (0, 3, 0, 2, 2, 1) and the top sequence is t(D) = (2, 1, 0, 0, 2, 3).
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We can now define the diagrammatic algebra BFl,n(κ)diag = Bdiagn . As an F-vector space it consists of the F-linear
combinations of KL-diagrams on n strings modulo planar isotopy and modulo the following relations:

. . .

i1 i2 in

= 0 if i1 6∈ {κ1, . . . , κl}

(3.0.15)

. . .

i1 i2 in

= 0 if i1 ∈ {κ1, . . . , κl} and i2 = i1 + 1

(3.0.16)

i1 i2 in

= 0. . . if i1 ∈ {κ1, . . . , κl}

(3.0.17)

= −δij

i j i j i j
(3.0.18)

= −δij

i j i j i j
(3.0.19)

where δij is the Kronecker delta. Moreover

= +α

i j k i j k i j k (3.0.20)

where

α =

 −1 if i = k = j − 1
1 if i = k = j + 1
0 otherwise

i j

= β

i j

+γ

i j

−γ

i j
(3.0.21)

where

β =

{
1 if |i− j| > 1
0 otherwise

and

γ =

 1 if j = i+ 1
−1 if j = i− 1
0 otherwise.

The identity element 1 of Bdiagn is the sum over all diagrams

. . .

i1 i2 in
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such that i := (i1, i2, . . . , in) belongs to Ine .

The multiplication DD′ between two diagrams D and D′ in Bdiagn is defined by vertical concatenation with D
above D′ if b(D) = t(D′). If b(D) 6= t(D′) the product is defined to be zero. We extend the product to all pairs of
elements in Bdiagn by linearity.

The F-linear map from Bn to Bdiagn given by

. . .7→e(i)

i1 i2 in

, . . . . . .7→yre(i)

i1 ir in

, . . . . . .7→ψre(i)

i1 ir ir+1 in (3.0.22)

defines an isomorphism between Bn and Bdiagn . In view of this, we shall write Bdiagn = Bn.

We next show some useful relations that can be derived directly from the definitions.

Lemma 3.0.5. In Bn we have:

i i i i

=

.

Proof. This is an immediate consequence of relations (3.0.18), (3.0.19) and (3.0.21).

Lemma 3.0.6. In Bn we have:

i i i i i i

= −
.

Proof. This is a consequence of relations (3.0.18), (3.0.19) and Lemma 3.0.5.

Lemma 3.0.7. If |i− j| > 1 then we have

j i j i

=

.

Proof. This is a direct consequence of the relations (3.0.18), (3.0.19) and (3.0.21).

Lemma 3.0.8. If |i− j| = 1 then we have

j i j i j i

= ±

where the positive sign appears when j = i− 1 and the negative sign when j = i+ 1.

Proof. This is a direct consequence of relation (3.0.21).

Lemma 3.0.9. If j = i+ 1 then we have

i j i

=

i j i

−

i j i

and if j = i− 1 then we have that
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i j i

= −

i j i

+

i j i
.

Proof. This is a direct consequence of relation (3.0.20) and Lemma 3.0.5.

Lemma 3.0.10. Let n ≥ 2 and let ιn+1,j be the concatenation on the right of a diagram in Bn with a through line
of fixed residue j, as indicated in the following figure

i1 i2 i3 i4 i5 i6

7→

ji1 i2 i3 i4 i5 i6
.

Then ιn+1,j induces a (non-unital) algebra homomorphism ιn+1,j : Bn → Bn+1. It satisfies ιn+1,j(0) = 0.

Proof. Each of the relations (3.0.15) to (3.0.21) for Bn maps under ιn+1,j to a relation for Bn+1 and so ιn+1,j is
well-defined. The second statement of the Lemma is obvious.

We shall use the notation b · j or b j for ιn+1,j(b). We remark that it can be shown that ιn+1,j is an embedding.
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Chapter 4

A generating set Cn for Bn.

We now take the first steps towards the construction of our cellular basis for Bn.

Let λ be a multipartition and let γ = (r, c,m) be a node of [λ]. Then we define the residue of γ via

res(γ) := κm + c− r ∈ Ie. (4.0.1)

Recall that a multipartition λ is assumed to be a one-column multipartition, unless otherwise stated. The nodes γ
of a multipartition λ are of the form γ = (r, 1,m) with residue res(γ) = κm + 1− r.

Any λ-tableau ttt gives rise to a residue sequence ittt ∈ Ine defined via

ittt := (i1, . . . , in) ∈ Ine where ij = res(ttt(j)). (4.0.2)

In the next couple of Lemmas and Corollaries we aim at showing that only the idempotents e(iλ), with λ
running over multipartitions, are needed in order to generate Bn. Our proof for this is not straightforward and
relies on several induction loops, all related to λ. In essence our proofs are a chain of applications of the Lemmas
3.0.5 to 3.0.10 and could therefore have been formulated completely diagrammatically, in principle, but we choose
to encode these Lemmas in an symbolic notation that we explain shortly. This symbolic notation has the advantage
of enabling us to keep track of the induction parameter λ. Our approach is therefore different from the approaches
of [45], [3] that rely on manipulations of the diagrams themselves. Our proofs are rather comparable to the proofs
of [21] and, in view of this, maybe surprisingly short, after all.

Let µmaxn = µmax be the multipartition introduced in (2.0.5), which is the unique maximal multipartition of n
with respect to C, and let us denote by tttmaxn = tttmax the unique maximal µmaxn -tableau, as in Lemma 2.0.2. We
denote by imaxn = imax ∈ Ine the corresponding residue sequence and by e(imax) ∈ Bn the associated idempotent.
We denote by [res(tttmax)] the corresponding residue diagram, obtained by writing res(tttmax(k)) in the node tttmax(k)
of [λ]. For example, for n = 22, e = 10 and κ = (0, 2, 4, 7) we have the following residue diagram

[res(tttmax)] =



0

9

8

7

6

5

,

2

1

0

9

8

7

,

4

3

2

1

0

,

7

6

5

4

3


(4.0.3)

which gives rise to the following residue sequence

imax = (0, 2, 4, 7, 9, 1, 3, 6, 8, 0, 2, 5, 7, 9, 1, 4, 6, 8, 0, 3, 5, 7) ∈ I22
10 (4.0.4)

and corresponding idempotent

e(imax) =

0 2 4 7 9 1 3 6 8 0 2 5 7 9 1 4 6 8 0 3 5 7
.

(4.0.5)
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We now introduce our symbolic notation. Firstly we represent an idempotent like (4.0.5) in the following way

e(imax) := (0, 2, 4, 7 | 9, 1, 3, 6 | 8, 0, 2,5 | 7, 1, 9, 4 | 6, 8, 0, 3 | 5, 7) (4.0.6)

where the separation lines | indicate jumps from a row to the next in µmax (although the separation lines are not
always meant to have an exact meaning, but rather to be a help for the eye). Secondly we introduce the following
dot notation for expressions like y19e(i

max)

y19e(i
max) := (0, 2, 4, 7 | 9, 1, 3, 6 | 8, 0, 2,5 | 7, 1, 9, 4 | 6, 8,

•
0, 3 | 5, 7). (4.0.7)

For any a ∈ Bn we denote by 〈a〉 the two-sided ideal in Bn generated by a. When a, b ∈ Bn and b ∈ 〈a〉 we say
that b factorizes over a.

We write i
k∼ j if i = skj where ik 6= ik+1 ± 1 and we let ∼ be the equivalence relation on I le generated by all

the
k∼’s. If i

k∼ j we say that i is obtained from j by freely moving the string of residue ik+1 past the string of
residue ik. We shall often use this concept as follows. Suppose that i ∼ j. Then we have both e(i) ∈ 〈e(j)〉 and

e(j) ∈ 〈e(i)〉, that is e(i) factorizes over e(j) and vice versa. Indeed, if i
k∼ j then by relation (3.0.21) we have that

e(i) = ψke(j)ψk as well as e(j) = ψke(i)ψk, from which the general case follows. In particular, we have in this
situation that e(i) = 0 if and only if e(j) = 0. The same way one sees that if i ∼ j where i = wj for w ∈ Sn, then
for all r we have yre(i) ∈ 〈yse(j)〉 and yse(j) ∈ 〈yre(i)〉 where s = w · r.

If i ∼ j we shall also write e(i) ∼ e(j) and yre(i) ∼ yse(j) where r and s are related as before. When using the
symbolic notation as in (4.0.6) we associate with ∼ a similar meaning.

We aim at proving that yke(i
max) = 0 for all k = 1, . . . , n. This is straightforward for small k, but gets more

complicated when k grows. Let us illustrate the argument on a few small values of k, using the above example
(4.0.5).

For k = 1 we must show that

y1e(i
max) = (

•
0, 2, 4, 7 | 9, 1, 3, 6 | 8, 0, 2,5 | 7, 1, 9, 4 | 6, 8, 0, 3 | 5, 7) (4.0.8)

is equal to zero; this is however an instance of relation (3.0.17). For k = 2 we must show that

(0,
•
2, 4, 7 | 9, 1, 3, 6 | 8, 0, 2,5 | 7, 1, 9, 4 | 6, 8, 0, 3 | 5, 7) = 0. (4.0.9)

Here we may move 2 freely past 0 and so

(0,
•
2, 4, 7 | . . . | 6, 8, 0, 3 | 5, 7) ∼ (

•
2, 0, 4, 7 | . . . | 6, 8, 0, 3 | 5, 7) = 0 (4.0.10)

where the last equality follows from (3.0.17), once again. The same kind of argument shows that y3e(i
max) =

y4e(i
max) = 0. For these small values of k, one can formulate these arguments diagrammatically. Here is the case

k = 4:
y4e(i

max) = ψ3ψ2ψ1

(
y1e(s1s2s3i

max)
)
ψ1ψ2ψ3 =

0 2 4 7 9 1 3 6 8 0 2 5 7 9 1 4 6 8 0 3 5 7

= 0
(4.0.11)

where the last equality follows from the fact that y1e(s1s2s3i
max), that is the middle part of the diagram (4.0.11),

is equal to zero.
Let us now go on showing that yke(i

max) = 0 for k = 5, 6, 7, 8 corresponding to the second row of the residue
diagram [res(tttmax)]. For k = 5 we must show that

y5e(i
max) = (0, 2, 4, 7 |

•
9, 1, 3, 6 | 8, 0, 2, 5 | 7, 1, 9, 4 | 6, 8, 0, 3 | 5, 7) = 0. (4.0.12)

But
•
9 moves freely past 7, 4, 2 and so we have

(0, 2, 4, 7 |
•
9, 1, 3, 6 | . . . | . . . | 5, 7) ∼ (0,

•
9, 2, 4, 7 | 1, 3, 6 | . . . | . . . | 5, 7) (4.0.13)
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which we must show to be zero. But using Lemma 3.0.8 we have that

(0,
•
9, 2, 4, 7 | . . . | 5, 7) ∈

〈
(
•
0, 9, 2, 4, 7 | . . . | 5, 7) , (9, 0, 2, 4, 7 | . . . | 5, 7)

〉
(4.0.14)

where 〈·〉 once again denotes ideal generation. Here the first ideal generator is zero by relation (3.0.17) whereas the
second ideal generator is zero by relation (3.0.16). The other cases k = 6, 7, 8 are treated essentially the same way.

Let us now consider the cases where k corresponds to the third row of [res(tttmax)], that is we show that
yke(i

max) = 0 for k = 9, 10, 11, 12. For k = 9 we must show that

y9e(i
max) = (0, 2, 4, 7 | 9, 1, 3, 6 |

•
8, 0, 2, 5 | 7, 1, 9, 4 | 6, 8, 0, 3 | 5, 7) = 0. (4.0.15)

But
•
8 moves freely past 6, 3 and 1 and so we have

y9e(i
max) ∼ (0, 2, 4, 7 | 9,

•
8, 1, 3, 6 | 0, 2, 5 | 7, 1, 9, 4 | 6, 8, 0, 3 | 5, 7) (4.0.16)

which we must show to be zero. But by Lemma 3.0.8 we have that

(0, 2, 4, 7 | 9,
•
8, 1, 3, 6 | . . . | 5, 7)∈

〈
(0, 2, 4, 7 |

•
9, 8, 1, 3, 6 | . . . | 5, 7) , (0, 2, 4, 7 | 8, 9, 1, 3, 6 | . . . | 5, 7)

〉
. (4.0.17)

Here the first generator is zero by (4.0.12) and for the second generator we have that

(0, 2, 4, 7 | 8, 9, 1, 3, 6 | . . . | 5, 7) ∼ (7, 8, 0, 2, 4 | 9, 1, 3, 6 | . . . | 5, 7) (4.0.18)

which is zero by relation (3.0.16). The other cases k = 10, 11, 12 are treated similarly. For k corresponding to the
next block, the inductive argument becomes more complicated and we prefer to present it as part of the proof of
the general statement yke(i

max) = 0.

Lemma 4.0.1. In Bn we have for all 1 ≤ k ≤ n the following relations

yke(i
max) = 0 = e(imax)yk. (4.0.19)

Proof. By (3.0.6) we know that yk and e(imax) commute and so we only need to prove the first relation.

We prove it by induction on n. For n = 1 it is trivial. We next prove it for a fixed n, assuming that it holds for
n1 < n. For this fixed n, we use induction on k.

The basis step for this induction is 1 ≤ k ≤ l, which is however easily handled using the same arguments as
in the above example (4.0.6) and the case l + 1 ≤ k ≤ 2l where k belongs to the second row of µmax can also be
treated this way.

Let us now consider the case (m− 1)l + 1 ≤ k ≤ ml where m ≥ 3. Since (m− 1)l + 1 ≤ k ≤ ml we have that k
belongs to the m’th row of [µmax]. Suppose that κj1, . . . , κ

j
l are the residues of the j’th row of [res(tttmax)] and that

the residue of tttmax(k) is α. Then we must show that

yke(i
max) = (. . . | κm−1

1 , . . . , α+ 1, . . . , κm−1
l | κm1 , . . . ,

•
α, . . . , κml | . . . ) = 0. (4.0.20)

Here α+1 is the residue of the node on top of tttmax(k) and so we can move
•
A freely over the residues between them.

Hence (4.0.21) is equivalent to

(. . . | κm−1
1 , . . . , α+ 1,

•
α, . . . , κm−1

l | κm1 , . . . , α̂, . . . , κml | . . . ) = 0 (4.0.21)

which by Lemma 3.0.8 is equivalent to the ideal〈
(. . . | κm−1

1 , . . . ,
•

(α+ 1), α, . . . , κm−1
l | κm1 , . . . , α̂, . . . , κml | . . . ),

(. . . | κm−1
1 , . . . , α, α+ 1, . . . , κm−1

l | κm1 , . . . , α̂, . . . , κml | . . . )
〉 (4.0.22)

being zero. Here the first ideal generator is zero by induction since

(. . . | κm−1
1 , . . . ,

•
(α+ 1)) = 0 (4.0.23)
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by the inductive hypothesis on n: this is the residue sequence of a tttmaxn1
where n1 < n. Here we also used that

concatenation maps zero to zero by Lemma 3.0.10. We therefore focus on the second ideal generator of (4.0.22),
that is

(. . . | κm−1
1 , . . . , α, α+ 1, . . . , κm−1

l | κm1 , . . . , α̂, . . . , κml | . . . ) (4.0.24)

which is obtained from the original sequence e(imax) by moving α past α + 1. We have that yke(i
max) = 0 if and

only if this sequence (4.0.24) is zero. In (4.0.24) we now move α further to the left until it hits its first obstacle
which will be α− 1: this is so due the combinatorial structure of [tttmax] and strong adjacency-freeness of κ̂. On top
of the node of residue α there is a node of residue α− 1 that can be freely moved to the right until it stands next
to α. Doing this we find that (4.0.24) is zero if

(. . . α(α− 1)α . . . | κm−1
1 , . . . , α̂, α+ 1, . . . , κm−1

l | κm1 , . . . , α̂, . . . , κml | . . . ) (4.0.25)

is zero. We now apply Lemma 3.0.9 to the triple α(α− 1)α and get that (4.0.25) is zero if the ideal〈
(. . .

•
αα(α− 1) . . . | κm−1

1 , . . . , α̂, α+ 1, . . . , κm−1
l | κm1 , . . . , α̂, . . . , κml | . . . ),

(. . . (α− 1)αα . . . | κm−1
1 , . . . , α̂, α+ 1, . . . , κm−1

l | κm1 , . . . , α̂, . . . , κml | . . . )
〉 (4.0.26)

is zero. As before, by induction on n the first generator is here equal to zero and so yke(i
max) = 0 if and only if

the second term of (4.0.26) is zero. We now go on the same way, moving α − 1 to the left, until it hits a residue
α−2 and as before yke(i

max) = 0 if the interchanging of those nodes produces a diagram which is zero. Continuing
in this way, the interchanging of nodes will finally take place in the first two rows of [µmax], where by relations
(3.0.15) and (3.0.16) it does produce zero.

We have the following consequence of the Lemma.

Corollary 4.0.2. Suppose that ι ∈ Ie and that the concatenation imaxn ι is not of the form iλ for λ any multipartition
of n+ 1. Then we have that

e(imaxn ι) = 0. (4.0.27)

Proof. We have that
e(imaxn ι) = (. . . | κm−1

1 , . . . , κm−1
l | κm1 , . . . , κml | . . . | ι ). (4.0.28)

By the strong adjacency-freeness ι moves here freely to the left until it hits another ι or a pair ι(ι− 1). In the first

case, using Lemma 3.0.6 we replace the appearing ιι by
•
ι i, and get by the Lemma that e(imaxn ι) = 0, as claimed.

In the second case, we replace ι(ι − 1)ι by a linear combination of
•
ι ι(ι − 1) and (ι − 1)ιι. Proceeding as in the

Lemma, we finally find that this is zero.

Let us illustrate the Corollary on the example
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1

0
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8

7

,

4

3

2

1

0

,

7

6

5

4

3


(4.0.29)

already considered in (4.0.3). Here we can use ι 6= 4, 6, 9, 2 in the Corollary. We then conclude from the Corollary
that

e(0, 2, 4, 7, 9, 1, 3, 6, 8, 0, 2, 5, 7, 9, 1, 4, 6, 8, 0, 3, 5, 7, ι) = 0

for these choices of ι.

We generalize the previous Lemma and Corollary to arbitrary multipartitions in the following way. Recall that
< is the total order introduced in (2.0.21).

Lemma 4.0.3. For λ any multipartition of n and for 1 ≤ k ≤ n we have that

yke(i
λ) = e(iλ)yk =

∑
µ>λ

Dµ (4.0.30)
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where the sum runs over multipartitions µ of n and Dµ factorizes over e(iµ). Suppose moreover that Dλ is any

element of Bn and that Dλ factorizes over e(iλ) and assume ι ∈ Ie. Then we have that

Dλ · ι =
∑
µ>λ

Cµ (4.0.31)

where µ runs over multipartitions of n+ 1 and Cµ factorizes over e(iµ). Furthermore, if iλι is not of the form iν

for any multipartition ν of n+ 1 then we have that

Dλ · ι =
∑
µ|n>λ

Cµ (4.0.32)

where once again the sum runs over multipartitions µ of n+ 1 and Cµ factorizes over e(iµ).

Proof. We first give an example which might be useful to have in mind while going through the arguments of the
actual proof. For n = 28, e = 9 and λ = ((16), (14), (19), (19)) we have the following residue diagram for tttλ
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
. (4.0.33)

In this case, in order to prove (4.0.30) we must show for 1 ≤ i ≤ 27 that yie(i
λ) is a linear combination∑

µ>λDµ as indicated and for (4.0.32) we must show that for ι ∈ Ie \ {4, 6} we have that Dλ · ι is a linear
combination

∑
µ|n>λ Cµ as indicated.

We now prove all statements of the Lemma by induction on n, the basis case n = 1 being straightforward. We
first prove (4.0.30) by induction on k. For k < n we use the inductive hypothesis on n to write yke(i

λ |k) in the
form

yke(i
λ|k) =

∑
µ>λ|k

Dµ (4.0.34)

where the sum runs over multipartitions µ of k and Dµ ∈ 〈e(iµ)〉. Let iλ = (i1, i2, . . . , in). We then get yke(i
λ) =

yke(i
λ|k ik+1 · · · in) in the form

yke(i
λ) =

∑
τ>µ>λ|k

Dτ (4.0.35)

by concatenating each Dµ on the right with ik+1 · · · in and using in each step the inductive hypothesis for (4.0.31).
Here µ is as in (4.0.34) whereas τ runs over multipartitions of n. But τ > µ > λ |k implies τ > λ and so (4.0.35)
has the form indicated in (4.0.30).

In order to show (4.0.30) for k = n we return to our symbolic notation. We have

e(iλ) = (κ1
1, . . . , κ

1
l1 | κ2

1, . . . , κ
2
l2 | · · · | κr1, . . . , κrlr ) (4.0.36)

where κj1, . . . , κ
j
lj

are the residues of the j’th row of [λ]. In this notation, in order to show (4.0.30) we must show
that

yne(i
λ) = (κ1

1, . . . , κ
1
l1 | κ2

1, . . . , κ
2
l2 | · · · | κr1, . . . ,

•
α) =

∑
µ>λ

Dµ (4.0.37)

where α = κrlr .

We now move
•
α freely to the left until it meets its first obstacle, which by strong adjacency-freeness is α + 1

coming from the node on top of the node of
•
α. We next use Lemma 3.0.8 to replace our sequence involving (α+1)

•
α

by a linear combination of sequences involving (
•

α+ 1)α and α(α + 1). As in the proof of (4.0.35) the first term
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involving (
•

α+ 1)α is of the indicated form by induction hypothesis and we must therefore consider the second term
α(α + 1). We here move α freely to the left until it meets its first obstacle which must be α, α + 1 or α − 1. If it

is α we use Lemma 3.0.6 to replace αα by
•
αα and can once again use the induction hypothesis. If it is α − 1, the

situation gives rise to a triple α(α− 11)A where the first α comes from the residue on top of the node of α− 1. On

this triple, we use Lemma 3.0.9 to rewrite α(α− 1)α as a linear combination of
•
αα(α− 1) and (α− 1)αα. Here the

first term is dealt with using the induction hypothesis for (4.0.30), whereas the second term is dealt with using the
induction hypothesis for (4.0.31).

We now consider the third case where α meets α + 1. (In the previous Lemma 4.0.1, this case did not occur).
But this case corresponds to a gap in the diagram, where α can be positioned giving rise to the diagram µ of a
multipartition that satisfies µ > λ. Summing up, this proves the inductive step of (4.0.30). The µ’s that appear in
the final expansion (4.0.30) are exactly those that arise from this last case.

Let us now focus on the claims (4.0.31) and (4.0.32). Clearly it is enough to show them for Dλ = e(iλ) so let
us do that. We first note that (4.0.31) is a consequence of (4.0.32). Indeed, if iλι is not of the form iν for any
multipartition ν we have from (4.0.32) that

Dλ · ι =
∑
µ|n>λ

Cµ =
∑
µ>λ

Cµ (4.0.38)

where we for the last equality used that in general µ > µ |n, see the definition of > given in (2.0.21). On the other
hand, if iλι = iν for a multipartition ν of n+ 1, then we have that ν > λ and e(iλι) = e(ν) = Cν and so (4.0.31)
also holds in this case.

Let us now prove (4.0.32) by downwards induction on <. For iλ = imax, it holds by Corollary 4.0.2. We now
fix an arbitrary multipartition λ and assume that (4.0.32) has been proved for multipartitions ν such that ν > λ.
Then in the above sequence notation, and writing α for ι, for (4.0.32) we must show that

e(iλ) · ι = (κ1
1, . . . , κ

1
l1 | κ2

1, . . . , κ
2
l2 | · · · | κr1, . . . , κrlr | α) =

∑
µ|n>λ

Cµ (4.0.39)

where α is positioned in the n + 1’st position. Since we assume that the sequence is not of the form iν for ν for
any multipartition we can move α to the left until it meets its first obstacle, which must be α, α − 1 or α + 1. If

it is α we proceed essentially as before: we use Lemma 3.0.6 to replace αα by
•
αα and can now use the induction

hypothesis. Indeed, if
•
α is situated in the k’th position we are dealing with yke(i

λ) = yke(i
λ |k ik+1 · · · inin+1)

where in+1 = κrlr and so on for the other ij ’s. Using the inductive hypothesis for n on (4.0.30) and (4.0.31) we get,
arguing as in connection with (4.0.35), that

yke(i
λ|k ik+1 · · · in) =

∑
τ>λ

Dτ (4.0.40)

where τ runs over multipartitions of n. Finally, we use the inductive hypothesis for < to write

e(iλ) · ι = yke(i
λ|k ik+1 · · · inin+1) =

∑
τ>λ

Dτ · in+1 =
∑

µ>τ>λ

Dµ =
∑
µ|n>λ

Dµ (4.0.41)

where the last equality follows from the fact that τ and µ run over multipartitions of n and n+ 1. Hence (4.0.41)
has the form required for (4.0.32).

If the first obstacle is α−1 we essentially argue as before: the situation gives rise to a triple α(α−1)α which we

rewrite, using Lemma 3.0.9, as a linear combination of
•
αα(α−1) and (α−1)αα. Arguing as for (4.0.40) and (4.0.41)

we get the term involving
•
αα(α− 1) in the form indicated in (4.0.31), whereas for the term involving (α− 1)αα we

use the inductive hypothesis for (4.0.31).
Finally, if the first obstacle is α+ 1 we also argue as before, essentially. Indeed, in this situation there is a gap

where α can be placed. This gives rise to a multipartition τ of k such that τ > λ|k where k is the position of α
and so we get, arguing as before, that

e(iλ) · ι = e(iτ ik+1 · · · inin+1) =
∑
µ|n>λ

Dµ. (4.0.42)

This finishes the proof of the Lemma.
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Corollary 4.0.4. For each i ∈ Ine there is an expansion in Bn of the form

e(i) =
∑
µ

Dµ (4.0.43)

where the sum runs over multipartitions µ of n and Dµ factorizes over e(iµ).

Proof. We argue by induction on n, the base case n = 1 being trivial. Assuming that (4.0.43) holds for n − 1 we
prove it for n. Suppose that i = (i1, . . . , in−1, in) and set in−1 = (i1, . . . , in−1). Then by induction we have that

e(in−1) =
∑
µn−1

Dµn−1
(4.0.44)

where µn−1 runs over multipartitions of (n − 1) and where Dµn−1
factorizes over e(iµn−1). Using (4.0.31) of the

previous Lemma 4.0.3 we then get

e(i) = e(in−1)in =
∑
µn−1

Dµn−1
in =

∑
µn−1

∑
ν>µn−1

Dν (4.0.45)

and so e(i) is of the form claimed in (4.0.43).

For any w ∈ Sn we choose once and for all a reduced expression si1si1 · · · siN and define ψw ∈ Bn via this
expression

ψw := ψi1ψi1 · · ·ψiN . (4.0.46)

Note that ψw depends on the choice of reduced expression, not just on w. We denote by official reduced expression
for w the expression used in (4.0.47). If w1 = sj1sj1 · · · sjN is another, ’unofficial’, reduced expression for w then
the error term in using w1 instead of w can be controlled, in the sense that we have that

ψw − ψj1ψj1 · · ·ψjN =
∑

k∈Nn0 ,v∈Sn,w<v
ck,v y

k ψv =
∑

k∈Nn0 ,v∈Sn,w<v
dk,v ψv y

k (4.0.47)

where ck,v, dk,v ∈ F and where for k = (k1, . . . , kn) ∈ Nn0 we define y k := yk1
1 · · · yknn ∈ Bn.

Let λ ∈ Par1
n be a one-column multipartition and suppose that sss, ttt ∈ Tab(λ). For the associated group elements

d(sss), d(ttt) ∈ Sn we have ψd(sss), ψd(ttt) ∈ Bn defined via the official reduced expression for d(sss) and d(ttt). We then set

msssttt = ψ∗d(sss)e(i
λ)ψd(ttt) ∈ Bn (4.0.48)

and define Cn ⊆ Bn via
Cn := {msssttt | sss, ttt ∈ Std(λ),λ ∈ Par1

n}. (4.0.49)

A main goal of our thesis is to show that Cn is a cellular basis for Bn. Our first step towards this goal is to show
that Cn is a generating set for Bn. We start with the following Lemma.

Lemma 4.0.5. Suppose that Dλ ∈ Bn factorizes over e(λ). Then there is an expansion of the form

Dλ =
∑

sss,ttt∈Tab(µ),µ≥λ
cssstttmsssttt (4.0.50)

where csssttt ∈ F.

Proof. It is known that
S := {e(i) y k ψw | i ∈ Ine , k ∈ Nn0 , w ∈ Sn} (4.0.51)

spans the KLR-algebra Rn over F, see (2.7) of [7] and section 2.3 of [20]. In fact, any permutation of the three
factors of S also gives an F-spanning set for Rn over F. But by definition Bn is a quotient of Rn and so these sets
also span Bn over F.

We now prove (4.0.50) using downwards induction on <. The induction basis is given by the multipartition
λ := µmaxn , introduced in (2.0.5). We may assume that Dλ = a e(iλ) b where a, b ∈ B, since Dλ is a linear
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combination of such expressions. We now expand a in terms of the variation of S that uses the product order
ψwy

k e(i) and then expand b in terms of S. Inserting, we find expressions of the form

Dλ =
∑

v,w,k1,k2

cv,w,k1,k2
ψvy

k1e(iλ)y k2ψw =
∑
v,w

cv,wψve(i
λ)ψw (4.0.52)

where we used Lemma 4.0.1 for the second equality. For each appearing v, w we must now show that ψve(i
λ)ψw is

a linear combination of msssttt where sss, ttt ∈ Tab(λ). We set sss := tttλv−1 and ttt := tttλw. Then we have by definition that
d(sss) = v−1 and d(ttt) = w and so

Dλ =
∑
v,w

cv,wψve(i
λ)ψw =

∑
sss,ttt

cssstttmsssttt (4.0.53)

and so we obtain the required expansion for Dλ, at least in the basis case λ = µmaxn .
We next show the existence of the expansion (4.0.50) for Dλ for a general λ, assuming that it exists for all

µ > λ. Once again we may assume that Dλ = a e(iλ) b where a, b ∈ Bn and once again we expand a in terms of
the variation of S that uses the product order ψwy

k e(i) and b in terms of S. Inserting, we now get an expression
of the form

Dλ =
∑

v,w,k1,k2

cv,w,k1,k2
ψvy

k1 e(iλ)y k2 ψw =
∑
v,w

cv,wψve(i
λ)ψw +

∑
µ>λ

Dµ (4.0.54)

where we this time used Lemma 4.0.3 for the last equality. Arguing as we did in the inductive basis step we now
rewrite

∑
v,w cv,wψve(i

λ)ψw as a linear combination of msssttt’s and then get

Dλ =
∑

sss,ttt∈Tab(λ)

cssstttmsssttt +
∑
µ>λ

Dµ. (4.0.55)

We now use the inductive hypothesis on the terms Dµ to conclude the proof of the Lemma.

Lemma 4.0.6. The subset of Bn given by

{msssttt | λ ∈ Par1
n, sss, ttt ∈ Tab(λ)} (4.0.56)

spans Bn over F.

Proof. Choose b ∈ Bn and expand it in terms of S as follows

b =
∑

ci,k,w e(i) y
k ψw (4.0.57)

where ci,k,w ∈ F. Using Corollary 4.0.4 we write each appearing e(i) as a linear combination of Dµ’s where µ runs
over multipartitions and Dµ factorizes over e(iµ). Inserting this in (4.0.57) we find that any b ∈ Bn is a linear
combination of Dµ’s. We can then apply the previous Lemma 4.0.5 to conclude the proof of the Lemma.

Our next goal is to show that the non-standard tableaux are not needed in (4.0.56). Our method for proving
this is an adaption of Murphy’s method using Garnir tableaux, see [31] and [35].

Let λ be a multipartition and ggg a λ-tableau. We say that ggg is a Garnir tableau if there is an 1 ≤ i < n such
that

a) ggg is not standard, but gggsi is standard.

b) If s ∈ S and gggsB ggg then s = si.

Here are some examples 
2

1
,

3

5

6

7

,

4
 ,


3

2
,

4

5

6

7

,

1
 ,


1

6

12

15

,

2

7

13
,

3

11

10
,

4

8

14
,

5

9

 . (4.0.58)

In order to get a better description of Garnir tableaux we introduce some further notation. Let λ be a one-
column multipartition and let γ = (r, 1,m) be a node of [λ], which does not belong to the first row of [λ]. We then
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denote by γ+ the node (r− 1, 1,m) of [λ], that is γ+ is the node of [λ] that is situated on top of γ in [λ]. We then
define the Garnir snake of γ as the following interval in [λ] with respect to C

Snake(γ) := [γ, γ+] = {τ ∈ [λ] | γ E τ E γ+}. (4.0.59)

We also define
nSnake(γ) := {i ∈ n | tttλ(i) ∈ [γ, γ+]} (4.0.60)

that is nSnake(γ) is the set of numbers that are used to fill in Snake(γ) for tttλ.

For λ ∈ Par1
n and γ = (r, 1,m) a node of [λ], not belonging to the first row, we define the classical Garnir

tableau gggclas,γ by setting gggclas,γ(i) := tttλ(i) for i /∈ nSnake(γ) and by requiring that the numbers from nSnake(γ) are
filled in consecutively from left to right in Snake(γ) except for an upwards jump from γ to γ+. Here is an example
with γ = (3, 1, 3)

gggclas,γ =

 1

6

8

,

2

7

9

,

3

11

10

,

4

,

5

12

13

 . (4.0.61)

It should be noted that gggclas,γ is not a Garnir in the classical sense, as considered for example by Murphy and
Mathas. On the other hand, it is similar to the classical Garnir tableaux in the sense that if we view the components
of λ as the columns of an ordinary partition (possibly with ’missing’ nodes as in the example) then gggclas,γ becomes
a Garnir tableau in the classical sense.

We need another class of Garnir tableaux that we denote g̃ggγ . They are defined by filling in the numbers from
nSnake(γ) into Snake(γ) in increasing order, beginning with γ, then γ+ and the other nodes of the row of γ+ and
finally the remaining nodes of the row of γ. Here is an example with γ = (3, 1, 3)

g̃ggγ =

 1

6

11

,

2

7

12

,

3

9

8

,

4

,

5

10

13

 . (4.0.62)

Recall the weak order � on Tab(λ). The following Lemma relates it to Garnir tableaux. Set first NStd(λ) :=
Tab(λ) \ Std(λ), that is sss ∈ NStd(λ) if and only if sss is a non-standard λ-tableau.

Lemma 4.0.7. Suppose that ttt ∈ NStd(λ). Then

a) The tableau ttt is a maximal in NStd(λ) with respect � if and only if ttt is a Garnir tableau.

b) If ttt is a maximal in NStd(λ) with respect B then ttt is a Garnir tableau.

Proof. Let us first prove a) of the Lemma. Assume that ttt is a maximal tableau in NStd(λ) with respect to �. Then
for all si ∈ S we have that either tttsi C ttt or tttsi ∈ Std(λ). If tttsi C ttt for all i we have that ttt = tttλ which contradicts
that ttt ∈ NStd(λ). Hence there is an si0 such that tttsi0 B ttt and for this si0 we have tttsi0 ∈ Std(λ) by maximality of
ttt in NStd(λ). On the other hand, there can only be one si0 with this property. Indeed, suppose that also tttsj0 B ttt.
Setting uuu := tttsi0 and vvv := tttsj0 we have that uuu and uuusi0sj0 are standard tableaux, whereas uuusi0 is non-standard.
This is only possible if i0 = j0 and so ttt is a Garnir tableau, as claimed.

Now assume that ttt is not a maximal tableau in NStd(λ) with respect to � . Then there is an s ∈ S such that
tttsB ttt and ttts ∈ NStd(λ). This implies that ttt is not a Garnir tableau.

We now show b) of the Lemma. If ttt is a maximal tableau in NStd(λ) with respect to B then ttt is also a maximal
tableau in NStd(λ) with respect to �, since � is a weaker order than B, and so ttt must be a Garnir tableau by a).
This proves b) of the Lemma.

The converse of b) of the Lemma does not hold as can be seen in the following example. Let λ = (12, 12, 12, 12, 1)
and define

ggg1 =

(
1

7
,

2

8
,

5

4
,

6

9
,

3
)
,ggg2 =

(
1

3
,

2

8
,

5

4
,

6

9
,

7
)
. (4.0.63)

Then both ggg1 and ggg2 are Garnir tableaux, and it is easy to see that ggg1 B ggg2 and so ggg2 is not a maximal tableau in
NStd(λ) with respect to B.
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Corollary 4.0.8. Let ttt be a λ-tableau which is non-standard. Then there exists a Garnir tableau ggg and a w ∈ Sn

such that ttt = gggw and l(d(ttt)) = l(d(ggg)) + l(w).

Proof. This is a consequence of a) of Lemma 4.0.7.

Let us now give our characterization of Garnir tableaux.

Lemma 4.0.9. Given a multipartition λ of n and let ggg be a λ-tableau. Then ggg is a Garnir tableau if and only if
there is a node γ ∈ [λ], not belonging to the first row, and an i0 ∈ n such that

(1) ggg(i0) = γ and ggg(i0 + 1) = γ+.

(2) For all i 6= i0 we have ggg(i)B ggg(i+ 1).

(3) For all i ∈ n \ nSnake(γ) we have that ggg(i) = tttλ(i).

Proof. Suppose first that ggg is a Garnir tableau. Then ggg is not standard and maximal with respect to ≺ and hence
there is an i0 ∈ n such that gggsi0 is standard. The entries i0 and i0 + 1 belong to the same component (column)
of [λ] and ggg(i0 + 1) B ggg(i0). Let γ = ggg(i0 + 1) and β = ggg(i0). Suppose that β+ 6= γ and choose a ∈ n such that
ggg(a) = β+. Then γBβ+ and since gggsi0 is standard we have that i0 < a < i0 + 1, a contradiction. Therefore β = γ+

and by definition ggg(i0)+ = ggg(i0 + 1).
Since ggg is a Garnir tableaux, we have for i 6= i0 that gggB gggsi and then ggg(i)B ggg(i+ 1), see a) of Lemma 2.0.2.
Let us say that i ∈ n defines a simple non-inversion if ggg(i)B ggg(i+ 1) and that i ∈ n defines a simple inversion

if ggg(i) C ggg(i + 1). With this terminology we have so far proved that i0 is the only simple inversion of n, all other
elements are simple non-inversions.

Let k0 = min(ggg−1(Snake(γ))) and k1 = max(ggg−1(Snake(γ))). Since i0 is the only inversion of n we have that
k0 − 1 appears before k0 in ggg whereas k0 − 2 appears before k0 − 1 and so on until 1. On the other hand, no j > k0

can appear before k0 in ggg, since for the smallest such j we would have that j − 1 is a inversion distinct from i0.
We have thus showed that for i = 1, 2, . . . , k0 − 1 we have that ggg(i) = tttλ(i). Similarly, one shows that also for
i = k1 + 1, k1 + 2, . . . , n we have that ggg(i) = tttλ(i). Thus we have that ggg−1(Snake(γ)) = nSnake(γ) and that ggg verifies
the conditions (1), (2) and (3) of the Lemma.

Finally, if ggg is a λ-tableau verifying the conditions (1), (2) and (3) of the Lemma, then clearly ggg is a Garnir
tableau.

For the next Lemma we need condition iii) from Definition 3.0.1 of strong adjacency-freeness.

Corollary 4.0.10. Let λ be a multipartition and let γ ∈ [λ]. Suppose that ggg1 and ggg1 are Garnir tableaux of the
same shape λ with respect to the same γ as in part (1) of the previous Lemma 4.0.9. Then e(iggg1) ∼ e(iggg2).

Proof. It is enough to prove that for any Garnir tableau ggg = ggg1, satisfying the conditions of the Corollary, we have
that ggg1 ∼ gggclas,γ . Let g be the one line (ordinary) partition g = (|nSnake(γ)|). Then we can view ggg |nSnake(γ)

as a
g-tableau t(ggg) by reading the numbers in Snake(γ) from left to right. The Garnir tableaux from (4.0.63) correspond
for example to the g-tableaux

t(ggg1) = 7 8 4 5 6 3 , t(ggg2) = 3 8 4 5 6 7 (4.0.64)

where g = (6), whereas gggclas,γ in general corresponds to tg (on the numbers nSnake(γ)), that is

tg = 3 4 5 6 7 8 (4.0.65)

in this case. Since κ̂ is strongly adjacency free, we have on the other hand that the residues of all of the nodes of
Snake(γ), except γ and γ+, differ by 2 or more. Let now w ∈ Sn be such that t(ggg)w = tg and choose a reduced
expression w = si1 · · · siN for w. Then, for all j, we have that sij+1

does not interchange the numbers appearing
in the nodes corresponding to γ and γ+ in tj := t(ggg)si1 · · · sij . For example, for t(ggg1) in (4.0.64) the sequence
si1 , . . . , siN never interchanges two numbers in the positions colored with red, and similarly for t(ggg2). The Corollary
follows from this.

We have the following Lemma.

Lemma 4.0.11. Suppose that λ ∈ Par1
n and that sss, ttt ∈ Tab(λ). If ttt ∈ NStd(λ) then there is an expansion

msssttt =
∑

ttt1∈Std(λ),ttt1Bttt,

csssttt1msssttt1 +
∑

µ>λ,sss2,ttt2∈Std(µ)

csss2ttt2msss2ttt2 (4.0.66)

where csssttt1 , csss2ttt2 ∈ F.
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Remark 4.0.12. A similar statement holds for sss.

Proof. We shall argue via downwards induction on λ with respect to <. Let us first consider the case λ = µmaxn .
We consider msssttt for sss, ttt ∈ Tab(λ) and suppose that ttt ∈ NStd(µmax). We show using downwards induction on ttt
with respect to C that msssttt, for ttt ∈ NStd(µmax), can be written in the form given by (4.0.66).

In view of b) of Lemma 4.0.7 the basis step for this induction is given by ttt = ggg a Garnir tableau. Let us do it.
By relation (3.0.7) we have that

msssggg = ψ∗d(sss)e(i
max)ψd(ggg) = ψ∗d(sss)ψd(ggg)e(i

ggg) (4.0.67)

and so for the basis step to work it is enough to prove that e(iggg) = 0. Let γ ∈ [µmax] be the node associated with
ggg as in Lemma 4.0.9. Using Lemma 4.0.10 we may assume that

e(iggg) ∼ e(ig̃ggγ ). (4.0.68)

Let j = g̃gg−1
γ (γ). Applying Corollary 4.0.2 to the restriction of g̃ggγ to the numbers {1, 2, . . . , j − 1} and ι = res(γ) we

now get that e(ig̃ggγ ) = 0, and so also e(iggg) = 0 which proves the claim in this case.
Let us now consider the case of a general non-standard µmaxn -tableau ttt. Using Corollary 4.0.8 there exists a

Garnir tableau ggg and a w ∈ Sn such that ttt = gggw and l(d(ttt)) = l(d(ggg)) + l(w). Hence there exists a reduced
expression for d(ttt) of the form d(ttt) = sii · · · siN sji · · · sjM where d(ggg) = sii · · · siN and w = sji · · · sjM . If this
reduced expression is the official one for d(ttt) we have that

msssttt = ψ∗d(sss)e(i
max)ψd(ggg)ψw = 0 (4.0.69)

by the inductive basis, proved above. If it is not the official expression for d(ttt) we have by (4.0.47) that the error
term that occurs when changing to the official expression is given by a linear combination of terms of the form ykψv
where k ∈ Nn0 and v > d(ttt). Now for any non-trivial factor yk we have that e(imax)yk is zero by Lemma 4.0.1 and
for the terms ψv we have by Theorem 2.0.4 that v = d(ttt1) with ttt1 B ttt, and so we may use the inductive hypothesis
on the non-standard ttt1’s that may occur.

Let us now consider a general multipartition λ 6= µmaxn . We consider msssttt for sss ∈ Tab(λ), ttt ∈ NStd(λ) and once
again use downwards induction on ttt with respect to C to show that msssttt, for ttt ∈ NStd(µmax), can be written in the
form given by (6.0.9). For ttt maximal in NStd(λ) we have that ttt = ggg is a Garnir tableau for λ and so, arguing the
same way as we did for (4.0.67), we get

msssggg = ψ∗d(sss)e(i
max)ψd(ggg) = ψ∗d(sss)ψd(ggg)e(i

ggg). (4.0.70)

Passing to g̃ggγ as we did get in the inductive basis case, and using (4.0.31) and (4.0.32) of Lemma 4.0.3, we then get

msssggg =
∑
µ>λ

Dµ =
∑

sss,ttt∈Tab(µ),µ>λ

cssstttmsssttt (4.0.71)

where we used Lemma 4.0.5 for the second equality. We then use the inductive hypothesis on each appearing msssttt,
to rewrite in terms of msss1ttt1 for sss1 and ttt1 standard tableaux. This concludes the case ttt = ggg.

Finally, for the general non-standard λ-tableau ttt we have that

msssttt = ψ∗d(sss)e(i
λ)ψd(ggg)ψw =

∑
ttt1∈Std(λ),ttt1Bttt

cssstttmsssttt1 +
∑
µ>λ

Dµ (4.0.72)

where the second equality arises from the error terms ψ∗d(sss)e(i
λ)ykψv. But as before we can apply the induction

hypothesis on each Dµ rewriting it in terms of msss1ttt1 where sss1 and ttt1 are standard tableaux. This concludes the
general ttt-case. Finally the sss-case follows from the ttt-case by applying ∗ and so the Lemma is proved.

From the Lemma we deduce the following Corollary. It is the main result of this chapter.

Corollary 4.0.13. The subset Cn of Bn given by

Cn := {msssttt | λ ∈ Par1
n, sss, ttt ∈ Std(λ)} (4.0.73)

spans Bn over F.

Proof. This is a consequence of Lemma 4.0.5 and Lemma 4.0.11.
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Chapter 5

Linear Independence of Cn.

In this chapter we show that the set Cn constructed in (4.0.49) is a linearly independent set. Our methods used so
far, essentially being manipulations with the defining relations for Bn, are not sufficient for proving this and in fact
it cannot even be proved that msssttt is non-zero with these methods.

To show the linear independence of Cn we shall rely on the seminal work by Brundan-Kleshchev and Rouquier,
see [7], [39] that establishes an isomorphism between the cyclotomic KLR-algebra Rn and the cyclotomic Hecke
algebra Hn.

Let us give the precise definition of the relevant cyclotomic Hecke algebra.

Definition 5.0.1. Let F, e and κ̂ ∈ Zl be as above, and let q ∈ F \ {1} be an e’th primitive root of unity. The
cyclotomic Hecke algebra Hn(q, κ) is the F-algebra with generators L1, . . . , Ln, T1, . . . , Tn−1 and relations

(L1 − qκ1) · · · (L1 − qκl) = 0 (5.0.1)

(Tr + 1)(Tr − q) = 0 (5.0.2)

TsTs+1Ts = Ts+1TsTs+1 (5.0.3)

LrLs = LsLr, TrLr = Lr+1(Tr − q + 1) (5.0.4)

TrLs = LsTr if |r − s| > 1 and TrTs = TsTr if s 6= r, r + 1 (5.0.5)

for all admissible r, s.

It follows from the relations that there is antiinvolution ∗ of Hn, fixing the generators Ti and Li. We have that
Tr is invertible with T−1

r = q−1(Tr − q + 1). From this one gets that

Lr+1 = q−1TrLrTr (5.0.6)

and so L2, . . . , Ln are actually redundant for generating Hn. The elements Li are called Jucys-Murphy elements
for Hn.

Let q̂ be a variable and let K be the quotient field of the polynomial ring F[q̂]. Let O be the subring of K given

by O := { f(q̂)
g(q̂) | f(q̂), g(q̂) ∈ F[q̂], g(q) 6= 0}. Then O is a local ring with maximal ideal m := (q̂ − q) = { f(q̂)

g(q̂) ∈ O |
f(q) = 0}. The evaluation map O → F, f(q̂)

g(q̂) 7→
f(q)
g(q) induces an isomorphism O/m ∼= F and so the triple (O,F,K)

is a modular system.

Let HOn = HOn (q̂, κ) be the O-algebra given by the same presentation as Hn, but replacing q by q̂ ∈ O, and let
similarly HKn = HKn (q̂, κ) be the K-algebra given by the same presentation used for Hn, but replacing q by q̂ ∈ K.
It is known that HOn is free over O of rank lnn!. Furthermore, we have that HOn ⊗O F ∼= Hn where F is made into
an O-algebra via evaluation in q, and that HOn ⊗O K ∼= HKn , via extension of scalars. It follows that Hn and HKn
both have dimension lnn!.
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The representation theory of Hn is governed by Parl,n, that is l-multipartitions of n. Let λ be an element of
Parl,n and let sss ∈ Tab(λ). Then we define the content function of sss via the formula

csss(i) = qres(sss(i)) ∈ F (5.0.7)

where res is as in (4.0.1). Note that since q is an e’th primitive root of unity, this makes sense. The content function
for HOn and HKn is defined via

cOsss (i) = cKsss (i) = q̂κ̂k+c−r ∈ O ⊆ K (5.0.8)

where sss(i) = (r, c, k). By the condition i) on the multicharge κ̂, the content function satisfies the separability
condition given in [32] and so HKn is a semisimple algebra.

The following concepts and results have their origin in Murphy’s papers. Let Std(n) := ∪λ∈ParnStd(λ). For sss
any element of Std(n) we define

Fsss :=

n∏
k=1

∏
ttt∈Std(n)

cKsss (k) 6=cKttt (k)

Lk − cKttt (k)

cKsss (k)− cKttt (k)
∈ HKn . (5.0.9)

It is known that the Fsss’s form a complete system of orthogonal idempotents. The Fsss’s are simultaneous eigenvectors
for the action of the Li’s and the corresponding eigenvalues are given by the contents:

LiFsss = FsssLi = cKsss (i)Fsss. (5.0.10)

Unfortunately, a construction in Hn similar to (5.0.9) does not lead to idempotents in Hn. Note also that
Fsss /∈ HOn because of the denominators. In order to get idempotents in HOn and Hn, we consider the sum over the
Fsss’s for sss belonging to a class of a certain equivalence relation on tableaux, that we now explain. Let sss and ttt be
tableaux for multipartitions λ and µ. Then we set sss ∼e ttt if res(sss(i)) = res(ttt(i)) mod e for all i, or equivalently
csss(i) = cttt(i) for all i. This indeed defines an equivalence class on the set of all tableaux. We denote by [sss] = [sss]e
the class under ∼e represented by sss and set

E[sss] :=
∑

ttt∈[sss]∩Std(n)

Fttt. (5.0.11)

Then Mathas has proved in [30], building on Murphy’s ideas in the symmetric group case, that E[sss] belongs to HOn
and hence E[sss] ⊗O 1 belongs to Hn. We shall write E[sss] for E[sss] ⊗O 1 as well. Clearly the E[sss]’s are orthogonal
idempotents in both Hn and HOn .

Any equivalence class [sss] gives rise to a residue sequence isss := (i1, i2, . . . , in) ∈ Ine via ij := csss(j). By construc-
tion, isss is independent of the choice of representative of [sss].

The Brundan-Kleshchev and Rouquier isomorphism Theorem establishes an isomorphism of F-algebras f : Rn ∼=
Hn. We need to explain the images of the generators under f .

In the case of f(e(i)), Brundan and Kleshchev describe it as the idempotent for the generalized eigenspace for
the joint action of the Li’s, that is

f(e(i))Hn = {h ∈ Hn | (Lk − ik)mh = 0 for some m > 1}. (5.0.12)

There is however a more concrete description of f(e(i)) due to Hu-Mathas, see [17]. It is of importance to us
because it allows us to lift f(e(i)) to HKn , via (5.0.11). It is given by the formula

f(e(i)) =

{
E[sss] if i = isss for some sss ∈ Std(n)
0 otherwise.

(5.0.13)

In order to describe f(yi) and f(ψi) it is enough to describe f(yi)E[sss] and f(ψi)E[sss], since we have that
∑

[sss]E[sss] = 1.

In [7] f(yi) is described as the ’nilpotent part of the Jucys-Murphy element Li’, or more precisely

f(yi)E[sss] =

(
1− 1

csss(i)
Li

)
E[sss]. (5.0.14)
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We have a lift of this to HKn as well. Supposing that csss(i) = qκm+c−r ∈ F we let ĉsss(i) := q̂κ̂m+ĉ−r̂ where ĉ− r̂ ∈ Z
is any preimage of c− r mod e. Then our lift of (5.0.14) is(

1− 1

csss(i)
Li

)∑
ttt∈[sss]

Fttt =
∑
ttt∈[sss]

(
1− cKttt (i)

ĉsss(i)

)
Fttt ∈ HKn . (5.0.15)

The yi’s are nilpotent elements of Rn. Using this, Brundan and Kleshchev define in [7] formal power series
Pi(i), Qi(i) in F[[yi, yi+1]]. They give the formula

ψie(i) = (Ti + Pr(i))Qi(i)
−1e(i) (5.0.16)

which defines f(ψi) since we already know f(yi) and f(e(i)).

To make use of these formulas we shall rely on {fsssttt | sss, ttt ∈ Std(λ),λ ∈ Parn}, the seminormal basis for HKn ,
constructed by Mathas in [30]. We have that

Fsssfsss1ttt1Fttt = δsss,sss1
δttt,ttt1fsssttt (5.0.17)

where δsss,sss1
and δttt,ttt1 are Kronecker delta functions, and so {fsssttt} is a K-basis for HKn consisting of eigenvectors for

the action of the Li’s.

We need the following analog of the classical formulas for the action of si on the seminormal basis of the group
algebra of the symmetric group. In this particular case, they are due to Mathas, see Proposition 2.7 of [30].

Proposition 5.0.2. Let sss and uuu be standard λ-tableaux and let ttt = ssssi. If ttt is standard then

fuuusssTi =


(q−1)cKttt (i)

cKttt (i)−cKsss (i)
fuuusss + fuuuttt if sssB∞ ttt

(q−1)cKttt (i)

cKttt (i)−cKsss (i)
fuuusss +

(qcKsss (i)−cKttt (i))(cKsss (i)−qcKttt (i))

(cKttt (i)−cKsss (i))2 fuuuttt if sssC∞ ttt

(5.0.18)

whereas if ttt is non-standard then

fuuusssTi =

 qfuuusss if i and i+ 1 are in the same row of sss

−fuuusss if i and i+ 1 are in the same column of sss.
(5.0.19)

There are versions of (5.0.18) and (5.0.19), with Ti multiplying on the left.

Actually there are some minor sign errors at this point in [30]. In fact, our formulas (5.0.18) are completely
identical with the formulas used by Mathas in [30], but only our formulas are correct since Mathas’ quadratic
relations take the form (Tr − 1)(Tr + q) = 0 whereas ours are (Tr + 1)(Tr − q) = 0, see (5.0.2).

Note that the formulas of the Proposition depend on the order E∞, although we believe that it is possible to
obtain similar formulas depending on E0. Note also that it follows from the formulas that spanK{fsssttt | shape(sss) =
λ0} is a two-sided ideal of HKn where λ0 is any fixed multipartition. Finally, note that all coefficients appearing in
the formulas are nonzero. In the case of the second coefficient of (5.0.18), this is a consequence of the condition i)
on the multicharge κ̂.

We have the following formula relating the seminormal basis to the Fttt’s

Fttt =
1

γttt
ftttttt (5.0.20)

where ttt is any standard tableau of a multipartition λ and where γttt ∈ K× is a known constant.

We need the following Lemma.

Lemma 5.0.3. Let λ ∈ Par1
n be a one-column multipartition and let tttλ be the maximal λ-tableau, as above. Suppose

that sss ∈ [tttλ]\{tttλ} and that shape(sss) ∈ Par1
n. Then sss > tttλ.

Proof. Let sss ∈ [tttλ] \ {tttλ} and let i ∈ n be minimal such that sss(i) 6= tttλ(i). The nodes sss(i) and tttλ(i) have the same
residues since sss ∼e tttλ and so strong adjacency-freeness of κ̂, together with the fact that sss is standard, implies that
i is situated higher in sss than in tttλ, that is sss(i) B tttλ(i). But then we have either sss > tttλ or shape(sss) /∈ Par1

n which
proves the Lemma.
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With these preparations, we can now prove the linear independence of our proposed basis.

Theorem 5.0.4. The set Cn = {msssttt | λ ∈ Par1
n, sss, ttt ∈ Std(λ)} introduced in (4.0.73) is linearly independent over

F and hence it is a basis for Bn.

Proof. Let us assume that there is a non-trivial linear dependence between the elements of Cn∑
sss,ttt

λssstttmsssttt = 0. (5.0.21)

Letting π : Rn → Bn be the projection map from the KLR-algebra to the blob-algebra and taking inverse images
on both sides of (5.0.21) we then get ∑

sss,ttt

λssstttmsssttt + p = 0 (5.0.22)

for some p ∈ kerπ and so ∑
sss,ttt

λssstttf(msssttt) + f(p) = 0. (5.0.23)

We now note that any f(msssttt) = f(ψ∗d(sss)e(i
λ)ψd(ttt)) can be written as a linear combination of terms of the form

T ∗v gv(y)E[tttλ]fw(y)Tw where gv(y), fw(y) ∈ F[y1, . . . , yn] for some v, w ∈ Sn with v ≥ d(sss) and w ≥ d(ttt) and where
gd(sss)(y) and fd(ttt)(y) are invertible, that is of nonzero constant terms. That this is possible follows from (5.0.13) and
an observation due to Hu and Mathas, see the proof of Lemma 5.4 of [17]. Combining this expansion with Lemma
4.0.3 we get that

f(msssttt) = T ∗d(sss)E[tttλ]Td(ttt) +
∑

v>d(sss),w>d(ttt)

µv,w T
∗
vE[tttλ]Tw +

∑
µ>λ

f(Dµ) + f(p1) (5.0.24)

where Dµ∈ 〈e(iµ)〉, µv,w ∈ F and p1 ∈ kerπ. This expression for f(msssttt) takes place in Hn, but can be lifted to HOn
via (5.0.13) and then embedded in HKn . Let us now analyse the various ingredients of (5.0.24), starting with f(p1).
We have that

kerπ = 〈e(i) | i1 ∈ {κ1, . . . , κl}, i2 = i1 + 1 mod e〉 ⊆ Rn (5.0.25)

corresponding to the omission of relation (3.0.3). Using (5.0.11) and (5.0.13) we then get that

f(p1) =
∑

sss∈Std(n)

∑
ttt∈[sss]

asssttt,1Fttt a
sss
ttt,2 (5.0.26)

where asssttt,1, a
sss
ttt,2 ∈ HKn and where sss ∈ Std(n) satisfies res(sss(1)) ∈ {κ1, . . . , κl} and res(sss(2)) = res(sss(1)) + 1 mod e.

These conditions, together with the conditions on κ̂, imply that for each ttt ∈ [sss] we have shape(ttt) /∈ Par1
n. Combining

this with Proposition 5.0.2 and (5.0.20) we get that

f(p1) ∈ spanK{fsssttt | sss, ttt ∈ Std(λ),λ /∈ Par1
n}. (5.0.27)

Let us now consider the terms f(Dµ) of (5.0.24). We have that

f(Dµ) =
∑

ttt∈[tttµ]

attt,1Fttt attt,2 (5.0.28)

where attt,1, attt,2 ∈ HKn . For each appearing ttt we have ttt > tttµ by Lemma 5.0.3. Combining this with µ > λ, that is
tttµ > tttλ, we get that ttt > tttλ and so there is a k such that ttt |k= tttλ|k and ttt(k+ 1)B tttλ(k+ 1). But then ttt(k+ 1) /∈ [λ],
which implies that shape(ttt) > λ. Hence we have that

f(Dµ) ∈ spanK{fsssttt | sss, ttt ∈ Std(ν),ν > λ}. (5.0.29)

Similarly, for all tableaux ttt in [tttλ] we have that shape(ttt) > λ. Hence from (5.0.24), (5.0.27) and (5.0.29) we get
that

f(msssttt) ∈ T ∗d(sss)FλTd(ttt) +
∑

v>d(sss),w>d(ttt)

µv,w T
∗
v FλTw + spanK{fsssttt | sss, ttt ∈ Std(ν),ν > λ or ν /∈ Par1

n} (5.0.30)
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where λ as a subscript refers to tttλ.
Let us now focus on T ∗d(sss)FλTd(ttt). Let d(ttt) = si1si2 · · · siN be a reduced expression for d(ttt). When calculating

fλTd(ttt) using this expression and Proposition 5.0.2, we obtain an expression for fλTd(ttt) as a K-linear combination
of certain fλuuu’s. But by the formulas of the Proposition, for each appearing uuu we have that d(uuu) is a subexpression
of si1si2 · · · siN and so by our version of the Ehresmann Theorem, that is Theorem 2.0.4, we have that tttEuuu for each
occurring fλuuu. Letting tttk := tttλsi1 . . . sik we have tttk+1 C tttk for all k = 1, . . . , N − 1 and so in the above expansion
of fλTd(ttt) the term fλttt corresponds exactly to the subexpression of si1si2 · · · siN where no si is omitted. By the
remarks following the Proposition, the corresponding coefficient αttt is nonzero and so we have

fλTd(ttt) = αtttftttλttt +
∑
uuuBttt

αuuuftttλuuu (5.0.31)

where αsss, αuuu ∈ K and where αttt 6= 0. Acting on the left with T ∗d(sss), and arguing the same way as we did for (5.0.31),
we obtain an expansion

T ∗d(sss)fλTd(ttt) = αssstttfsssttt +
∑
uuu,vvvBttt

αuuuvvvfuuuvvv (5.0.32)

where αvvvuuu, αsssttt ∈ K and where αsssttt 6= 0. Let us now focus on the term T ∗v FλTw of (5.0.30). But arguing as was done
for T ∗d(sss)FλTd(ttt), we can write T ∗v FλTw as a linear combination of fvvvuuu’s. Moreover, since v > d(sss) and w > d(ttt) we
get for each appearing uuu and vvv the relations uuuB sss and vvvB ttt.

All together we can now write (5.0.30) in the form

f(msssttt) ∈ αssstttfsssttt +
∑

uuuBsss,vvvBttt

αuuuvvvfuuuvvv + spanK{fsssttt | sss, ttt ∈ Std(ν),ν > λ or ν /∈ Par1
n} (5.0.33)

where αsssttt ∈ K× and αuuuvvv ∈ K.
Let us finally return to the linear dependency (5.0.23). Let us extend the order C to pairs {(sss, ttt) ∈ Std(λ)2 | λ ∈

Par1
n} via (sss, ttt)C(sss1, ttt1) if sssCsss1 and tttCttt1 and let us choose (sss0, ttt0) minimal such that λsss0ttt0 6= 0. Let λ0 = shape(sss0).

Using (5.0.33) we can rewrite (5.0.23) in terms of the fsssttt’s. In this expression, there are no cancellations for the
coefficient of fsss0ttt0 ’s which is therefore λsss0ttt0 ·αsss0ttt0 6= 0. But this is in contradiction with the fact that the fsssttt’s form
a basis for HKn and so the Theorem is proved.
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Chapter 6

Cellularity of Cn and JM-elements

In this chapter we obtain our main results of this part of the thesis, showing that Cn is a cellular basis for Bn with
respect to C, endowed with a family of JM-elements.

In the previous chapters we have proved that Cn is a basis for Bn and in fact one can even deduce from the
results of these sections that Cn is a graded cellular basis for Bn, with respect to <. However, we aim at proving
the stronger statement that Cn is a graded cellular basis with respect to C. The key combinatorial ingredient that
allows us to pass from < to C is given by the following two Lemmas.

Lemma 6.0.1. Let λ ∈ Par1
n be a one-column multipartition and let tttλ be the maximal λ-tableau, as before. Suppose

that ttt ∈ [tttλ] \ {tttλ} and that shape(sss) ∈ Par1
n. Then shape(ttt)B λ.

Proof. Set µ := shape(ttt). By Lemma 2.0.1 it is enough to find a bijection Θ : [λ]→ [µ] such that Θ(γ)D γ for all
γ ∈ [λ]. Our candidate for this bijection is Θ := ttt◦ (tttλ)−1. Surely Θ is a bijection so let us check that Θ satisfies the
order condition. Assume to the contrary that there is γ = tttλ(k) ∈ [λ] such that Θ(γ)Cγ, or equivalently ttt(k)Ctttλ(k),
and let k0 be the minimal such k. Let tttλ(k0) = (r0, 1, j0) and ttt(k0) = (r, 1, j). By strong adjacency-freeness of κ,
and the fact that tttλ(k0) and ttt(k0) have the same residue, we have that r > r0 + 1, that is ttt(k0) is located at least
two rows below tttλ(k0). But by minimality of k0 we have that ttt(k) is located above tttλ(k) for all k < k0. This is
impossible since ttt is standard.

For the next Lemma we need the conditions iii) and iv) from Definition 3.0.1 of strong adjacency-freeness.

Lemma 6.0.2. Let λ ∈ Par1
n be a one-column multipartition and let ggg be Garnir tableau of shape λ. Let ttt ∈ [ggg]\{ggg}

and suppose that shape(ttt) ∈ Par1
n. Then shape(ttt)B λ.

Proof. We shall follow the same approach as in the proof of the previous Lemma. Set µ := shape(ttt). As in the
previous Lemma it is enough to find a bijection Θ : [λ] → [µ] such that Θ(β) D β for all β ∈ [λ]. This time the
candidate for the bijection is Θ := ttt ◦ (ggg)−1. This Θ is also clearly a bijection so we must check that Θ satisfies the
order condition. Assume to the contrary that there is β = ggg(k) ∈ [λ] such that Θ(β)Cβ, or equivalently ttt(k)Cggg(k),
and let k0 be the minimal such k. Let ggg(k0) = (r0, 1, j0) and ttt(k0) = (r, 1, j). Using the previous Lemma, and part
(3) of the characterization of Garnir tableaux given in Lemma 4.0.9, we conclude that ggg(k0) ∈ Snake(γ), where γ
is the special node for the Garnir tableau ggg, according to Lemma 4.0.9. But then from strong adjacency-freeness
of κ̂ we conclude that r = r0 + 2, since there are no nodes of the same residue in consecutive rows of λ, that
is ttt(k0) = (r, 1, j) is situated two rows below ggg(k0) = (r0, 1, j0). On the other hand, using condition iv) of the
Definition 3.0.1 of strong adjacency-freeness, we get that those nodes in the r’th row of [res(tttλ)] that have the same
residues as nodes in the r0’th row, are all shifted one to the right. In other words, we have that j = j0 + 1. But
this produces a gap between ttt(k0) and Snake(γ) and so ttt cannot be standard. The Lemma is proved.

Let us illustrate this last point on the following example with λ = ((111), (111), (111), (110), (1), (12)), e = 13 and
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γ = (9, 1, 2):

ggg =



1

7

12

16

20

24

28

32

33

40

44

,

2

8

13

17

21

25

29

35

34

41

45

,

3

9

14

18

22

26

30

36

38

42

46

,

4

10

15

19

23

27

31

37

39

43

47

,

5

,

6

11



, [res(tttλ)] =



0

12

11

10

9

8

7

6

5

4

3

,

2

1

0

12

11

10

9

8

7

6

5

,

4

3

2

1

0

12

11

10

9

8

7

,

6

5

4

3

2

1

0

12

11

10

9

,

8

,

10

9



. (6.0.1)

The numbers appearing in Snake(γ) of ggg have been colored red. We are supposing that ttt C ggg. Consider the case
where ggg(k0) = (8, 1, 2), that is k0 = 35. Then for ttt to be standard we must have either ttt(35) = ggg(40) or ttt(35) = ggg(41).
But ttt(35) is of residue 8 whereas neither ggg(40) nor ggg(41) is of residue 8, and so we get the desired contradiction in
this case. The other cases for ggg(k0) are treated similarly.

For completeness, we now give a tableau ttt in [ggg]. One checks easily that tttB ggg.

ttt =



1

7

12

16

20

24

28

32

33

40

44

,

2

8

13

17

21

25

29

,

3

9

14

18

22

26

30

36

38

42

46

,

4

10

15

19

23

27

31

37

39

43

47

,

5

34

41

45

,

6

11

35



. (6.0.2)

We can now generalize the first statement of Lemma 4.0.3.

Lemma 6.0.3. For λ any one-column multipartition and any k we have that

yke(i
λ) = e(iλ)yk =

∑
sss,ttt∈Std(λ),µBλ

cssstttmsssttt (6.0.3)

where the sum runs over one-column multipartitions µ of n and csssttt ∈ F.

Proof. We first note that by construction of the msssttt’s we have that

e(i)msssttt =

{
msssttt if i = isss

0 otherwise.
(6.0.4)

Let us now consider the expansion of yke(i
λ) in the basis Cn:

yke(i
λ) =

∑
sss,ttt∈Std(λ),λ∈Par1

n

cssstttmsssttt (6.0.5)

where csssttt ∈ F. We have that∑
sss,ttt∈Std(λ),λ∈Par1

n

cssstttmsssttt = yke(i
λ) = e(iλ)yke(i

λ) =
∑

sss,ttt∈Std(λ),λ∈Par1
n

csssttte(i
λ)msssttt (6.0.6)

and hence we get via (6.0.4) that ttt ∈ [iλ] whenever csssttt 6= 0 and so also shape(sss)Bλ, via Lemma 6.0.3. The Lemma
is proved.
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We can also generalize the third statement (4.0.32) of Lemma 4.0.3 in the relevant case of a Garnir tableau ggg.

Lemma 6.0.4. Let ggg be a Garnir tableau for the multipartition λ. Then we have an expansion of the form

e(iggg) =
∑

sss,ttt∈Std(µ),µBλ

cssstttmsssttt (6.0.7)

where csssttt ∈ F.

Proof. From the Lemmas 4.0.3 and 4.0.5 we have the expansion

e(iggg) =
∑

sss,ttt∈Std(µ),µ>λ

cssstttmsssttt (6.0.8)

with unique coefficients csssttt ∈ F since the msssttt’s are a basis. Thus arguing as in the previous Lemma 6.0.3 we get
that sss ∈ [ggg] and so shape(sss)B λ by Lemma 6.0.2.

The following Lemma generalizes Lemma 4.0.11, replacing < by C.

Lemma 6.0.5. Suppose that λ ∈ Par1
n and that sss, ttt ∈ Tab(λ). If ttt ∈ NStd(λ) then there is an expansion

msssttt =
∑

ttt1∈Std(λ),ttt1Bttt,

csssttt1msssttt1 +
∑

µBλ,sss2,ttt2∈Std(µ)

csss2ttt2msss2ttt2 (6.0.9)

where csssttt1 , csss2ttt2 ∈ F. A similar statement holds for sss.

Proof. We go through the proof of Lemma 6.0.5, checking that each occurrence of > can be replaced by B. There
are two types of occurrences of >. The first ones are in reference to (4.0.30) of Lemma 4.0.3. But here Lemma 6.0.3
allows us to replace > by B. The second ones are the use of Garnir tableaux in (4.0.67) and (4.0.70). But in view
of Lemma 6.0.4 we can also here replace > by B.

The following Lemma corresponds to the JM-property of the yk’s, that we shall consider in more detail later on.

Lemma 6.0.6. Suppose that msssttt is an element of Cn. Then we have that

ykmsssttt =
∑
sss1Bsss

csss1tttmsss1ttt + higher terms (6.0.10)

where csss1ttt ∈ F and where ’higher terms’ means a linear combination of msss2ttt2 where shape(sss2)B shape(sss). A similar
formula holds for yk acting on the right of msssttt.

Proof. We have that m∗sssttt = mtttsss and so we get the formula for mssstttyk by applying ∗ to the formula for ykmsssttt. Suppose
that d(sss) = si1 · · · siN−1

siN is the official reduced expression for d(sss) so that we have ψd(sss) = ψi1 · · ·ψiN−1
ψiN . We

now have from relations (3.0.9), (3.0.10), (3.0.11) and (3.0.12) that

ykmsssttt = ykψ
∗
d(sss)e(i

λ)ψd(ttt) =

{
ψiN ykψiN−1

· · ·ψi1e(iλ)ψd(ttt) if i 6= iN , iN + 1

ψiN yk±1ψiN−1
· · ·ψi1e(iλ) + δψiN−1

· · ·ψi1e(iλ) if i = iN , iN + 1
(6.0.11)

where δ = 0,±1. Using relations (3.0.9), (3.0.10), (3.0.11) and (3.0.12) once again, we continue commuting the
appearing yk±1’s to the right as far as possible, until they meet e(iλ). This gives rise to a linear combination of
terms of the form

±ψjKψjK−1
· · ·ψj1e(iλ)ψd(ttt) (6.0.12)

where sj1 · · · sjK−1
siK is a strict subexpression of si1 · · · siN−1

siN , together with ψ∗d(sss)yje(i
λ)ψd(ttt) for some j, cor-

responding to yk commuted all the way through ψ∗d(sss), But this last term belongs to the ’higher terms’, by the
previous Lemma 6.0.3. The other terms that arise are linear combinations of msss1ttt’s where sss1 B sss by the proof of
Theorem 4.0.11. This proves the Lemma.

We can now prove the promised cellularity of Cn.

Theorem 6.0.7. The pair (Cn,Par1
n) is a graded cellular basis for Bn with respect to C, in the sense of Definition

1.1.1.
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Proof. Condition (i) of Definition1.1.1 is easily verified so let us concentrate on the multiplication Condition (ii).
It is enough to check it for a any of the generators e(i), yi and ψi. Here the case a = e(i) is easy and the case
a = yi is given by Lemma 6.0.6, so we are left with the case a = ψi. We here consider right multiplication on msssttt

with ψi. We first write ψd(ttt)ψi as a linear combination of the elements S = {e(i) y k ψw | i ∈ Ine , k ∈ Nn, w ∈ Sn}
from (4.0.51). Upon right multiplication we get that mssstttψi is a linear combination of ψ∗d(sss)e(i

λ)ψw modulo higher

terms. For each appearing w we consider ttt1 := tttλw and get that ψ∗d(sss)e(i
λ)ψw = msssttt1 . If ttt1 is standard we have

that msssttt1 ∈ Cn. Otherwise, we use Lemma 6.0.5 to rewrite msssttt1 in terms of elements of Cn, modulo higher terms.
Hence Condition (ii) has been verified and since Cn consists of homogeneous elements we are done.

We remark that Bn even satisfies the stronger property of being a quasi-hereditary algebra. This follows from
Remark 3.10 of [14].

The following definition appears for the first time in [32]. It formalizes important properties of Jucys-Murphy
elements. These properties go back to Murphy’s work on the symmetric group and the Hecke algebra of finite type
An, see [33], [34] and [36].

Definition 6.0.8. Let A be an F-algebra which is cellular with respect to C = {cst | λ ∈ Λ, s, t ∈ T (λ)}. Suppose
also that each set T (λ) is endowed with a poset structure with order relation Bλ. Then we say that a commuting
subset L = {L1, . . . , LM} ⊆ A is a family of JM-elements for A with respect to C if it satisfies that L∗i = Li for all
i and if there exists a set of scalars {ct(i) | t ∈ T (λ), 1 ≤ i ≤ M}, denoted the content functions for λ, such that
for all λ ∈ Λ and t ∈ T (λ) we have that

cstLi = ct(i)cst +
∑

v∈T (λ)

vBλt

rsvcsv mod Aλ (6.0.13)

for some rsv ∈ F.

We can now prove the following main Theorem of our thesis, proving that the Jucys-Murphy elements introduced
in (5.0.4) give rise to JM-elements in the sense of the previous Lemma.

Theorem 6.0.9. Let Li ∈ Hn(q, κ) be the Jucys-Murphy element introduced in (5.0.4) and define Li := f−1(Li) ∈
Rn. Then the set {Li | i = 1, . . . , n} is a family of JM -elements for Bn with respect to the cellular basis Cn. The
corresponding content function is the one introduced in (5.0.7):

csss(i) = qres(sss(i)). (6.0.14)

Proof. By Theorem 1.1 of Brundan and Kleshchev’s work, [7], we have that

Lk =
∑
i∈Ine

qik(1− yk)e(i) (6.0.15)

from which we get
Lke(isss) = (csss(k)− yk)e(isss) (6.0.16)

for any standard tableau sss. The Theorem now follows from Lemma 6.0.6.
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Chapter 7

Comparison with the original definition
of Bn.

In this chapter we show that Bn is isomorphic to the original generalized blob algebra, introduced by Martin and
Woodcock in [28]. For the original blob algebra the coincidence of these two definitions was proved in [38]. Our
proof is an extension of an argument presented in [38].

Let H2 be the cyclotomic Hecke algebra for n = 2, as introduced in Definition 5.0.1. It follows from strong
adjacency-freeness of κ̂ that H2 is a semisimple F-algebra. Following [28], for j = 1, . . . , n we let ej2 be the primitive,

central idempotents associated with the one-dimensional module given by the multipartition λj2 := (∅, . . . , (2), . . . , ∅)
of 2, that has the partition (2) positioned in the j’th position. Since H2 ⊆ Hn we may consider ej2 as an element

of Hn and so we may consider In ⊆ Hn, the two-sided ideal generated by ej2 for j = 1, . . . , n. The generalized blob
algebra B′n introduced in [28] was now defined via

B′n := Hn/In. (7.0.1)

In [28], concrete formulas for ej2 were found. For l = 2 these formulas gave rise to an isomorphism between B′n and

the usual blob algebra. The following Lemma gives another description of ej2.

Lemma 7.0.1. Let F
tttλ
j
2
∈ HK2 be the idempotent defined in (5.0.9). Then F

tttλ
j
2
∈ HO2 and ej2 = F

tttλ
j
2
⊗O F.

Proof. It follows from strong adjacency-freeness of κ̂ that the only standard tableau in the class [tttλ
j
2 ] is tttλ

j
2 itself

and so
E

[tttλ
j
2 ]

=
∑

ttt∈[tttλ
j
2 ]∩Std(n)

Fttt = F
tttλ
j
2
. (7.0.2)

Since E
[tttλ

j
2 ]
∈ HO2 this shows that F

tttλ
j
2
∈ HO2 . On the other hand, we have by (5.0.10) that

LiF
tttλ
j
2

= c
tttλ
j
2
(i)F

tttλ
j
2

=

{
qκjF

tttλ
j
2

if i = 1

qκj+1F
tttλ
j
2

if i = 2
(7.0.3)

and moreover, using (5.0.2) and (5.0.20), we have that

T1F
tttλ
j
2

= qF
tttλ
j
2
. (7.0.4)

The two conditions (7.0.3) and (7.0.4) characterize ej2 uniquely and so the Lemma is proved.

We can now prove the promised isomorphism between the two definitions of the generalized blob algebra.

Theorem 7.0.2. Viewing F
tttλ
j
2

as elements of Hn we have the following equality in Rn

f−1(F
tttλ
j
2
) =

∑
i∈Ine

i1=κj ,i2=κj+1

e(i) (7.0.5)

corresponding to relation (3.0.3) of Bn. In particular, B′n = Bn.
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Proof. We have that 1 =
∑
i∈Ine e(i) =

∑
sss∈Std(n) f

−1(Esss). On the other hand we have that

F
tttλ
j
2
Esss =

∑
ttt∈Std(n)

F
tttλ
j
2
Fttt =

{
Esss if i1 = κj , i2 = κj + 1
0 otherwise

(7.0.6)

and so the Theorem follows.
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Part III

The Nil-blob algebra: An incarnation of
type Ã1 Soergel calculus and of the

truncated blob algebra
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Chapter 8

The nil-blob algebra

For the rest of this thesis, we fix a field F with char(F) 6= 2. All our algebras are associative and unital F-algebras.
We also shall denote by Bn the blob algebra (the generalized blob algebra of level 2).

In this chapter we introduce and study the basic properties of the nil-blob algebra. Let us first recall the
definition of the classical blob algebra Bn. It was introduced by Martin and Saleur in [27]. We fix q ∈ F× and define
for any k ∈ Z the usual Gaussian integer

[k] := qk−1 + qk−3 + . . .+ q−k+3 + q−k+1. (8.0.1)

Definition 8.0.1. Let m ∈ Z with [m] 6= 0. The blob algebra Bn(m) = Bn is the algebra generated by V0,V1, . . . ,Vn−1

subject to the relations

V2
i = −[2]Vi, if 1 ≤ i < n; (8.0.2)

ViVjVi = Vi, if |i− j| = 1 and i, j > 0; (8.0.3)

ViVj = VjVi, if |i− j| > 1; (8.0.4)

V1V0V1 = [m− 1]V1, (8.0.5)

V2
0 = −[m]V0. (8.0.6)

An important feature of Bn is the fact that it is a diagram algebra. The diagram basis consists of blobbed
(marked) Temperley-Lieb diagrams on n points where only arcs exposed to the left side of the diagram may be
marked and at most once. The multiplication D1D2 of two diagrams D1 and D2 is given by concatenation of them,
with D1 on top of D2. This concatenation process may give rise to internal marked or unmarked loops, as well
as arcs with more than one mark. The internal unmarked loops are removed from a diagram by multiplying it by
−[2], whereas the internal marked loops are removed from a diagram by multiplying it by −[m − 1]/[m]. Finally,
any diagram with r > 1 marks on an arc is set equal to the same diagram with the (r − 1) extra marks removed.
These marked Temperley-Lieb diagrams are called blob diagrams. Here is an example with n = 20.

b
b

b (8.0.7)

The color red is here only used to indicate those arcs that are not exposed to the left side of the diagram and
therefore cannot not be marked. For any of the black arcs the blob is optional.

Motivated in part by Bn we now define the nil-blob algebra NBn and its extended version ÑBn. They are the
main objects of study of this part of the thesis.
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Definition 8.0.2. The nil-blob algebra NBn is the algebra on the generators U0,U1, . . . ,Un−1 subject to the relations

U2
i = −2Ui, if 1 ≤ i < n; (8.0.8)

UiUjUi = Ui, if |i− j| = 1 and i, j > 0; (8.0.9)

UiUj = UjUi, if |i− j| > 1; (8.0.10)

U1U0U1 = 0, (8.0.11)

U2
0 = 0. (8.0.12)

The extended nil-blob algebra ÑBn is the algebra obtained from NBn by adding an extra generator Jn which is central
and satisfies J2

n = 0.

Remark 8.0.3. Note that the sign in (8.0.8) is unimportant. Indeed, replacing Ui with −Ui we get a presentation
as in Definition 8.0.2 but with the sign in (8.0.8) positive.

It is known from [38] that Bn is a Z-graded algebra. This is also the case for NBn and ÑBn but is actually much
easier to prove.

Lemma 8.0.4. The rules deg(Ui) = 0 for i > 0 and deg(U0) = deg(Jn) = 2 define (positive) Z-gradings on NBn
and ÑBn.

Proof. One checks easily that the relations are homogeneous with respect to deg.

Our first goal is to show that NBn is a diagram algebra with the same diagram basis as for Bn, but with a slightly
different multiplication rule. Indeed, in NBn internal unmarked loops are removed from a diagram by multiplying it
with −2, whereas diagrams in NBn with a marked loop are set to zero. Moreover, in NBn diagrams with a multiple
marked arc are also set equal to zero. This defines an associative multiplication with identity element

1 = b b b (8.0.13)

That NBn has this diagram realization follows from the results presented in the Appendix of [9], but for the
reader’s convenience we here present a different more self-contained proof of this fact, avoiding the theory of
projection algebras. Let us denote by NBdiagn the diagram algebra indicated above, with basis given by blob
diagrams and multiplication rule as explained in the previous paragraph. We then prove the following Theorem:

Theorem 8.0.5. There is an isomorphism between NBn and NBdiagn induced by

U0 7→ b b b b , Ui 7→ b b b b b b

i i+ 1

(8.0.14)

In particular, NBn has the same dimension as Bn, in other words

dimF(NBn) =

(
2n

n

)
. (8.0.15)

Proof. One easily checks that the diagrams in (8.0.14) satisfy the relations for the Ui’s in Definition 8.0.2 and so
at least (8.0.14) induces an algebra homomorphism ϕ : NBn → NBdiagn .

Although it is not possible to determine the dimension of NBn directly, we can still get an upper bound for it
using normal forms as follows. For 0 ≤ j ≤ i ≤ n− 1 we define

Uij := UiUi−1 · · ·Uj+1Uj ∈ NBn. (8.0.16)
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We consider ordered pairs (I, J) formed by sequences of numbers in {0, 1, 2, . . . , n − 1} of the same length k such
that I = (i1, i2, . . . , ik) is strictly increasing, such that J = (j1, j2, . . . , jk) is strictly increasing too, except that
there may be repetitions of 0, and such that js ≤ is for all 1 ≤ s ≤ k. For such pairs we define

UIJ := Ui1j1Ui2j2 · · ·Uikjk . (8.0.17)

A monomial of this form is called normal. We denote by NMn the set formed by all normal monomials in NBn
together with 1. For n = 2 we have

NM1 = {1,U0,U1,U1U0,U0U1,U0U1U0}, (8.0.18)

whereas for n = 3

NM2 = {1,U0,U1U0,U1,U2U1U0,U2U1,U2,U0U1U0,U0U1,U0U2U1U0,U0U2U1,U0U2,U1U0U2U1U0,
U1U0U2U1,U1U0U2,U1U2,U0U1U0U2U1U0,U0U1U0U2U1,U0U1U0U2,U0U1U2}. (8.0.19)

In general, using the relations given in Definition 8.0.2 one easily checks that NMn spans NBn. Indeed, we have
that {U0,U1, . . . ,Un−1} ⊆ NMn and that any product of the form UiUIJ can be written as a linear combination
of elements of NMn. On the other hand, the set NMn is in bijection with the set of positive fully commutative
elements of the Coxeter group of type Bn. In particular, the cardinality of NMn is known to be

(
2n
n

)
, see for

example [1]. Hence we deduce that
dimNBn ≤ dimNBdiagn (8.0.20)

since dimNBdiagn = dimBn =
(

2n
n

)
. Thus, in order to show the Theorem we must check that ϕ is surjective, or

equivalently that the diagrams in (8.0.14) generate NBdiagn .

Let us first focus on the ‘Temperley-Lieb part’ of NBdiagn , that is the subalgebra of NBdiagn consisting of the linear
combinations of Temperley-Lieb diagrams, the unmarked diagrams from NBdiagn . There is a concrete algorithm for
obtaining any Temperley-Lieb diagram as a product of the ϕ(Ui)’s, where i > 0, and so these diagrams generate
the subalgebra. Although it is well known, we still explain how it works since we need a small variation of it.

In the following, whenever U ∈ NBn we shall often write U ∈ NBdiagn for ϕ(U). This should not cause confusion.

Let D be a Temperley-Lieb diagram on n points with l through lines and let k = (n− l)/2. We associate with D
two standard tableaux top(D) and bot(D) of shape λ = (1l+k, 1k) as follows. For top(D) we go through the upper
points of D, placing 1 in position (1, 1) of top(D), then 2 in position (1, 2) if 2 is the right end point of a horizontal
arc, otherwise in position (2, 1), and so on recursively. Thus, having placed 1, 2 . . . , i− 1 in top(D) we place i in the
first vacant position of the second column if i is the right end point of a horizontal arc, otherwise in the first vacant
position of the first column. The standard tableau bot(D) is constructed the same way, using the bottom points of
D. For example for the following diagram

D = (8.0.21)

we have that

top(D) =

1 3

2 4

5 7

6 9

8 10

11 13

12 15

14 19

16 20

17

18

, bot(D) =

1 3

2 6

4 8

5 9

7 10

11 14

12 16

13 17

15 18

19

20

(8.0.22)
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It is well known, and easy to see, that the map D 7→ (top(D), bot(D)) is a bijection between Temperley-Lieb
diagrams and pairs of two column standard tableaux of the same shape.

For ttt any Young tableau and 1 ≤ k ≤ n we define ttt |k as the restriction of ttt to the set {1, 2, . . . , k}. We may then
consider a two-column standard tableaux ttt as a sequence of pairs (i,diff(ttt |i)) for i = 0, 1, 2 . . . , n, where diff(ttt |i)
is the difference between the lengths of the first and the second column of the underlying shape of ttt |i (here i = 0
corresponds to the pair (0, 0)). We then plot these pairs in a coordinate system, using matrix convention for the
coordinates.

This may be viewed as a walk in this coordinate system, where at level i we step once to the left if i + 1 is in
the second column of ttt and otherwise once to the right. In (8.0.24) we have indicated the corresponding walks for
top(D) and bot(D) where D is as above in (8.0.21).

A Temperley-Lieb diagram D is given uniquely by (top(D), bot(D)) and so we introduce the corresponding
half-diagrams. For example the top and bottom half-diagrams for D in (8.0.21) are as follows

T := B := (8.0.23)

top(D) =

1

2

3
4

5

6

7

8

9
10

11

12

13

14

15
16

17

18

19

20

0 1 2 3 4

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

bot(D) =

1

2

3
4

5

6

7

8

9
10

11

12

13
14

15
16

17

18
19

20

0 1 2 3 4

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

(8.0.24)

Recall that for any two column partition λ there is unique maximal λ-tableau tttλ under the dominance order.
It is constructed as the row reading of λ. For example, for λ = (111, 19) we have tttλ and its corresponding bottom
half-diagram as follows

tttλ =

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19

20

Bλ := (8.0.25)
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The walk corresponding to tttλ is as follows where in the second and third figures we have colored it red and have
combined it with the walks for top(D) and bot(D) from (8.0.24).

1

1 2 3 4

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

0

b b b b b

b b b b b

b b b b b

b b b b b

b b b b

b b b b

b

b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b

b b b b

b

b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

1

1 2 3 4

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

0

b b b b b

b b b b b

b b b b b

b b b b b

b b b b

b b b b

b

b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b

b b b b

b

b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b bb b

1

1 2 3 4

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

0

b b b b b

b b b b b

b b b b b

b b b b b

b b b b

b b b b

b

b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b

b b b b

b

b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

(8.0.26)

The algorithm for generating the Temperley-Lieb diagrams consists now in filling in the area between the walks
for tttλ and bot(D) (resp. top(D)) one column at the time, and then multiplying with the corresponding Ui’s. For
example, using the below figure (8.0.27),

1

1 2 3 4

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

0

b b b b b

b b b b b

b b b b b

b b b b b

b b b b

b b b b

b

b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b

b b b b

b

b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b
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1 2 3 4

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19

20

0

b b b b b

b b b b b

b b b b b

b b b b b

b b b b

b b b b

b

b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b

b b b b

b

b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

b b b b b

(8.0.27)

we find that to obtain bot(D) from the walk for tttλ we should first multiply by U2U4U6U8U12U14U16 corresponding
to the blue area, and then with U5U7U13U15, corresponding to the green area, that is we have that

B = Bλ(U2U4U6U8U12U14U16)(U5U7U13U15) (8.0.28)

where B is the half-diagram in (8.0.23) and Bλ is the diagram defined in (8.0.25). Similarly, we have that

T = U18(U17U19)(U2U6U8U12U14U16U18)Tλ (8.0.29)

where T is the half-diagram in (8.0.23) and Tλ is the reflection through a horizontal axis of Bλ. Since TλBλ =
U1U3U5U7U9U11U13U15U17 we get now D as a product of Ui’s:

D = TB = U18(U17U19)(U2U6U8U12U14U16U18)TλBλ(U2U4U6U8U12U14U16)(U5U7U13U15). (8.0.30)

Summing up, we have shown that any unmarked blob diagram can be obtained as a product of the generators
Ui’s, for i > 0.
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We now explain how to obtain the marks on the arcs. In the case of B as before there are three arcs that may
carry a mark, namely the black arcs below

1 11 19

(8.0.31)

A main general observation for what follows is that these arcs are in correspondence with the ‘contacts’ between
the associated walk and the vertical 0-line. To be precise for i = 0, 1, . . . , n − 1 we have that (i, 0) belongs to the
walk for B if and only if i+ 1 is the leftmost point of an arc that may be marked. For instance, using the walk in
(8.0.27) for the above B we see that these points are 1, 11 and 19, as one indeed observes in (8.0.31).

These contacts points induce a partition of the indices 1 ≤ i ≤ n and we call the corresponding classes for blocks.
Thus in the above example (8.0.27), the first block consists of the indices 1 ≤ i ≤ 10, the second of 11 ≤ i ≤ 18
and the third of 19 and 20. We stress that the smallest number in each block is odd. On the other hand, under
the above process of filling in the areas, the Ui’s, where i corresponds to the rightmost index of some block, are not
needed. But from this we deduce that the indices corresponding to distinct blocks give rise to commuting Ui’s and
hence we can in fact fill in one block at the time. We choose to do so going through the blocks of each walk from
bottom to the top.

Our second observation is that any diagram of the form

b b b b b b bb

1 3 5 7 2i+ 1

(8.0.32)

can be generated by the Ui’s since indeed it is equal to

(U1U3U5 · · ·U2i+1)U0(U2U4U6 · · ·U2i+2)(U1U3U5 · · ·U2i+1). (8.0.33)

Here is for example the case i = 2 and n = 9

b

= b (8.0.34)

The algorithm for obtaining any marked diagram now consists in filling in by blocks, from bottom to top, and
multiplying by a diagram of the form given in (8.0.32), for each block that requires a mark. Let us illustrate a few
step of it on the blob diagram given in (8.0.7). Its bottom and top halves are given in (8.0.23). Both of them have
three blocks. The third block is {11, 12, . . . , 20} for the top diagram and, as we have already seen, {19, 20} for the
bottom diagram. Multiplying with the corresponding Ui’s on TλBλ we get the diagram

(8.0.35)
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Suppose now that we want to produce the blob diagram from (8.0.7). Then we need a mark on the first through
line and thus we multiply below with a diagram of the form (8.0.32) with i = 8 which gives us

b(−2)9 (8.0.36)

settling the third block, at least up to a unit in F. The algorithm now goes on with the second block, etc. The
Theorem is proved.

In view of the Theorem 8.0.5 we shall write NBn = NBdiagn . Similarly we shall in general write U for ϕ(U).

The next two corollaries are an immediate consequence of Theorem 8.0.5.

Corollary 8.0.6. The set NMn is a basis for NBn. Similarly, the set

ÑMn := {XJin |X ∈ NMn, i ∈ {0, 1}} (8.0.37)

is a basis for ÑBn. Consequently, dim ÑBn = 2
(

2n
n

)
.

We refer to the set NMn (resp. ÑMn) as the normal basis of NBn (resp. ÑBn).

Corollary 8.0.7. NBn is a cellular algebra in the sense of Graham and Lehrer, see [14], with the same cellular
datum as for Bn, see for example [38] for this cellular structure.

Definition 8.0.8. We define the JM-elements Y1,Y2, . . . ,Yn of NBn via Y1 = U0 and recursively

Yi+1 = (Ui + 1)Yi(Ui + 1), i ≥ 1. (8.0.38)

Here are the JM-elements for n = 3.

+ +
b

b
bY2 =bY1 =

,

+ +
b

b
bY3 =

b

b
+ +b b+ + b+ 2

(8.0.39)

Lemma 8.0.9. The Yi’s have the following properties.

a) YiYj = YjYi for all i, j.

b) Y2
i = 0 for all i.

Proof. We give the proof in Remark 11.0.13.

The Yi’s are (nilpotent) JM-elements for NBn in the sense of Mathas, see [32], with respect to the cellular
structure on NBn given in Corollary 8.0.7, On the other hand, in the next chapter we shall show that there is a
completely different cellular structure on NBn, given by Soergel calculus. That cellular structure is also endowed
with a family of JM-elements, that we define now.

Definition 8.0.10. We define the JM-elements L1,L2, . . . ,Ln of NBn via L1 = U0 and recursively

Li+1 = UiLi + LiUi − 2Ui
i−1∑
j=1

Lj , i ≥ 1. (8.0.40)

Lemma 8.0.11. The Li’s have the following properties.
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a) LiLj = LjLi for all i, j.

b) L2
1 = 0 and that L2

i = −2Li
∑i−1
j=1 Lj for all 1 < i ≤ n.

Proof. We shall give the proof in Remark 9.0.10.

Here are these JM-elements for n = 3.

+
b

b
b

,

L1 = L2 = b +
b

+ b b+ −2 bL3 =

,

(8.0.41)
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Chapter 9

Soergel calculus for Ã1.

In this chapter, we start out by briefly recalling the diagrammatical Soergel category D associated with the affine
Weyl group W of type Ã1. This category D was introduced in [11], in the complete generality of any Coxeter
system (W,S). The objects of D are expressions w over S and hence for any such w we can introduce an algebra
Ãw := EndD(w). In the main result of this chapter we show that Ãw and a natural subalgebra Aw ⊂ Ãw of it are

isomorphic to the nil-blob algebras ÑBn and NBn from the previous section.

Let S := {s, t} and let W be the Coxeter group on S defined by

W := 〈s, t | s2 = t2 = e〉. (9.0.1)

Thus W is the infinite dihedral group or the affine Weyl group of type Ã1. Given a non-negative integer n, we let

ns := sts . . .︸ ︷︷ ︸
n-times

nt := tst . . .︸ ︷︷ ︸
n-times

(9.0.2)

with the conventions that 0s := 0t := e. It is easy to see from (9.0.1) that ns and ns are reduced expressions and
that each element in W is of the form ns or nt for a unique choice of n and s or t. Note that the elements of W are
rigid, that is they have a unique reduced expression.

The construction of D depends on the choice of a realization h of (W,S), which by definition is a representation
h of W , with associated roots and coroots, see [11, Section 3.1] for the precise definition.

In this thesis, our h will be the geometric representation of W defined over F, see [16, Section 5.3]. The coroots
are the basis of h, that is h = Fα∨s ⊕ Fα∨t and in terms of this basis the representation h of W is given by

s→
(
−1 2

0 1

)
, t→

(
1 0
2 −1

)
. (9.0.3)

The roots αs, αt ∈ h∗ are now given by

αs(α
∨
s ) = 2, αt(α

∨
s ) = −2, αs(α

∨
t ) = −2, αt(α

∨
t ) = 2 (9.0.4)

and so the Cartan matrix is (
2 −2
−2 2

)
. (9.0.5)

Note that we have
αs = −αt. (9.0.6)

Let R := S(h∗) = ⊕i≥0S
i(h∗) be the symmetric algebra of h∗, or in view of (9.0.6)

R = F[αs] = F[αt]. (9.0.7)

In other words, this is a just the usual one variable polynomial algebra. We consider it a Z-graded algebra by
setting the degree of αs equal to 2. Since W acts on h it also acts on h∗ and this action extends in a canonical way
to R. We now introduce the Demazure operators ∂s, ∂t : R→ R(−2) via

∂s(f) =
f − sf
αs

, ∂t(f) =
f − tf
αt

. (9.0.8)
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We have that
sαs = αt, tαt = αs (9.0.9)

and so we get
∂s(αs) = ∂t(αt) = 2, ∂s(αt) = ∂t(αs) = −2. (9.0.10)

We now come to the diagrammatical ingredients of D.

Definition 9.0.1. A Soergel graph for (W,S) is a finite and decorated graph embedded in the planar strip R× [0, 1].
The arcs of a Soergel graph are colored by s and t. The vertices of a Soergel graph are of two types as indicated
below, univalent vertices (dots) and trivalent vertices where all three incident arcs are of the same color.

b b (9.0.11)

A Soergel graph may have its regions, that is the connected components of the complement of the graph in R× [0, 1],
decorated by elements of R.

Here is an example of a Soergel graph

b

b

f1 f3

f4

f5

f2

b

b

b

(9.0.12)

where the fi’s belong to R. Shortly we shall give many more examples. We define

exp := {w = (s1, s2, . . . , sk) | si ∈ S, k = 1, 2, . . .} ∪ ∅. (9.0.13)

as the set of expressions over S, that is words over the alphabet S. The points where an arc of a Soergel graph
intersects the boundary of the strip R× [0, 1] are called boundary points. The boundary points provide two elements
of exp called the bottom boundary and top boundary, respectively. In the above example the bottom boundary is
(t, s, t, t, s, s) and the top boundary is (t, s, t, t, s).

Definition 9.0.2. The diagrammatical Soergel category D is defined to be the monoidal category whose objects are
the elements of exp and whose homomorphisms HomD(x, y) are the F-vector space generated by all Soergel graphs
with bottom boundary x and top boundary y, modulo isotopy and modulo the following local relations

b = (9.0.14)

= (9.0.15)

=
b

b
αs (9.0.16)

=f sf + ∂sf
b

b
(9.0.17)
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= 0 (9.0.18)

There is a final relation saying that any Soergel graph D which is decorated in its leftmost region by an f ∈ (αs),
that is a polynomial with no constant term, is set equal to zero. We depict it as follows

= 0αs D (9.0.19)

The relations (9.0.14)–(9.0.19) also hold if red is replaced by blue, of course.

For λ ∈ F and D a Soergel diagram, the scalar product λD is identified with the multiplication by λ in any region
of D. The multiplication D1D2 of diagrams D1 and D2 is given by vertical concatenation with D1 on top of D2

and the monoidal structure by horizontal concatenation. There is natural Z-grading on D, extending the grading on
R, in which the dots, that is the first two diagrams in (9.0.11) have degree 1, and the trivalents, that is the last two
diagrams in (9.0.11), have degree −1.

Remark 9.0.3. Strictly speaking the category defined in Definition 9.0.2 is not the diagrammatic Soergel category
introduced in [11]. To recover the category from [11] the relation (9.0.19) should be omitted.

Let us comment on the isotopy relation in Definition 9.0.2. It follows from it that the arcs of a Soergel graph
may be assumed to be piecewise linear. It also follows from it together with (9.0.15) that the following relation
holds

= (9.0.20)

In other words the two trees on three downwards leaves are equal. We also have equality for other trees. Here is
the case with four upwards leaves. Note the last diagram which represents the way we shall often depict trees.

= == (9.0.21)

Let now n be a fixed positive integer and fix w := ns ∈ exp as in (9.0.2). We then define

Ãw := EndD(w). (9.0.22)

As mentioned above, w is a rigid element of W and therefore we use the notation Ãw instead of Ãw.

By construction, Ãw is an F-algebra with multiplication given by concatenation and the goal of this chapter is
to study the properties of this algebra. First, for i = 1, . . . , n− 2 we define the following element of Ãw

Ui := b

1

b b b
b

b b b

2 3 i n

b

b

(9.0.23)

and similarly

U0 := b

1

b b b
b

2 3 n

b

b
b

b b b (9.0.24)
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The following Theorem is fundamental for what follows.

Theorem 9.0.4. There is a homomorphism of F-algebras ϕ : NBn−1 → Ãw given by Ui 7→ Ui for i = 0, 1, . . . , n−2.

Proof: We must check that U0, U1, . . . , Un−2 satisfy the relations given by the Ui’s in Definition 8.0.2. In order to
show the quadratic relation (8.0.8) we argue as follows

U2
i =

b

1

b b b

b

b b b

2 3 i n

b

b

b b

b

b

=

b

1

b b b

b

2 3 i n

b

b

b b

b

b

b b b − 2

b

1

b b b

b

b b b

2 3 i n

b

b b

b

b

b
= −2Ui (9.0.25)

where we used (9.0.14), (9.0.16), (9.0.17) and (9.0.18).
We next show that (8.0.10) holds. If |i−j| > 2 then (8.0.10) clearly holds, that is UiUj = UjUi, but for |i−j| = 2

it is not completely clear that it holds. We shall only show it in the case n = 5, i = 1 and j = 3: the general case
is proved the same way. We have that

U3U1 =

b

b

b

b

=

b

b

bb

bb

=

b

b
bb

bb

=

b
bb

b
bb

(9.0.26)

where we used the ‘H’-relation (9.0.15) for the third equality and (9.0.20) for the last equality. But U1U3 is obtained
from U3U1 by reflecting along a horizontal axis, and since the last diagram of (9.0.26) is symmetric along this axis,
we conclude that U1U3 = U3U1 as claimed.

The relation (8.0.9), in the case n = 4, i = 1 and j = 2, is shown as follows.

U1U2U1 =

b

b

b

b

b

b

=

b

b

= U1 (9.0.27)

The general case is treated the same way. We finally notice that (8.0.11) and (8.0.12) are a direct consequence
of (9.0.19). The Theorem is proved. �

For a general Coxeter system (W,S), Elias and Williamson found in [11] a recursive procedure for constructing an
F-basis for the homomorphism space HomD(x, y), for any x, y ∈ exp. It is a diagrammatical version of Libedinsky’s
double light leaves basis for Soergel bimodules and the basis elements are also called double light leaves in this case.
On the other hand we have fixed W as the infinite dihedral group, and in this particular case there is a non-recursive
description of the double light leaves basis that we shall use.

In order to describe it we first introduce some diagram conventions. First, in view of our tree conventions given
in (9.0.21) we shall represent the diagram from (9.0.26) as follows

U1U3 =

b b

b b

(9.0.28)

This can be generalized: for example using the last diagram in (9.0.26) we get that
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U1U3U5 =

b
bb

b
bb

b

b

=

b
bb

b

b

bb

b

=

b
bb

b

b

bb

b

=

b
bb

b

bb
b b

(9.0.29)

Even more generally, we have that

UiUi+2 · · ·Ui+2k =

bbb
b b b

bbbb b b

bbb b b b

i i+ 2 + 2k

(9.0.30)

if i is odd and

UiUi+2 · · ·Ui+2k =

bbb
b b b

bbbb b b

bbb b b b

i i+ 2 + 2k

(9.0.31)

if i is even. We now introduce a different kind of elements in Ãw, namely the JM-elements Li of Ãw, via

Li := b b b

b

b
bbb

1 2 3 i n

(9.0.32)

where black means red if i is odd and blue if i is even. Note that L1 = U0. (The name JM-element is motivated
by the thesis [40] where it is shown that Li indeed is a JM-element in the sense of Mathas [32], for any Coxeter
system).

Lemma 9.0.5. Let 1 < i < n. Then we have the following formula in Ãw

Li = Ui−1Li−1 + Li−1Ui−1 − 2Ui−1

i−2∑
j=1

Lj . (9.0.33)

Consequently, for all 1 < i < n we have that Li belongs to the subalgebra of Ãw generated by the elements
L1, U1, . . . , Un−2.

Proof: Let us show the formula (9.0.33) in the case i = n− 1 and i odd. The general case of the formula, that is
the case where i is any number strictly smaller than n, is shown the same way. We have that

Li =

bb

1 2

b

b

b

b

b

b b b

n

b

3

=

b

1 2 3

b

b

n

b

b

b b b b

b

b

b

b

b

=

bb

1 2 3

b

b

n

b

b

b

b b b

b

αs

2

b

+

b
b

1 2 3

b

b

n

b

b

b

b b b

b

αs

2

b

= (9.0.34)
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b
b

1 2 3

b

b

n

b

b

b

b b b

b

b

b

+

bb

1 2 3

b

b

n

b

b

b

b b b

b

b

b

+

b

1 2 3

b

n

b

b

b

b b b

b

b

b

b

αs (9.0.35)

The first two diagrams of (9.0.35) are Ui−1Li−1 and Li−1Ui−1 and so we only have to check that the last diagram of

(9.0.35) is equal to −2Ui−1

∑i−2
j=1 Lj . But this follows via repeated applications of the polynomial relation (9.0.17),

moving αs = −αt all the way to the left. �

The Li’s are important since they allow us to generate variations of (9.0.30) and (9.0.31) with no ‘connecting’
arcs, as follows

(U1U3U5 · · ·U2k+1)L2k+3(U1U3U5 · · ·U2k+1) =

b

b

b
b b b b

b b
b b b

b

b b

b b

b

b

b

b
b b b b b b

1 2 3 + 2k n

=

b

b

b
b b b b

b b
b b b

b

b b b b b bαt αt αt

1 2 3 + 2k n

=

b

b

b
b b b b

b b
b b b

b

b b b

1 2 3 + 2k n

(−2)k

(9.0.36)

where we for the last equality used the polynomial relation (9.0.17) as well as (9.0.19). Thus any diagram of the
form (9.0.37) belongs to the subalgebra of Ãw generated by the Li’s and the Ui’s. Note on the other hand that in
order for this argument to work, the diagram in question must be left-adjusted, that is without any through arcs
on the left as in (9.0.37).

bbb
b b b

bbbb b b

b b b

(9.0.37)

The diagrams corresponding to double light basis elements of Ãw are built up of top and bottom ‘half-diagrams’,
similarly to the Temperley-Lieb diagrams and the blob diagrams considered in the previous chapter. These half-
diagrams are called light leaves.

We now introduce the following bottom half-diagrams, called full birdcages by Libedinsky in [22].

b b
b b b b b b b bb b

b

b b b bb b

(9.0.38)

We say that the first and the last of these half-diagrams are non-hanging full birdcages, whereas the middle one
is hanging. We also say that the first two full birdcages are red, and the third one is blue. We define the length of
a full birdcage to be the number of dots contained in it. We view the half-diagrams

b b (9.0.39)
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as degenerate full birdcages of lengths 0. A full birdcage which is not degenerate is called non-degenerate. We shall
also consider top full birdcages, that are obtained from bottom full birdcages, by a reflection through a horizontal
axis. Here are two examples of lengths four and three.

b b b b bb b

(9.0.40)

Light leaves are built up of full birdcages in a suitable sense that we shall now explain. We first consider the
operation of replacing a degenerate non-hanging full birdcage by a non-hanging non-degenerate full birdcage of the
same color. Here is an example

b b b b b
7→

b b b b bb b
(9.0.41)

The reason why we only consider the application of this operation to non-hanging birdcages is that applying it to a
degenerate hanging birdcage only gives a new, larger full birdcage; in other words nothing new. Here is an example

b b b b b
7→

b b b bb b
7→

b b b bbb
(9.0.42)

Following Libedinsky, we now define a birdcagecage to be any diagram that can be obtained from a degenerate
non-hanging birdcage by performing the above operation recursively a finite number of times on the degenerate
birdcages that appear at each step. Here is an example of a birdcagecage.

b bb bbb

(9.0.43)

Now, according to [22], any light leaf is built up of birdcagecages as indicated below in (9.0.44). Here in (9.0.44)
the number of bottom boundary points is n. Zone A consists of a number of non-hanging birdcagecages whereas zone
B consists of a number of hanging birdcagecages. On the other hand zone C consists of at most one non-hanging
birdcagecage.

b bb b b bb bb bbbb bbb bb

{ zone A }{ }zone B { zone C }

(9.0.44)

Note that each of the three zones may be empty, but they cannot all be empty since n > 0. In the case where
zone B is empty, we define zone C to be the last birdcagecage. In other words, if zone B is empty then zone C is
always nonempty, whereas zone A may be empty.

The hanging birdcagcages of zone B define an element v ∈ W . It satisfies v ≤ w where ≤ denotes the Bruhat
order on W . In the above example we have v = tst. The double leaves basis of Ãw is now obtained by running
over all v ≤ w and over all pairs of light leaves that are associated with that v. For each such pair (D1, D2) the
second component D2 is reflected through a horizontal axis, and finally the two components are glued together.
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The resulting diagram is a double leaf. Here is an example

bb b b bb bbbb

b bb b b bb bb bbbb bbb bb

{ zone A } { }zone B { zone C }

b bbb b bb b

{ zone A } { }zone B { zone C }

b

b

(9.0.45)

Note that although the total number of top and bottom boundary points of each double leaf is the same, the number
of boundary points in each of the three zones need not coincide, although the parities do coincide. In the above
example, there are for instance nine top boundary points in zone C but only five bottom boundary points in zone
C. Note also that the number of top and bottom birdcagecages in zone B always is the same, three in the above
example. This is of course also the case in zone C but not necessarily in zone A, although the parities must coincide.
In the above example, we have five top birdcagecages in zone A but only three bottom birdcagecages in zone A.
Moreover, there are nine top boundary points in zone A but eleven bottom boundary points in zone A.

For future reference we formulate the Theorem already alluded to several times.

Theorem 9.0.6. The double leaves form an F-basis for Ãw.

Proof: This is mentioned in [22]. It is a consequence of the recursive construction of the light leaves. �

Definition 9.0.7. Let Aw be the subspace of Ãw spanned by the double leaves with empty zone C .

With these notions and definitions at hand, we can now formulate and prove the following Theorem.

Theorem 9.0.8. Let w ∈W with w = ns. Then, we have

a) As an algebra Ãw is generated by the elements U1, . . . , Un−2 and L1, . . . , Ln.

b) Aw is a subalgebra of Ãw. It is generated by U1, . . . , Un−2 and L1 = U0.

c) The dimensions of Aw and Ãw are given by the formulas

dimF(Aw) =

(
2n

n

)
and dimF(Ãw) = 2

(
2n

n

)
. (9.0.46)

Proof: We first prove a) of the Theorem. We define Ã′w as the subalgebra of Ãw generated by the Ui’s and the
Li’s. Thus, in order to show a) we must prove that Ã′w = Ãw. We shall do so by proving that Ã′w contains all the
double leaves basis elements for Ãw.

We first observe that the diagrams in (9.0.30) and (9.0.31) both belong to Ã′w. In fact, multiplying them together
we get that any diagram of the form

b b
b b b b

b b
b b b

b b b
b b b

b b b

b

bb b

b b
b b

b

b

b b b

b

bb b

b b b

b b
b b

b

b

b b b

b

bb b

D = (9.0.47)

belongs to Ã′w. Here the length of each full birdcage on the bottom (which may be zero) is equal to the length of
the corresponding full birdcage on top of it, that is the diagram in (9.0.47) is symmetric with respect to a horizontal
axis. Note that the diagram D in (9.0.47) is a preidempotent; to be precise we have that

D2 = (−2)l1+...+lrD, (9.0.48)
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where l1, l2, . . . , lr are the lengths of the bottom full birdcages that appear in D. Now we can repeat the calculations
from (9.0.36) and (9.0.37) in order to remove the connecting arc between the first bottom full birdcage of D and
its top mirror image:

DLk1
D =

b

b

b
b b b b

b b
b b b

b

b b

b b

b

b

b

b
b b b

k1
b b

b b

b b

b b
b b

b

b

b

b b b

b

b

b

b

b b

k2
b b

b b

b b

b b
b b

b

b

b

b b b

b

b

b

b

b b

kr

b b b
=

b

b

b
b b b b

b b
b b b

b

k1
b b

b b

b

b

b b b

b

bb b

k2
b b

b b

b

b

b b b

b

bb b

kr

b b b(−2)l1+...+lr (9.0.49)

In other words, we get that D1 := (−2)−(l1+...+lr)DLk1
D is equal to D, but with the first connecting arc removed,

and that D1 belongs to Ã′w.

From D1 we can now remove the next connecting arc as follows

D1Lk2
D =

b

b

b
b b b b

b b
b b b

b

k1
b b

b b

b

b

b b b

b

bb b

k2
b b

b b

b b

b b
b b

b

b

b

b b b

b

b

b

b

b b

kr

b b b

b b

b b

b

b

b

b
b b b

b b

b b
b b b

b

b =

b

b

b
b b b b

b b
b b b

b

k1
b b

b b

b

b

b b b

b

bb b

k2
b b

b b

b

b

b b b

b

bb b

kr

b b b(−2)l1+...+lr (9.0.50)

Continuing this way we find that any diagram of the form

b b
b b b b

b b
b b b

b

k1
b b

b b b

b b b

b

bb b

k2
b b

b b b

b b b

b

bb b

kr−1

b b b

b b
b b b

b b b

b

bb b

kr

(9.0.51)

belongs to Ã′w.

The diagrams in (9.0.51) consist of a number of non-hanging full birdcages followed by a number of hanging
full birdcages. We shall now prove that the rightmost hanging full birdcage of (9.0.51) may be transformed into a
non-hanging full birdcage and still give rise to an element of Ã′w. Let i < n be a positive integer of the same parity
as n. We consider the diagram Fi := UiUi+3 · · ·Un−2:

Fi =

b b
b b b

b b b

b

bb b

n

b b b

i

(9.0.52)

We notice that only the rightmost top and bottom full birdcages of Fi are non-degenerate, of length l := (n− i)/2.

Then we have that FiLnFi ∈ Ã′w. On the other hand, we also have that

FiLnFi =

b b
b b b

b

b

b b
b b b

b b b

b

b b b

b
αs αs αs

i n

=

b b
b b b

b

b b
b b b b

b b b αs

i n

(−2)l−1 = (9.0.53)

b b
b b b

b

b b
b b b b

b b b αt

i n

(−2)l−1 +

b b
b b b

b

b b
b b b b

b b b

i n

(−2)l (9.0.54)
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We consider the first diagram X of the last sum. Moving αt all the way to the left we get that

X = −2Fi

i−1∑
j=1

Li (9.0.55)

Therefore, X belongs to Ã′w. But from this we conclude that also the second diagram of the sum belongs to Ã′w.
Finally, multiplying this diagram with diagrams from (9.0.51) we conclude that any diagram of the form

b b
b b b b

b b
b b b

b

k1
b b

b b b

b b b

b

bb b

k2
b b

b b b

b b b

b

bb b

kr−2

b b b

b b
b b b

b b b

b

bb b

kr−1

b b
b b b

b b b

b

bb b

kr

(9.0.56)

belongs to Ã′w, proving the above claim. In other words, we have shown that any double leaves basis element of
Ãw, that is built up of full birdcages and is symmetric with respect to a horizontal axis, belongs to Ã′w.

We next show that omitting the symmetry condition in the diagrams (9.0.56) still gives rise to an element of Ã′w.
Our first step for this is to produce a way of ‘moving points’ from a full birdcage to its neighboring full birdcage.
We do this by multiplying by ‘overlapping’ Ui’s. Consider the following example

b b b b b b b b b bD =

11

(9.0.57)

consisting of two full birdcages, both of length 5. In this case the overlapping Ui’s are U10 and U11. Multiplying
D below with U10 produces a diagram with two full birdcages as well, but this time of lengths 4 and 6, whereas
multiplying D below by U11 produces a diagram with two full birdcages, of lengths 6 and 4:

b

b

DU10 = b b b b b b b bb bb b b b b b

b

b b

b

=
(9.0.58)

b

b

DU11 = bbbbbbbbbb bbbbbb

b

bb

b

=
(9.0.59)

This gives us a method for moving points from one full birdcage to a neighboring full birdcage that works in
general, for hanging as well as for non-hanging full birdcages, and so we get that any diagram of the form

b
b b

b

b

b b b

b

bb b b
b b b

b

b b b b b b b

bbb

b b
b b

b

b

b b b

b

bb b b
b b b

b b b b b b b

bbb

b

b
b b

b

b

b b b

b

bb bb

(9.0.60)

belongs to Ã′w. These diagram are not horizontally symmetric anymore but still the total number of top full
birdcages is equal to the total number of bottom full birdcages. Actually, by the description of the light leaves
basis, this is expected in zones B and C, but not in zone A. However, multiplying a full birdcage in zone A with an
JM-element Li of the opposite color it breaks up in three smaller full birdcages, the middle one being degenerate.
For example, for

b b b b bD := b
(9.0.61)
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we have that

b b b b bDL6 = b

b
b

b b b b b= − b

(9.0.62)

Combining this with the procedure of moving points from a full birdcage to a neighboring full birdcage, we
conclude that in the diagram (9.0.60) we may assume that the number of top full birdcages in zone A is different
from the number of bottom full birdcages and still the diagram belongs to Ã′w.

Thus, to finish the proof of a) we now only have to show that the full birdcages in the diagram (9.0.60) may be
replaced by birdcagecages. It is here enough to consider a single bottom birdcage.

The replacing of a degenerate non-hanging birdcage by a non-degenerate full birdcage can be viewed as the
insertion of a non-hanging birdcage in a full birdcage of the opposite color. But this can be achieved via multipli-
cation with appropriate diagrams of the form (9.0.30) and (9.0.31). Consider for example the birdcagecage D in
(9.0.41). It can be obtained as follows

b b

b

b b

b b

b b b b bb b b b b b

b b b

=D =

(9.0.63)

Repeating this process we can obtain any birdcagecage. This finishes the proof of a).

We next show c). For this we first note that there is a bijection between double leaves with empty zone C
and double leaves with nonempty zone C, given by removing the connecting line between the last bottom and top
birdcagecage. Hence we have that

dimF(Ãw) = 2 dimF(Aw). (9.0.64)

On the other hand, from the vector space isomorphism given in Corollary 8.3 of [10] it follows that dim(Ãw) =

dim ÑBn and so c) follows from Theorem 8.0.5 and Corollary 8.0.6. (Note that in [10] the authors use the notation
Aw for Ãw).

We finally show b). Let A′w be the subalgebra of Ãw generated by U1, . . . , Un−2 and U0 = L1. In view of Lemma
9.0.5 we first observe that A′w is the same as the subalgebra of Ãw generated by U1, . . . , Un−2 and L1, . . . , Ln−1.
On the other hand, going through the proof of a) we see that the last JM-element Ln is only needed for the steps
(9.0.52) and (9.0.53) where a hanging birdcage at the right end of the diagram is transformed into a non-hanging
one, and so we have that Aw ⊆ A′w. But from Theorem 9.0.4 we have that dim(A′w) ≤ dimNBn−1 = dim(Aw)
where we used c) for the last equality. Hence the inclusion Aw ⊆ A′w is an equality and b) is proved. �

Corollary 9.0.9. Let w ∈W with w = ns. Then, we have

a) The map ϕ defined in Theorem 9.0.4 induces an algebra isomorphism ϕ : NBn−1 → Aw.

b) Setting Jn := L1 + L2 + . . .+ Ln we have that the extension of ϕ to ÑBn−1 given by ϕ̃(Jn−1) = Jn induces an

algebra isomorphism ϕ̃ : ÑBn−1 → Ãw.

Proof: Part a) was already proved in the previous Theorem so let us concentrate on part b). Here we have already
checked all the relations that do not involve Jn and so we only have to check that J2

n = 0 and that Jn is central in
Ãw. Now by [10, Lemma 3.4] we know that L2

1 = 0 and that

L2
i = −2Li

i−1∑
j=1

Lj , (9.0.65)
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for all 2 ≤ i ≤ n. Thus we obtain

J2
n = (L1 + L2 + . . .+ Ln)2 =

n∑
i=2

L2
i + 2

n−1∑
i=1

n∑
j=i+1

LiLj (9.0.66)

= −2

n∑
i=2

i−1∑
j=1

LiLj + 2

n−1∑
i=1

n∑
j=i+1

LiLj = 0, (9.0.67)

as claimed. Now let us show that Jn is central in Ãw. It is enough to show that [Uj , Jn] = 0, for all 1 ≤ j ≤ n− 2,
where [·, ·] denotes the usual commutator bracket. We notice that [Uj , Li] = 0 if i 6= j, j + 1, j + 2. Then we are
done if we are able to show that

[Ui, Li + Li+1 + Li+2] = 0. (9.0.68)

But we have that

Ui · (Li + Li+1 + Li+2) =
b b b b b b

31 2 ni i+ 1 i+ 2

+
b b b

31 2 ni i+ 1 i+ 2

b b b

αt

+
b b b

31 2 ni i+ 1 i+ 2

b b b

In the second diagram we first rewrite αt = −αs2 − αs
2 and next use the polynomial relation (9.0.17), to take the

first −αs2 out of the birdcage to the left and the second −αs2 out of the birdcage to the right. This will give rise to
a cancellation of the first and the third terms in the expression for Ui · (Li + Li+1 + Li+2) and so we have that

Ui · (Li + Li+1 + Li+2) =
b b b

31 2 ni i+ 1 i+ 2

b b b

αt

2 +
b b b

31 2 ni i+ 1 i+ 2

b b b

αt

2 = −
b b b

1 2 n3 i i+ 1 i+ 2

b b b

This last diagram is symmetric with respect to a horizontal reflection and so

Ui · (Li + Li+1 + Li+2) = (Li + Li+1 + Li+2) · Ui (9.0.69)

as claimed. The Corollary is proved. �

Remark 9.0.10. Combining the isomorphism NBn−1
∼= Aw with Lemma 9.0.5, we obtain a proof of Lemma 8.0.11.

Remark 9.0.11. All the results in this chapter consider the case w = ns. Of course, they remain valid if we replace
ns by nt.
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Chapter 10

Idempotent truncations of Bn and
related alcove geometry

10.1 Idempotent truncations of Bn

From now on we shall study a certain subalgebra of Bn that arises from idempotent truncation of Bn. This
subalgebra has already appeared in the literature, for example in [10], [23].

Definition 10.1.1. Suppose that λ ∈ Par1
n. Then the subalgebra Bn(λ) of Bn is defined as

Bn(λ) := e(iλ)Bne(iλ). (10.1.1)

Let us mention the following Lemma without proof.

Lemma 10.1.2. Let λ = (1λ1 , 1λ2) ∈ Par1
n. Set µ := (1λ2 , 1λ1) ∈ Par1

n and ν = (1λ1−M , 1λ2−M ) ∈ Par1
2,n−2M

where M = min{λ1, λ2}. There is an isomorphism Bn(λ) ∼= Bn−2M (ν) of F-algebras.

We shall from now on fix λ of the form
λ = (1n, 10). (10.1.2)

Remark 10.1.3. When defining Bn(λ) we could have taken more general λ, but in view of the Lemma it is enough
to consider λ either of the form (1n, 10) or µ := (10, 1n). Moreover, we have that

e(iµ)Bne(iµ) ∼= e(iλ)B′n(e−m)e(iλ). (10.1.3)

On the other hand, the methods and results for Bn(λ) that we shall develop during the rest of the thesis will have
almost identical analogues for the right hand side of (10.1.3), as the reader will notice during the lecture, with the
only difference that one-column bipartitions and tableaux are replaced by one-row bipartitions and tableaux. Thus,
there is no loss of generality in assuming that λ is of the form given in (10.1.2).

One of the advantages of the choice of λ in (10.1.2) is that the residue sequence iλ is particularly simple since
it decreases in steps by one. Let us state it for future reference

iλ = (0,−1,−2,−3, . . . ,−n+ 1) ∈ Ine . (10.1.4)

In the main theorems of this chapter we shall find generators for Bn(λ), verifying the same relations as the

generators NBn or ÑBn. The following series of definitions and recollections of known results from the literature
are aimed at introducing these generators.

It follows from general principles that Bn(λ) is a graded cellular algebra with identity element e(iλ). Let us
describe the corresponding cellular basis. Set first Std(Par1

n) :=
⋃
µ∈Par1

n
Std(µ) and define for i ∈ Ine :

Std(i) := {ttt ∈ Std(Par1
n) | it = i}. (10.1.5)

Furthermore, for µ ∈ Par1
n define

Stdλ(µ) := Std(iλ) ∩ Std(µ). (10.1.6)

Then we have the following Lemma.
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Lemma 10.1.4. a) For s, t ∈ Std(µ) we have that

e(iµ)ψd(t) = ψd(t)e(i
t) and ψ∗d(s)e(i

µ) = e(is)ψ∗d(s). (10.1.7)

b) The set Cn(λ) := {mµst | s, t ∈ Std(iλ),µ = shape(s) = shape(t)} is a graded cellular basis for Bn(λ).

Proof. From the multiplication rule in Bn we have that ψke(i) = e(ski)ψk for any k = 1, . . . , n − 1 and i ∈ Ine .
Hence if d(t) = si1si2 · · · siN is a reduced expression we get that

e(iµ)ψd(t) = ψd(t)e(siN · · · si2si1iµ) = ψd(t)e(i
t), (10.1.8)

proving the first formula of a). The second formula of a) is proved the same way. On the other hand, by using a)
and 3.0.1 we obtain

e(iλ)mµste(i
λ) = e(iλ)ψ∗d(s)e(i

µ)ψd(t)e(i
λ) = e(iλ)e(is)ψ∗d(s)ψd(t)e(i

t)e(iλ) = δis,iλδit,iλm
µ
st (10.1.9)

and so b) follows.

10.2 An explicit algorithm for the elements d(t)

We now explain an algorithm for producing a reduced expression for the elements d(t) for t ∈ Std(λ). This algorithm
has already been used in [38], [15], [10] and [23].

We first need to reinterpret standard tableaux as paths on the Pascal triangle.
Let t ∈ Std(λ). Then we define pt : {0, 1, . . . , n} → Z as the function given recursively by pt(0) = 0 and

pt(k) = pt(k − 1) + 1 (resp. pt(k) = pt(k − 1)− 1) if k is located in the second (resp. first) column of t. Moreover,
we define Pt : [0, n]→ R2 as the piecewise linear path such that Pt(k) = (pt(k), k) for k = 0, 1, . . . , n and such that
Pt |[k,k+1] is a line segment for all k = 0, 1, . . . , n− 1.

We depict Pt graphically inside the standard two-dimensional coordinate system, but reflected through the
x-axis. For instance, if s and t are the standard tableaux in (10.2.1)

[λ] =

 ,

 s =


1
2
3
10
11

4
5
6
7
8
9

,

 t =


1
3
5
7
9

2
4
6
8
10
11

,

 (10.2.1)

then Ps and Pt are depicted in (10.2.2), with Ps in red and Pt in black. In general, we denote by Pλ the path
obtained from the tableau tλ. Thus in (10.2.2) we have that Pt = Pλ for λ = (15, 16).
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b
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b
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b

b

b

b

b

b

b
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b

b

b

b

b

b
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b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
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b

b

b

b

bb

b

0 1 2 3 4 5 6 7 8 9−9 −8 −7 −6 −5 −4 −3 −2 −1

0

1

2

3

4

5

6

7

8

9

10

11

(10.2.2)

Note that in general the integral values of Pt belong to the set {(p, k) | k ∈ Z≥0, p = −k,−k + 2, . . . , k − 2, k}.
This set has a Pascal triangle structure which is why we say that standard tableaux correspond to paths on the
Pascal triangle.

It is clear that the map t 7→ Pt defines a bijection between Std(λ) and the set of all such piecewise linear paths
with final vertex (λ2 − λ1, n). For this reason, we sometimes identify λ with the point (λ2 − λ1, n).
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Suppose now that both t and tsk are standard tableaux for some λ ∈ Par1
n and sk ∈ S. Then k and k+ 1 are in

different columns of t and so we conclude that the functions pt and ptsk are equal except that pt(k) = ptsk(k)± 2,
and hence also the paths Pt and Ptsk are equal except in the interval [k − 1, k + 1] where they are related in the
following two possible ways

kk Pt = Ptsk =Pt = Ptsk = or kk

p pp p

(10.2.3)

Conversely, if s and t are standard tableaux in Std(λ) such that Ps and Pt are equal except in the interval [k−1, k+1]
where they are related as in (10.2.3), then we have that s = tsk. Let us now consider the following algorithm.

Algorithm 10.2.1. Let λ ∈ Par1
n and t ∈ Std(λ). Then we define a sequence seq := (si1 , si2 , . . . , siN ) of elements

of Sn as follows.

Step 1. Set P0 := Pλ. If P0 6= Pt then choose i1 any such that tλsi ∈ Std(λ) and such that the area bounded by
P1 := Ptλsi and Pt is strictly smaller than the area bounded by P0 and Pt.

Step 2. If P1 = Pt then the algorithm stops with seq := (si1). Otherwise choose any i2 such that tλsi1si2 ∈ Std(λ)
and such that the area bounded by P2 := Ptλsi1si2

and Pt is strictly smaller than the area bounded by P1

and Pt.

Step 3. If P2 = Pt then the algorithm stops with seq := (si1 , si2). Otherwise choose any i3 such that tλsi1si2si3 ∈
Std(λ) and such that the area bounded by P3 := Ptλsi1si2si3

and Pt is strictly smaller than the area bounded
by P2 and Pt.

Step 4. Repeat until PN = Pt. The resulting sequence seq = (si1 , si2 , . . . , siN ) gives rise to a reduced expression
for d(t) via d(t) = si1si2 · · · siN .

Note that it follows from (10.2.3) that the ik’s in Step 2 and Step 3 do exist and so the Algorithm 10.2.1 makes
sense. For example in the case of the tableau s from (10.2.1) we get, using (10.2.2), that for example

d(s) = s2s4s3s7s9s8s10s9 (10.2.4)

is a reduced expression for d(s). For completeness, we now present a proof of the correctness of the Algorithm.

Theorem 10.2.2. Algorithm 10.2.1 computes a reduced expression for d(s).

Proof: This is a statement about the symmetric group Sn viewed as a Coxeter group. Let tk := tλsi1si1 · · · sik be
the tableau constructed after k steps of the algorithm. Then we have that d(tk) = si1si1 · · · sik and we must show
that l(si1si1 · · · sik) = k where l(·) is the length function for Sn. We therefore identify d(tk) with a permutation of
{1, 2, . . . , n} via the row reading for tk. To be precise, using the usual one line notation for permutations, we write

tk((t
λ)−1(1))d(tk) = tk((t

λ)−1(2)) tk((t
λ)−1(n))b b b b b

(10.2.5)

We call this the one line representation for d(tk). If for example tk = s from (10.2.1) then we have the following
one line representation for d(tk)

1 4 2 5 3 6 10 7 11 8 9d(s) = (10.2.6)

whereas for tk = tλ from (10.2.1) we have the identity one line representation, that is

1 2 3 4 5 6 7 8 9 10 11d(tλ) = (10.2.7)

In general, by the Coxeter theory for Sn, we have that l(d(tk)) is the number of inversions of the one line repre-
sentation of d(tk) that is

l(d(tk)) = inv(d(tk)) := |{(i, j) : i < j and tk((tλ)−1(i) > tk((tλ)−1(j)}| (10.2.8)
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To prove the Theorem we must now show that inv(d(tk)) = k. We proceed by induction on k. For k = 0 we have that
inv(d(tk)) = inv(d(tλ)) = 0, see (10.2.7), and so the induction basis is ok. We next assume that inv(d(tk−1)) = k−1
and must show that inv(d(tk)) = k. At step k of Algorithm 10.2.1, we have that tk−1, tk ∈ Std(λ) and tk−1sik = tk
and hence tk−1 and tk are in one of the two situations described in 10.2.3. Let p be as in 10.2.3. Then, since tk
is closer to t than tk−1, we have that tk−1 and tk are in the first situation of 10.2.3 if p ≤ −1 and in the second
situation of 10.2.3 if p ≥ 0. In other words, the first situation of 10.2.3 only takes places in the left half of the
Pascal triangle (10.2.2) and the second situation of 10.2.3 only takes places in the right half of the Pascal triangle
(10.2.2), with the vertical axis p = 0 is included.

These two situations translate into the following two possible relative positions for k and k + 1 in tk−1.
∗

b
b
b

k + 1

∗
∗
∗

,

∗

b
b

b

∗
∗
k

∗



∗

b
b
b

k + 1

∗
∗
∗

,

∗

b
b

b

∗
∗
k

∗


(10.2.9)

Here, in both tableaux k and k+ 1 are in different columns, but in the first tableau, corresponding to p < 0, we
have that k + 1 is in a strictly lower row than k, whereas in the second tableau, corresponding to p ≥ 0, we have
that k + 1 is in a lower or equal row than k.

On the other hand, in each of the two cases of (10.2.9) we have that k appears before k + 1 in the one line
representation for tk−1 and so inv(d(tk)) = inv(d(tk−1)) + 1. This proves the Theorem. �

Remark 10.2.3. We remark that the reduced expression for d(s) obtained via Algorithm 10.2.1 is by no means
unique. In general, we have many choices for the ik’s and the reduced expression obtained depends on the choices we
make. On the other hand, it is known that d(s) is fully commutative. In other words, any two reduced expressions
for d(s) are related via the commuting braid relations.

10.3 Alcove geometry

We now introduce an Ã1 alcove geometry on R2. For each j ∈ Z we introduce a wall Mj in R2 via

Mj := {((j − 1)e+m, a) | a ∈ R} ⊂ R2. (10.3.1)

The connected components of R2 \⋃jMj are called alcoves and the alcove containing (0, 0) is denoted by A0

and is called the fundamental alcove. Recall that we have fixed W as the infinite dihedral group with generators s
and t. We view W as the reflection group associated with this alcove geometry, where s and t are the reflections
through the walls M0 and M1, respectively. This defines a right action of W on R2 and on the set of alcoves. For
w ∈W , we write Aw := A0 · w.

Let P : [0, n]→ R2 be a path on the Pascal triangle and suppose that P (k) ∈Mj for some integers k and j. Let
rj be the reflection through the wall Mj . We then define a new path P (k,j) by applying rj to the part of P that
comes after P (k), that is

P (k,j)(t) :=

{
P (t), if 0 ≤ t ≤ k;
P (t)rj , if k ≤ t ≤ n. (10.3.2)

For two paths on the Pascal triangle we write P
(k,j)∼ Q if Q = P (k,j) and denote by ∼ the equivalence relation on the

paths on the Pascal triangle induced by the
(k,j)∼ ’s. Then we have the following Lemma which is a straightforward

consequence of the definitions.

Lemma 10.3.1. Suppose that s, t ∈ Std(Par1
n). Then is = it if and only if Ps ∼ Pt.

We can now provide an alcove geometrical description of Std(iλ). It is a direct consequence of Lemma 10.3.1.

Lemma 10.3.2. Let [Pλ] be the equivalence class of Pλ under the equivalence relation ∼. Then, Std(iλ) = [Pλ].
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b

M0 M1 M2 M3M−4 M−3 M−2 M−1 M4

λ = µ0 µ2 µ4 µ3 µ1

Astst Asts Ast As

A0
At Ats Atst

(10.3.3)

In (10.3.3) we indicate for m = 2, e = 5 and n = 23 the paths corresponding to elements in Std(iλ), according to
Lemma 10.3.4. The path Pλ is the one to the extreme left. The endpoints of the paths are enumerated according
to the order relation C on Par1

n, with µ0 = λ, µ1 the rightmost path, and so on.

To illustrate the connection between paths and tableaux, we present in (10.3.5) the six elements of Stdλ(µ4)
for (10.3.3) as tableaux. We have colored the entries of each tableau by blocks. The zero’th block corresponds to
the path segment from the origin (0, 0) to the first wall M0 and its entries have been colored red. The first full
block corresponds to the path segment from M0 to the next wall which may be either M−1 or M1 depending on the
tableau and the corresponding elements have been colored blue, and so on. We shall give the precise definition of
full blocks shortly.

In (10.3.5) we have also given the residue tableau resµ4 for µ4. By definition, it is obtained from [µ4] by
decorating each node A with its residue res(A). Using it, one checks that for each t ∈ Stdλ(µ4) the corresponding
residue sequence is iλ, as it should be:

iλ = it = (0, 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, 4, 3, 2, 1) (10.3.4)

Stdλ(µ4) =



1
2
3
4
5
6
7
8
9
10
11
12
13

14
15
16
17
18
19

20
21
22
23

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

19
20
21
22
23

1
2
3

4
5
6
7
8
9

10
11
12
13

14
15
16

17
18
19
20
21
22
23

1
2
3

4
5
6
7
8

9
10
11
12
13

14
15
16
17
18

19
20
21
22
23

1
2
3
4
5
6
7
8

9
10
11
12
13

14
15
16
17
18

19

20
21
22
23

1
2
3

4
5
6
7
8

9
10
11
12
13
14
15
16
17
18

19

20
21
22
23

, , , , ,



, [resµ4] =



0
4
3
2
1
0
4
3
2
1
0
4
3

2
1
0
4
3
2

1
0
4
3



(10.3.5)

b

M0 M1 M2 M3M−4 M−3 M−2 M−1 M4

λ

(10.3.6)
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The structure of Std(iλ) depends on whether λ is singular or regular :

Definition 10.3.3. Let the integers Kn,m = K and 0 ≤ Rn,m = R < e be defined via integer division n− (e−m) =
Ke+R. Then we say that λ is singular if R = 0 and otherwise we say λ that is regular. Graphically, λ is singular
if it is located on a wall, otherwise it is regular.

The paths in (10.3.3) represent a singular situation whereas the paths in (10.3.6) represent a regular situation.
In both cases, regular or singular, the cardinality |Stdλ(µ)| is given by binomial coefficients and so we have the
following Lemma.

Lemma 10.3.4. a) Let [Pλ] be the equivalence class of Pλ under the equivalence relation ∼. Then, Std(iλ) = [Pλ].

b) Suppose that λ is singular. Then
∑
µ∈[Pλ](n) |Stdλ(µ)|2=

(
2K
K

)
.

c) Suppose that λ is regular. Then
∑
µ∈[Pλ](n) |Stdλ(µ)|2= 2

(
2K
K

)
.

We now define the integer valued function

fn,m(j) = f(j) := −m+ je for j ∈ Z+. (10.3.7)

Then for t ∈ Stdλ(µ) we have that k = f(1), f(2), . . . , f(K) are the values of k such that Pt(k) belongs to a wall
Mj and we then define for i = 1, 2, . . . ,K the i’th full block for λ as the set

Bi := [f(i) + 1, f(i) + 2, . . . , f(i) + e]. (10.3.8)

For example, in the situations (10.3.3) and (10.3.6) we have the following full blocks

B1 = [4, 5, 6, 7, 8], B2 = [9, 10, 11, 12, 13], B3 = [14, 15, 16, 17, 18], B4 = [19, 20, 21, 22, 23]. (10.3.9)

For 1 ≤ i < K we next define Ui ∈ Sn as the order preserving permutation that interchanges the blocks Bi and
Bi+1 that is

Ui := (f(i) + 1, f(i+ 1) + 1) (f(i) + 2, f(i+ 1) + 2) · · · (f(i) + e, f(i+ 1) + e). (10.3.10)

For example, in the situation (10.3.9) we have

U1 = (4, 9)(5, 10)(6, 11)(7, 12)(8, 13) (10.3.11)

written as a product of non-simple transpositions. We need a reduced expression for (10.3.10) and therefore for
i ≤ j of the same parity we introduce the following element of Sn

s[i,j] := sisi+2 · · · sj−2sj . (10.3.12)

Then we have
Ui = s[a,a]s[a−1,a+1] · · · s[a−e+1,a+e−1] · · · s[a−1,a+1]s[a,a] (10.3.13)

where a = f(i+ 1) which upon expanding out the s[i,j]’s becomes a reduced expression for Ui. We can now recall
the following important definition from [23].

Definition 10.3.5. For 1 ≤ i < K we define the diamond of λ at position f(i) by

Uλi := ψUie(i
λ) = ψ[a,a]ψ[a−1,a+1] · · ·ψ[a−e+1,a+e−1] · · ·ψ[a−1,a+1]ψ[a,a]e(i

λ) (10.3.14)

where a = f(i+ 1) and ψ[i,j] := ψiψi+2 · · ·ψj−2ψj .

The name ‘diamond’ comes from the diagrammatical realization of Bn(λ). Here is for example the n = 13,m =
2, e = 5 and i = 1 case

Uλ1 =

0 4 3 2 1 0 4 3 2 1 0 4 3

(10.3.15)
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Chapter 11

A presentation for Bn(λ) for λ singular

In this chapter we consider the case where λ is singular. Our aim is to show that Bn(λ) and NBK are isomorphic
F-algebras. The first step towards this goal is to prove that the following subset of Bn(λ)

G(λ) := {Uλj | 1 ≤ j < K} ∪ {yie(iλ) | 1 ≤ i ≤ n} (11.0.1)

is a generating set for Bn(λ). To be precise, letting B′n(λ) be the subalgebra of Bn(λ) generated by G(λ) we shall
show that each element mµst of the cellular basis Cn(λ) for Bn(λ), given in Lemma 10.1.4, belongs to B′n(λ). The
proof of this will take up the next few pages.

We shall rely on a systematic way of applying Algorithm 10.2.1 to get reduced expressions for the elements d(t),
t ∈ Std(iλ). Let us now explain it.

Let λmax ∈ Par1
n be the maximal element in the W -orbit of λ with respect to the order C. Clearly, λmax is

located on one of the two walls of the fundamental alcove. Recall that Pλmax
is the path associated with the tableau

tλmax ; it zigzags along the vertical central axis of the Pascal triangle as long as possible, and finally goes linearly
off to λmax. The set of paths Pt for t ∈ Std(iλ) together with Pλmax , which does not belong to Std(iλ), determine
three kind of bounded regions that we denote by hi, ui and u′i:

hi = ui =
,

,u′
i =

(11.0.2)

See also (11.0.3). In (11.0.2) as well as (11.0.3) we have indicated Pλmax
with bold blue.

In general the hi’s are completely embedded in A0, whereas the ‘diamond’ regions ui’s have empty intersection
with A0. The ‘cut diamond’ regions u′i’s have non-empty intersection with A0 but also with one of the alcoves As
or At. Note that the union of hi and u′i forms a diamond shape. We enumerate the regions from top to bottom as
in (11.0.3), with the hi’s starting with i = 0 and the u′i and ui’s with i = 1. Note that there are repetitions of the
ui’s.

b

u′
1

h1

h0

u2

u3u3

u4 u4
u4h4 u′

4

h2

h3

u′
3

λmaxλ

u′
2

(11.0.3)
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For each of the three kinds of regions hi, ui, u
′
i we now introduce an element Hi, Ui, U

′
i ∈ Sn in the following

way. For R = hi, ui, u
′
i we let ∂(R) be the boundary of R with respect to the usual metric topology. Then for

any R = hi, ui, u
′
i we have that ∂(R) is a union of line segments and we define the outer boundary, ∂out(R), as the

union of the two line segments that are the furthest away from Pλmax
. Moreover we define the inner boundary as

∂in(R) = ∂(R) \ ∂out(R), where the overline means closure with respect to the metric topology.
Suppose now that R = hi (resp. R = ui and R = u′i). We then choose any tableau b ∈ Std(Par1

n) such that
∂in(R) ⊆ Pb. Let P ′b be the path obtained from Pb by replacing ∂in(R) by ∂out(R). Then we define Hi ∈ Sn (resp.
Ui ∈ Sn or U ′i ∈ Sn) by the equation

P ′b = PbHi (resp. P ′b = PbUi and P ′b = PbU ′i
). (11.0.4)

In other words, Hi (resp. Ui and U ′i) is simply the element of Sn that is used to fill in the region hi (resp. ui and
u′i) in the sense of Algorithm 10.2.1, where each si appearing in Hi (resp. Ui and U ′i) corresponds to the filling in
of one of the little squares of hi (resp. ui and u′i). For example, in the situation (11.0.3) we have that

H0 = s2s4s6s3s5s4, H1 = s9s11s10, U
′
1 = s[8,12]s[7,13]s[6,14]s[5,15]s[6,14]s[7,13]s[8,12]s[9,11]s[10,10] (11.0.5)

where we used the notation from (10.3.12) for the formula for U ′1. Note that the Ui’s coincide with the Ui’s defined
in (10.3.10). It is also possible to give formulas for the Hi’s and the U ′i ’s, in the spirit of (10.3.10), but we do not
need them.

For any t ∈ Stdλ(µ) we now introduce a reduced expression for d(t) by applying Algorithm 10.2.1 in a way
compatible with the regions. To be precise, starting with Pλmax

we first choose those regions hi that give rise to a
path closer to Pt than Pλmax

, by replacing the inner boundaries with the outer boundaries. Having adjusted Pλmax

for those hi’s we next choose those regions u′i that the same way give rise to a path even closer to Pt and finally we
repeat the process with the regions ui. It may be necessary to repeat the last step more than once. The product
of the corresponding symmetric group elements is now a reduced expression for d(t): this is our favorite reduced
expression for d(t) that we shall henceforth use.

In (11.0.7) we give two examples with e = 6 and m = 2.

We let ψHi (resp. ψUi and ψU ′i ) be the element of Bn obtained by replacing each si ∈ Sn in Hi (resp. Ui and
U ′i) with the corresponding ψi. We then get an expression for ψd(t) by replacing each occurring Hi (resp. Ui and

U ′i) in the above expansion for d(t) by ψHi (resp. ψUi and ψU ′i ). Note that ψUie(i
λ) = Uλi ∈ G(λ) from (11.0.1).

For example, in the cases (11.0.7) we have

ψd(s) = ψH0ψH1ψH2ψH3ψH5ψH6ψU ′4ψU ′7 and ψd(t) = ψH0
ψH2

ψH3
ψH5

ψH6
ψU ′1ψU ′4ψU ′7ψU8

ψU9
. (11.0.6)

Ps =

h1

h0

h3

u′
5

u6

u′
2

u7

h4

b

u′
1

u2

u3
u′
3 u3

u4

u5 u5

u′
4 h5

u8

u7u′
7

u8

u9

h6

µν

b b
u′
6

h2

Pt =

b

u′
1 h1

h0

u2

u3u3

u4
u′
4

h2

h3

u′
3

u5 u′
5

u5

h5

u6
u′
6h6

u′
7

u8

u′
9

µ

h7

u′
2

u7

u9

h4

(11.0.7)
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With the same s and t we have in terms of KLR-diagrams

e(iµ)ψd(s) =

02514035241302 b b b = iµ

05432105432105 b b b = iλ

(11.0.8)

e(iµ)ψd(t) =

02514035241302

05432105432105

b b b

b b b

= iµ

= iλ

(11.0.9)

Let us give some comments related to the combinatorial structure of (11.0.8) and (11.0.9); these hold in general.
Note first that only the lower residue sequence of (11.0.8) and (11.0.9) is iλ and so e(iµ)ψd(s) and e(iµ)ψd(t) actually
do not belong to Bn(λ), only to Bn. Secondly, note that the KLR-diagrams for the ψHi ’s are located in the ‘top
lines’ of (11.0.8) and (11.0.9), whereas the diagrams for the ψU ′i ’s and the ψUi ’s are situated in ‘the middle and the
bottom lines’ of (11.0.8) and (11.0.9), respectively. For each i only one of the diagrams ψHi or ψU ′i appears. The
appearing ψHi ’s and ψU ′i ’s are ordered from the left to the right, with ψH0

, that always appears, to the extreme
left and so on. On the other hand, in general the ψUi ’s do not appear ordered.

Next, we observe that the shapes of ψHi ’s and the ψU ′i ’s depend on their parity. In other words, if i and j have
the same parity then ψHi and ψHj (resp. ψU ′i and ψU ′j ) have the same shape. In (11.0.9) we have encircled with
blue the even diagrams ψHi and ψU ′i and with red the odd diagrams ψHi and ψU ′i .

Our next observation is that the diagrams ψU ′i always lie between two diagrams ψHi−1 and ψHi+1 , except possibly
for the rightmost ψU ′i . The rightmost ψU ′i is always preceded by ψHi−1

but it may be followed by ψUi+1
, as in (11.0.9),

or by a number of through lines, as in (11.0.8).

In general, we have that the ψHi ’s are ‘distant’ apart and so pairwise commuting. This is not the case for the
ψU ′i ’s. However, we still have that ψU ′iψU ′j = ψU ′jψU ′i if |i − j| > 1. By the previous paragraph we know that each
occurrence of ψU ′i is surrounded by ψHi−1

and ψHi+1
. We conclude that if ψU ′i and ψU ′j occur in the diagram of

some ψd(t) then |i− j| > 1, and therefore, they do commute. The relations between the ψUi ’s are known from [23],
we shall return to them shortly. Between the different groups there is no commutativity in general, that is ψU ′i does
not commute with ψHi−1

and ψHi+1
and so on.

Finally, we observe that the all of the diagrams ψHi , ψU ′i and ψUi are organized tightly. There are for example
only two through lines in (11.0.9). In both (11.0.8) and (11.0.9) we have colored blue the through lines that
correspond to the places where Ps and Pt change from the left to right half of the Pascal triangle, or reversely. In
general these lines lie between two ψHi ’s. Thus the contours’ of (11.0.8) and (11.0.9) are a mirror of the shapes of
the paths (11.0.7), with the modification that the through blue lines indicate a change from left to right of reversely.

For t ∈ Std(iλ) we define θ(t) as the element of Sn obtained from the favorite reduced expression for d(t) by
erasing all the Ui-factors and similarly we define u(t) ∈ Sn by erasing both the Hi and the U ′i -factors. Then clearly

d(t) = θ(t)u(t). (11.0.10)

We now have the following Lemma.
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Lemma 11.0.1. Suppose that s, t ∈ Stdλ(µ) and let Ps1 and Pt1 be the paths obtained from Ps and Pt by replacing
outer boundary with inner boundary for all the ui-regions. Then we have that θ(s) = d(s1) and θ(t) = d(t1).
Moreover

mµst = ψ∗u(s)m
µ
s1t1

ψu(t). (11.0.11)

Proof. The result is a direct consequence of the definitions.

Our goal is to prove that mµst belongs to B′n(λ). On the other hand, ψu(s) and ψu(t) in (11.0.11) are products of

Uλi ’s and so it follows from Lemma 11.0.1 that to achieve this goal it is enough to consider the case where s = s1

and t = t1. Let us give the corresponding formal definition.

Definition 11.0.2. Let t ∈ Std(iλ). We say that t is central if u(t) is the empty word. Equivalently, t is central if
d(t) = θ(t).

Geometrically, t is central if the path Pt stays close to the central vertical axis of the Pascal triangle. In other
words, Pt does not cross the walls M−1 and M2, except possible once in the final stage. For example, in (11.0.7)
we have that s is central but t is not. In view of Lemma 11.0.1 we will from now on only consider central tableaux.

Suppose therefore that t ∈ Stdλ(µk) is central where µk is as described in (10.3.3). Then one checks that the
total number of ψHi ’s and ψU ′i ’s appearing in ψd(t) is k. We now define a (2 × k)-matrix c(t) = (cij) of symbols
that completely determines ψd(t). It is given by the following rules.

1. If Hi appears in appears in d(t) then c1,i+1 := Hi and c2,i+1 := ∅.

2. If U ′i appears in d(t) then c2,i+1 = Ui
′ and c1,i+1 := ∅.

We view the matrix c(t) as a codification for ψd(t), where the first row of c(t) corresponds to the top line of
ψd(t) and the second row of c(t) to the second line of ψd(t). The comments that were made on the structure of
(11.0.8) and (11.0.9) carry over to the matrices c(t). In particular, exactly one of Hi or U ′i appears in c(t) for each
i. Moreover, H0 always appears and each U ′i , except possibly U ′k−1, is surrounded by Hi−1 and Hi+1.

For example if ψd(s) is as in (11.0.8), then

c(s) = H0 H1 H2 H3

U ′
4

H5 H6

U ′
7

(11.0.12)

Note that we leave the entries containing ∅ empty. Similarly, let t be as in (11.0.7) but with the regions U8 and U9

eliminated. Then t is central and ψd(t) is obtained by deleting ψU8
and ψU9

from (11.0.9) and we have

ψd(t) = (11.0.13)

with corresponding matrix

c(t) = H0 H2 H3

U ′
4

H5

U ′
1

H6

U ′
7

(11.0.14)
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We are interested in the elements mµst. In the above cases (11.0.8) and (11.0.13) it is as follows

mµst = c(s, t) = H∗
0 H∗

1 H∗
2 H∗

3

U ′∗
4

H∗
5

U ′∗
7

H∗
6

H0 H2 H3 H5 H6

U ′
1 U ′

4 U ′
7

(11.0.15)

In general, for t ∈ Stdλ(µk) central we define c∗(t) as the (2 × k)-matrix (dij) where d1j = c∗2j and d2j = c∗1j .
Here we set ∅∗ := ∅. Moreover, for s, t ∈ Stdλ(µk) both central we define c(s, t) as the (4× k)-matrix that has c∗(s)
on top of c(t). Then c(s, t) is our codification of mµst. In (11.0.15) we have given c(s, t) next to mµst.

Our task is now to show that any diagram as in (11.0.15) can be written in terms of the elements from G(λ). This
requires calculations using the defining relations for Bn. Let us first recall a couple of results from the literature.

Lemma 11.0.3. The idempotent e(i) ∈ Bn is nonzero only if i = it for some t ∈ Std(Par1
n).

Proof. This follows from Lemma 4.1(c) of [17], where it was proved for cyclotomic Hecke algebras in general,
combined with the fact that Bn is a graded quotient of the cyclotomic Hecke algebra of type G(2, 1, n), see [38].

Lemma 11.0.4. Let Bi be a full block for λ as introduced in (10.3.8) and suppose that k, l ∈ Bi. Then we have
that

yke(i
λ) = yle(i

λ). (11.0.16)

Proof. This follows from relation (3.0.21) and Lemma 11.0.3.

Lemma 11.0.5. Suppose that ν ∈ Par1
n and that t ∈ Std(Par1

n). Suppose moreover that Pt |[0,k]= Pν|[0,k] for some
integer k ≥ 0. Then for all 1 ≤ r ≤ k we have in Bn that

yre(i
t) = 0. (11.0.17)

Proof. Recall that Pν zigzags along the vertical central axis of the Pascal triangle and finally goes linearly off to
ν. If r belongs to the zigzag part of Pν , the result follows from the Lemmas 14 and 15 of [25], see also Theorem
6.4 of [10]. Otherwise, if r belongs to the linear part of Pν , we argue as in the previous Lemma and get that
yre(i

t) = yr−1e(i
t). Continuing like this, we finally end up in the zigzag part of Pν .

Henceforth, we color the intersections of our KLR-diagrams according to the difference of the relevant residues.
More precisely, we shall use the following color scheme

i ii i

:=

i

:=

i± 1 i i± 1

and (11.0.18)

whereas for all other crossing we keep the usual black color. In this notation we now have the following Lemma
which is a direct consequence of the relations (3.0.18) and 3.0.21.

Lemma 11.0.6. We have the following relations in Bn

=b

,
=b −

i i i i i i i i

(11.0.19)

We can now finally prove the Theorem that was announced in the beginning of this chapter.
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Theorem 11.0.7. The set G(λ) introduced in (11.0.1) generates Bn(λ).

Proof. Using the coloring scheme introduced above, the diagram (11.0.15) looks as follows

H∗
0 H∗

1 H∗
2 H∗

3

U ′∗
4

H∗
5

U ′∗
7

H∗
6

H0 H2 H3 H5 H6

U ′
1 U ′

4 U ′
7

(11.0.20)

We must show that the elements mµst can be written in terms of the elements of G(λ). We will do so by pairing
the elements of the columns of the corresponding c(s, t).

Note that the residue sequence for the middle blue horizontal of (11.0.20) is iµ. The idea is to apply Lemma
11.0.5 and therefore it is of importance to resolve the columns from the right to the left.

Let us first consider columns containing pairs {H∗i , Hi}, starting with the rightmost of these columns. Thus
in the above case we consider first {H∗6 , H6}. We now use relation 3.0.21 to undo all the crossings in H∗i and Hi,
arriving at a diagram like (11.0.21). Here we use an overline on the two dots to denote that the result is a difference
of two equal diagrams but each with one dot in the indicated place. Note that the residue sequence for the middle
line has now changed, and correspondingly we have changed the color from blue to red and green around the two
dots. In the above case, the new middle residue sequence is it1 where t1 = tµH6, that is t1 is obtained from tµ by
replacing ∂in(h6) with ∂out(h6). In the first figure of (11.0.7), we have indicated Pt1 , using the same colors red and
green. On the leftmost dot, given by y40 in the above example, we can now apply Lemma 11.0.5, with t = t1 and
ν as indicated in (11.0.7) We conclude from the Lemma that the corresponding diagram is zero.

Thus in the above case (11.0.21) only the second term dot with y41 stays. We now repeat this process for all
the other pairs of the form {H∗i , Hi}, from the right to the left. For example in the case (11.0.21) we arrive at the
diagram (11.0.22). We have indicated the blocks for λ on the top of the diagrams (11.0.21) and (11.0.22). Note
that each Hi (resp. H∗i , U

′
i and U ′∗i ) ‘intersects’ both of the blocks Bi and Bi+1 and that the dots of (11.0.22) are

all situated at the beginning of a block.

mµst = −y40 + y41

b b

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

(11.0.21)
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mµst =
b

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

b b b b

(11.0.22)

Next we treat the pairs of the form {U ′∗i , Hi} or {H∗i , U ′i}. By the combinatorial remarks made earlier, each
appearing Hi-term (resp. H∗i -term) fits perfectly with the corresponding U ′∗i -term (resp. U ′i -term) to form a
diamond. We then move the Hi-term up (resp. the H∗i -term down) to form this diamond. Note that this process
does not involve any other terms since the Hi-terms (resp. the H∗i -terms) are distant from the surrounding dots.
In the above case (11.0.22) we get the following diagram.

mµst =
b

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

b b b b

(11.0.23)

We are only left with columns containing pairs of the form {U ′∗i , U ′i}. By the previous step there is now a dot
between the top U ′∗i and the bottom U ′i , at the left end of the ‘line segment’ between them, see (11.0.23). We show
that this kind of configuration Ci is equal to diamond ψUi . In fact, the arguments we employ for this have already
appeared in the literature, see for example [23]. Let us give the details corresponding to i = 7 in (11.0.23); the
general case is done the same way. Using relation (3.0.21) to undo the black double crosses, next relation (3.0.21)
to undo the last blue cross and finally (3.0.21) on the red double cross, we have the following series of identities.

C7 b = b b= b − bb

B7 B8 B7 B8 B7 B8B7 B8

b b

B7 B8

== − (11.0.24)

But this process can be repeated on all the blue double crosses and so we have via Lemma 11.0.6 that

C7
b

B7 B8

bbbbb

B7 B8

= (−1)e−1 = (−1)e−1 = (−1)e−1ψU7
. (11.0.25)
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The same procedure can be carried out for the other columns of the form {U ′∗i , U ′i}. In the above case there is
only one such column, corresponding to i = 4 and so get finally that

mµst = ±

B1

b

b b

B2 B3 B4 B5 B6 B7 B8 B9 B10

(11.0.26)

In other words, since multiplication in Bn is from top to bottom, we have that

mµst = ± y5U
λ
1 y17U

λ
4 y35U

λ
7 . (11.0.27)

All appearing factors of mµst belong to G(λ) and so we have proved the Theorem.

Let us point out some remarks concerning Theorem 11.0.7 and its proof. First of all, we already saw that only
a few of the yi’s are needed to generate Bn(λ). Let us make this more precise. Choose any k in the i’th block Bi.
Then we define

Yλi := yke(i
λ) ∈ Bn(λ). (11.0.28)

Note that by Lemma 11.0.4, we have that Yλi is independent of the choice of k. Moreover, it follows immediately
from Theorem 11.0.7 that Bn(λ) is generated by the set

{Uλj | 1 ≤ j < K} ∪ {Yλi | 1 ≤ i ≤ K}. (11.0.29)

Secondly we remark that the proof of Theorem 11.0.7 gives rise to an algorithm for writing the above mµst in
terms of the generators in (11.0.29). Although the algorithm itself is not necessary for what follows, for the sake of
completeness we prefer to establish it formally.

Algorithm 11.0.8. Let µ ∈ Par1
n and let s, t ∈ Stdλ(µ) be central tableaux. Let c(s, t) be the matrix associated

with mµst.

Step 0. Add an empty column to the right of c(s, t).

Step 1. For each column in c(s, t) containing {U ′∗i , Hi} (resp. {H∗i , U ′i}) we remove Hi (resp. H∗i ) from c(s, t) and
replace U ′∗i (resp. U ′i) in c(s, t) by Ui.

Step 2. Working from the right two the left, for each column in c(s, t) containing {H∗i , Hi} we remove H∗i and Hi

from c(s, t) and write Yi+1 in one of the two middle boxes of the following column, one to the right.

Step 3. Each column in c(s, t) containing {U ′∗i , U ′i} will now also contain Yi. We replace these three ingredients of
that column by one Ui which is placed in one of the two middle boxes of the column.

Step 4. Replacing each Ui by Uλi and each Yi by Yλi we form the product of all appearing elements of c(s, t),
starting with the top line, then the two middle lines and finally the bottom line. This product is ±mµst.

Let us give an example to illustrate how the algorithm works. Suppose that s and t are central tableaux and
that c(s, t) is as follows.

c(s, t) =

H0 H2 H5 H6

H∗
0 H∗

1 H∗
2

H4

H∗
4 H∗

5

U ′∗
6

H7

H∗
7 H∗

8

U ′
1 U ′

3 U ′
8

U ′∗
3

(11.0.30)

Then going through the algorithm we get

c(s, t)→

U ′
3

U ′∗
3

U8

U6

Y5 Y6Y3

U1

Y1 Y8 →

U8

U6

Y5 Y6

U1

Y1 Y8U3 (11.0.31)
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and so we conclude that

mµst = ±Uλ6 Yλ1 Uλ3 Yλ5 Yλ6 Yλ8 Uλ1 Uλ8 . (11.0.32)

Our next step is to show that actually only Yλ1 is needed in order to generate Bn(λ). Let us first prove the
following result.

Lemma 11.0.9. For all 1 ≤ i < K we have

Yλi+1U
λ
i = Uλi Yλi + (−1)e(Yλi − Yλi+1). (11.0.33)

Proof. Let us first recall the following relations valid in Bn, see Lemma 5.16 of [23].

i

= − = −

i+ 1 i i i+ 1 i i i− 1 i i i− 1 i

, (11.0.34)

They are a consequence of the braid relation (3.0.20) together with Lemma 11.0.3.

Let us now show the Lemma for i = 1, since the general case is treated the same way. We take e = 6. Then we
have that via repeated applications of relation (3.0.18) that

Yλ2 Uλ1 =

b

=

b

− (11.0.35)

The first diagram is here Uλ1 Yλ1 so let us focus on the second diagram. Using the first relation in (11.0.34) repeatedly
we get that it is equal to

= − = b b b = (−1)e−1 = (−1)e−1(Yλ1 − Yλ2 ) (11.0.36)

where we used the quadratic relation (??) for the last step. Combining (11.0.35) and (11.0.36), we then get
(11.0.33).

Let us recall the commutation relations between the Uλi ’s, see Proposition 5.18 of [23].

Theorem 11.0.10. The subset {Uλi | i = 1, . . .K − 1} of Bn(λ) verifies the Temperley-Lieb relations, or to be
more precise

(Uλi )2 = (−1)e−12Uλi , if 1 ≤ i < K; (11.0.37)

Uλi U
λ
j U

λ
i = Uλi , if |i− j| = 1; (11.0.38)

Uλi U
λ
i = Uλj U

λ
i , if |i− j| > 1. (11.0.39)

With this at our disposal we can now prove, as promised, that Yλ1 is the only Yλi which is needed in order to
generate Bn(λ).

Theorem 11.0.11. The set
G1(λ) := {Uλi | 1 ≤ i < K} ∪ {Yλ1 } (11.0.40)

generates Bn(λ) as an F-algebra.
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Proof. Recall that e(iλ) is the identity element of Bn(λ), for simplicity we denote it by 1. Let us define

Sλi := Uλi + (−1)e. (11.0.41)

Then from Theorem 11.0.10 we get that
(Sλi )2 = 1. (11.0.42)

On the other hand, we notice that using the notation introduced above, the relation (11.0.33) becomes

Yλi+1S
λ
i = Sλi Yλi . (11.0.43)

Finally, by combining (11.0.42) and (11.0.43) we obtain

Yλi+1 = Sλi Yλi Sλi (11.0.44)

and the result follows.

We are now in position to prove the main result of this chapter.

Theorem 11.0.12. There is an isomorphism f : NBK → Bn(λ) given by

U0 7→ Yλ1 and Ui 7→ (−1)eUλi for 1 ≤ i < K. (11.0.45)

Proof. In view of Theorem 8.0.5 and the Pascal triangle description of the cellular basis for Bn(λ), the two algebras
have the same dimension. Hence, we only have to show that f is well defined since, by Theorem 11.0.11, it will
automatically be surjective.

Let us therefore check that f(U0) and the f(Ui)’s verify the relations for NBK . The Temperley-Lieb relations
(8.0.8), (8.0.9) and (8.0.10) are clearly satisfied by Theorem 11.0.10 whereas the relation (Yλ1 )2 = 0 follows from
relation (3.0.17) and (??). Hence we are only left with checking relation (8.0.11). It corresponds to Uλ1 Yλ1 Uλ1 = 0
which via Lemma 11.0.9 and (11.0.37) is equivalent to the relation

(Yλ1 + Yλ2 )Uλ1 = 0. (11.0.46)

For this we first write (−1)e−1Uλ1 in the following form

(−1)e−1Uλ1 =

B1 B2

H∗
0

H0

U ′∗
1

U ′
1

(11.0.47)

We have here used e = 6 as in the examples of the proof of Theorem 11.0.7. The middle blue horizontal line has
the same meaning as in (11.0.21); its residue sequence is iµ for the corresponding µ. Using this we get

(−1)e−1Yλ1 Uλ1

B1 B2

=

B1 B2 B1 B2

=

b

b +

B1 B2

− =

B1 B2

b

b b b = (−1)e−1=

(11.0.48)
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where the first equality comes from relation (3.0.18), the second from Lemma 11.0.5 and the other equalities from
(11.0.34). On the other hand, for (−1)e−1Yλ2 Uλ1 we have almost the same expansion with only a sign change coming
from relation 3.0.18:

(−1)e−1Yλ2 Uλ1

B1 B2

=

B1 B2 B1 B2

=

b

b

B1 B2

b b b =−

B1 B2

= (−1)e= (11.0.49)

Comparing (11.0.48) and (11.0.49) we see that (11.0.46) holds. The Theorem is proved.

Remark 11.0.13. Using (11.0.44) and (11.0.42) we extend (Yλ1 )2 = 0 to (Yλi )2 = 0 to all i. Thus the isomorphism
ϕ : NBn ∼= Aw gives us a proof of Lemma 8.0.9. The recursive formula for the Yi’s is given by 11.0.44.
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Chapter 12

A presentation for Bn(λ) for λ regular

In this chapter we consider the case where λ is regular, in other words we assume that R > 0, see Definition 10.3.3.
We define Bn(λ) := e(iλ)Bne(iλ) just as in the singular case but, as we shall see, the regular case is slightly more
complicated than the singular case since we need an extra generator. Recall first the function f = fn,m from (10.3.7)
which was used to define the full blocks in the singular case, see (10.3.8). Let K be as in Definition 10.3.3. Then
in the regular case there is an extra non-full block Blast defined as follows

Blast := [f(K + 1) + 1, f(K + 1) + 2, . . . , f(K + 1) +R] = [f(K + 1) + 1, f(K + 1) + 2, . . . , n]. (12.0.1)

For example in the situation described in (10.3.6), we have n = 25, e = 5,m = 2 and so K = 4, R = 2 and therefore

B1 = [4, 5, 6, 7, 8], B2 = [9, 10, 11, 12, 13], B3 = [14, 15, 16, 17, 18], B4 = [19, 20, 21, 22, 23], Blast := [24, 25].
(12.0.2)

b

M−4 M−3 M−2 M−1 M0 M1 M2 M3 M4

λ

(12.0.3)

Let n := n−R and let λ := (1n, 10) ∈ Par1
n. We notice that

n̄ = f(K + 1). (12.0.4)

It is clear from the definitions that λ is singular. On the other hand, any s ∈ Std(iλ̄) gives rise to two tableaux
s(I) and s(O), in Std(iλ), as follows. The tableau s(I) (resp. s(O)) is defined as the unique tableau t ∈ Std(iλ)
whose path Pt coincides with Ps on the restriction to [1, 2, . . . , n] and whose restriction to Blast is a straight line
that moves Pt closer to (resp. further away from) the central vertical axis of the Pascal triangle. We say that t is

an inner tableau (resp. an outer tableau) if it is of the form t = s(I) (resp. t = s(O)) for some s ∈ Std(iλ̄). It is

easy to see that any tableau t in Std(iλ) is of the form t = s(I) or t = s(O) for a unique s ∈ Std(iλ̄).
In (12.0.3) we have indicated with blue the restriction to Blast of the paths corresponding to inner tableaux,

and with red the restriction to Blast of the paths corresponding to outer tableaux. Note that Pλ is always the path
of an outer tableau.

Let ilast ∈ IRe be the restriction to Blast of the residue sequence for iλ and let e(ilast) be the corresponding
idempotent diagram, consisting of R vertical lines with residue sequence ilast. For x ∈ Bn̄ we define the element
ι(x) := x ∧ e(ilast) ∈ Bn as the horizontal concatenation of x with e(ilast) on the right. We notice that

ι(xy) = xy ∧ e(ilast) = (x ∧ e(ilast))(y ∧ e(ilast)) = ι(x)ι(y), (12.0.5)
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for all x, y ∈ Bn̄. Furthermore,

ι(e(iλ̄)) = e(iλ̄) ∧ e(ilast) = e(iλ). (12.0.6)

We shall shortly prove that mµst = ι(mµ
st

). Combining this with (12.0.5) and (12.0.6) we conclude that there is an
algebra inclusion

ι(Bn̄(λ̄)) ⊂ Bn(λ). (12.0.7)

We define Uλi := ι(U λ̄i ) ∈ Bn(λ) and Yλj := ι(Y λ̄j ) ∈ Bn(λ), for 1 ≤ i < K and 1 ≤ j ≤ K.

It turns out that the outer tableaux are easier to handle than the inner tableaux.

Lemma 12.0.1. Let λ be regular and suppose that s = s(O) and t = t(O) are outer tableaux in Stdλ(µ). Let µ be
the shape of s and t. Then we have that

mµst = ι(mµ
st

). (12.0.8)

Consequently, mµst belongs to the subalgebra of Bn(λ) generated by {Uλi | 1 ≤ i < K} and Yλ1 .

Proof. Using Theorem 11.0.11 we see that the second statement follows from the first statement (12.0.8). In order
to prove the first statement we note that since s and t are outer tableaux we have that

d(s) = d(s) and d(t) = d(t). (12.0.9)

Here are examples illustrating (12.0.9)

h1

h3

u′
5

u′
2

h4

b

b
Ps Ps

h0

b

h1

h0

h3

u′
5

u6

u′
2

u7

h4

b

b

b PtPt

(12.0.10)

On the other hand we have that e(iµ) = ι(e(iµ)) and so we obtain

ι(mµ
st

) = ι(ψ∗d(s̄)e(i
µ̄)ψd(̄t)) = ι(ψ∗d(s̄))ι(e(i

µ̄))ι(ψd(̄t)) = ψ∗d(s)e(i
µ)ψd(t) = mµst. (12.0.11)

Suppose now that s = s(I) ∈ Stdλ(µ) is an inner tableau. Then d(s) and d(s) are different but still closely
related. Let as be the region of the Pascal triangle bounded by Ps and Pµ and let as be the region bounded by Ps

and Pµ, where µ̄ denotes the shape of s̄. Then as = as ·∪ sµ where sµ is the region bounded by Pµ and Ptµ̄(I), see
(12.0.13) for two examples in which we have indicated sµ with the color red. Note that sµ only depends on µ and
not on s, which is the reason for our notation. When applying Algorithm 10.2.1 there is an independence between
the regions as and sµ. Indeed, let As ∈ Sn be the element obtained by filling in as as in the algorithm, and let
similarly Sµ ∈ Sn be the element obtained by filling in sµ. Then we have that

d(s) = SµAs. (12.0.12)
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h1

h0

h3

u′
5

u′
2

h4

b

Ps Ps

b

b

h6

u′
7

h1

h0

h3

u′
5

u′
2

h4

b

Pt

Pt
b

b

h6

(12.0.13)

Definition 12.0.2. Let s = s(I) be an inner tableau. We say that s is central if s̄ is central.

We can now prove the following Lemma.

Lemma 12.0.3. Let s = s(I) and t = t(I) be central inner tableaux in Stdλ(µ). Let µ̄ be the shape of s̄ and t̄.
Then, we have

mµst = ±


(yn̄+1 − yn̄)ι(mµ

st
) = ι(mµ

st
)(yn̄+1 − yn̄), if µ 6∈ A0;

yn̄+1ι(m
µ

st
) = ι(mµ

st
)yn̄+1, if µ ∈ A0.

(12.0.14)

Proof. The proof is a calculation similar to the ones done in Lemma 11.0.9 and Theorem 11.0.12. Our general
strategy is to first focus on the crosses that come from the region sµ. Let us prove the first formula in (12.0.14).
Thus we assume that we are in the case where µ does not belong to the fundamental alcove. This case is a bit easier
since, as we will see below, the crosses associated to the sµ region can be eliminated without altering the other parts
of the diagram. We illustrate the computation in the case where s is given by the first diagram of (12.0.13) and
where t = s. For these choices we calculate as follows, using the defining relations in Bn together with (11.0.34).

mst =

BlastB9 B10bb B8B7

=

BlastB9 B10bb B8B7 BlastB9 B10bb B8B7

=b= ± (12.0.15)

BlastB9 B10bb B8B7

b= ±bbbb
bbbb

BlastB9 B10bb B8B7

= ±

BlastB9 B10bb B8B7

= ± (12.0.16)
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bbbb

BlastB9 B10bb B8B7

= = ι(mµ
st

)ψ2
n̄= (yn̄+1 − yn̄)ι(mµ

st
)= ι(mµ

st
)(yn̄+1 − yn̄) (12.0.17)

as claimed. The general case is done the same way.

Let us now prove the second formula in (12.0.14), corresponding to the case where µ belongs to the fundamental
alcove. In this case sµ is as small as possible, as for example in the second diagram of (12.0.13). The proof is
essentially the same as the proof of the first formula with the only difference being the vanishing of the factor yn̄
which is due to Lemma 11.0.5. Let us do the calculation in the case where s is given by the second diagram of
(12.0.13), and t = s. We have then

mµst = b

Blastbb B8B7

=

Blastbb B8B7 Blastbb B8B7

= ±

Blastbb B8B7

∓b

Blastbb B8B7

= ±b (12.0.18)

where the blue horizontal, red and green lines have the same meaning as in (11.0.21). The fact that the fourth
diagram of (12.0.18) vanishes is shown using Lemma 11.0.5, arguing the same way as two paragraphs above 11.0.23,
in the proof of Theorem 11.0.7. The proves the Lemma.

Suppose that i in any element of Blast. Then we extend the definition in (11.0.28) by setting

YλK+1 := yie(i
λ) ∈ Bn(λ). (12.0.19)

We get from Lemma 11.0.4 that YλK+1 is independent of the choice of i.

Corollary 12.0.4. Let G1(λ) be as in Theorem 11.0.11. Then the set

G2(λ) = G1(λ) ∪ {YλK+1} (12.0.20)

generates Bn(λ).

Proof. Let Bn(λ)′ be the subalgebra of Bn(λ) generated by G2(λ). Let s, t ∈ Stdλ(µ). We need to show that
mµst ∈ Bn(λ)′. If s, t are outer tableaux then the result follows by a combination of Theorem 11.0.11 and Lemma
12.0.1. Suppose now that s and t are inner tableaux. If both tableaux are central then the result follows by
combining Theorem 11.0.11 and Lemma 12.0.3. Otherwise, the same argument given in the proof of Lemma 11.0.1
allows us to conclude that there exist central standard tableaux s1, t1 ∈ Stdλ(µ) and monomials Ms and Mt in the
generators {Uλ1 , . . . , UλK−1} such that

mµst = Msm
µ
s1t1

Mt, (12.0.21)

and the result follows in this case as well.

Corollary 12.0.5. YλK+1 is a central element of Bn(λ).

Proof. This follows from Corollary 12.0.4 once we notice that YλK+1 commutes with all the elements of G1(λ).
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Lemma 12.0.6. We have that (YλK+1)2 = 0.

Proof. For i = 1, 2 . . . ,K + 1 we introduce the following elements of Bn(λ)

Lλi := Yλi − Yλi−1 (12.0.22)

with the convention that Yλ0 := 0. Then in Theorem 6.9 of [10] it was shown that these elements Lλi satisfy the
JM-relations of Lemma 8.0.11. On the other hand we have that

YλK+1 = LλK+1 + LλK + . . .+ Lλ1 (12.0.23)

and so the calculation done in (9.0.66) shows that (YλK+1)2 = 0, as claimed. The Lemma is proved.

We can now establish the connection between the extended nil-blob algebra and Bn(λ).

Theorem 12.0.7. Suppose that λ is regular. Then the assignment U0 7→ Yλ1 , JK 7→ YλK+1 and Ui 7→ (−1)eUλi for

all 1 ≤ i < K, induces an F-algebra isomorphism between ÑBK and Bn(λ).

Proof. Combining Theorem 11.0.12, Corollary 12.0.5 and Lemma 12.0.6 we get that the assignment of the Theorem
defines an algebra homomorphism, which is surjective in view of Corollary 12.0.4. The two algebras have the same
dimension 2

(
2K
K

)
, and hence the Theorem is proved.

The following is the main result of this part of this thesis. It establishes a connection between the algebras Ãw
and Bn(λ), as predicted in [10] and [23].

Theorem 12.0.8. Let λ be a regular bipartition. Suppose that λ is located in the alcove Aw. Then, Ãw ∼= Bn(λ)
as F-algebras.

Proof. This is an immediate consequence of Corollary 9.0.9 and Theorem 12.0.7.
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83


	I Generalities
	Graded cellular algebras and Jucys-Murphy elements
	Graded cellular algebras
	Jucys-Murphy elements

	Combinatorics and Tableaux

	II Graded cellular basis and Jucis-Murphy elements for generalized blob algebras
	Generalized blob algebras
	A generating set  Cn for  Bn.
	Linear Independence of  Cn. 
	Cellularity of  Cn and JM-elements
	Comparison with the original definition of  Bn. 

	III The Nil-blob algebra: An incarnation of type 1 Soergel calculus and of the truncated blob algebra
	The nil-blob algebra
	Soergel calculus for 1.
	Idempotent truncations of Bn and related alcove geometry
	Idempotent truncations of Bn
	An explicit algorithm for the elements d( t) 
	Alcove geometry

	A presentation for  Bn (bold0mu mumu program@epstopdf)  for bold0mu mumu program@epstopdf singular
	A presentation for  Bn (bold0mu mumu program@epstopdf)  for bold0mu mumu program@epstopdf regular


