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Introduction

Cellular algebras were introduced by Graham-Lehrer as a general framework for studying modular representation
theory. They are finite dimensional algebras endowed with a basis such that the structure constants with respect
to the basis satisfy certain natural conditions. A cellular algebra A is always equipped with a family {A(\)} of
"cell modules’ for A running over a poset A which is part of the cellular basis data. Each cell module A()) is
endowed with a billinear form (-,-) and the irreducible modules {L(\)} all arise as quotients by the radical of the
form L(A) = A(N)/rad(:,-). Using this, there is for a cellular algebra A a concrete way of obtaining the irreducible
A-modules, at least in principle.

Two of the motivating examples for cellular algebra were the Temperley-Lieb algebra T'L,, with its diagram basis
and the Hecke algebra #,,(¢) with its cell basis derived from the Kazhdan-Lusztig basis. In fact, one parameter
Hecke algebras of finite type are always cellular, as was shown by Geck, [13]. For Hecke algebras H(W,S) with
unqueal parameters associated with a finite Coxeter system, Lusztig’s cell theory depends on the choice of a weight
function on W, and conjecturally it leads to a cellular basis as well, see [6]. For the cyclotomic Hecke algebra
Hn(qu,--.,q) there is also a concept of a weighting function 6, which plays a key role for the Fock space approach
to the representation theory of H,(q1,...,q), see [2], [12], [18], [44]. For H,(Q,q) and for the zero weighting 6y,
Lusztig’s approach does induce a cellular algebra structure on H,,(Q, ¢) and this was shown in [43] to be compatible
with the diagram basis on blob algebra b,,.

In the first part of this thesis we make a complete review of the general concepts described above. We recall
the formal definition of graded cellular algebras, given by Hu and Mathas in [T7], where they provide an extension
of the theory of cellular algebras given by Graham and Lehrer (see [I4]). Also in the first part of the thesis, we set
up the combinatorial concepts and notations that are needed for our work, including multipartitions, tableaux, and
so on. We also present the various order relations on multipartitions and tableaux that play a role throughout the
paper. They all depend on the choice of a weighting 6 € Z!.

For A € Par), we prove a version of Ehresmann’s Theorem relating the order relation <y on Tab(X) with the
Bruhat order on the symmetric group &,,. Although this and a few other of our results are valid for general 6 we
soon concentrate on the zero weighting 6.

The second part of this Thesis is concerned with the generalized blob algebra B,, introduced by Martin and
Woodcock.

The original blob algebra b,, = b,,(q, m), also known as the Temperley-Lieb algebra of type B, was introduced
by Martin and Saleur via considerations in statistical mechanics. The usual Temperley-Lieb algebra T'L,, = T'L,(q)
can be realized as a quotient of the Hecke algebra H,(¢q) of finite type A and similarly it has also been known for
some time that b, is a quotient of the two-parameter Hecke algebra H,,(Q, ¢) of type B. Since H,,(Q, ¢) is the special
case | = 2 of a cyclotomic Hecke algebra H,,(q1,-..,q) one could now hope that this construction make sense for
any cyclotomic Hecke algebra. Martin and Woodcock showed in [28] that this indeed is the case. They obtain b,, as
the quotient of H,,(Q, q¢) by the ideal generated by the idempotents for the irreducible Ha(Q, ¢)-modules associated
with the bipartitions ((2),0) and (@, (2)) and showed that this idea generalizes to every H,(q1, ..., q). The quotient
algebras of H,,(q1,--.,q) that arise this way are the generalized blob algebras B,, = B,,(q1,- .., q) of the title. The
parameter [ is known as the level parameter and the generalized blob algebras can therefore be considered as the
Temperley-Lieb algebras at level I.

We are interested in the modular, that is non-semisimple, representation theory of B,,. This is the case where the
ground field F is of positive characteristic or where the parameters ¢; are roots of unity. The modular representation
theories of T'L,, and b,, are well understood and may be considered as approximations of the modular representation
theory of B,,. The modular representation theory of B,, is more complicated. In characteristic 0 it involves Kazhdan-

Lusztig polynomials of type A, see [4] and [28], and in characteristic p it involves the p-canonical basis, at least
conjecturally, see [23].
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In the second part of this thesis we define the notation and give the necessary background for the KLR~approach
to the representation theory of generalized blob algebras and then we show that B,, is a cellular algebra with respect
to the zero weighting. There is however neither a natural Temperley-Lieb like diagram basis nor a Lusztig cell theory
available for B,, and in fact our methods for showing cellularity of B,, are completely new. They are based on the
seminal work by Brundan-Kleshchev and Rouquier that establishes an isomorphism between the KLR-algebra R,
and the cyclotomic Hecke algebra H,,(¢1, . .., q). The KLR-algebra R,, is a Z-graded algebra and our graded cellular
basis on B,, inherits this Z-grading, making it a graded cellular basis.

The KLR-algebra has already been used by Hu-Mathas, [I7], and by Plaza and Ryom-Hansen, [38], to construct
Z-graded cellular bases for H,(q1,-..,q) and for b,(g), but contrary to the present work those papers rely in a
decisive way on already existing non-graded cellular bases on the algebras in question. Indeed Hu-Mathas rely in
[17] on Murphy’s standard basis for H,(q1,...,q), and in [3§] the diagram basis for b, is needed in order to derive
the graded cellular bases. Note that Murphy’s standard basis only exists for the classical dominance order on Par; ,,,
which is unrelated to the zero weighting.

The representation theory of H,(q1,...,q) is parametrized by l-multipartitions Par;,, of n whereas the rep-
resentation theory of B,, is parametrized by one-column [-multipartitions Par}m of n. Our Z-graded cellular basis

Cn = {mae | X € Par, s,t € Std(A\)} (0.0.1)

shares notationally several features of Murphy’s standard basis and just like that basis it depends on the existence
of a unique maximal A-tableau t* for each X € Par,ll, with respect to 6y. For A ¢ Par,ll there are in general many
maximal A-tableaux and so our methods do not generalize to give a cellular basis for H,(q1,...,q), with respect
to By. In particular we do not recover Bowman’s general results from [3] who give cellular bases on H,,(q1,-..,q)
for any weighting 6, but at the cost of dealing with the ’fiendishly’ complicated diagram combinatorics of Webster’s

diagrammatic Cherednik algebra, see [45].

In the third and last part of this thesis we investigate three different, although well-known, diagram algebras.
The three diagram algebras arise in three quite different settings. Even so we show in this thesis that the three
algebras are surprisingly closely related.

The first algebra of this algebras is a variation of the blob algebra B,. This is the Nil-blob algebra NB,,.
We provide its definition using a presentation on generators Uy, U;y,...,U,_1 and a series of relations that are
reminiscent of the relations of the original blob algebra. (We also introduce the extended nil-blob algebra ﬁBn by
adding an extra generator J,, which is central in I\AH/B%,,) We next go on to prove that NB,, is a diagram algebra where
the diagram basis is the same as the one used for the original blob algebra, but where the multiplication rule is
modified. The candidates for the diagrammatical counterparts of the generators U,’s are the obvious ones, but the
fact that these diagrams generate the diagram algebra is not so obvious. We establish it in Theorem [8.0.5} From
this Theorem we obtain the dimensions of NB,, (and NB,,) and we also deduce from it that NB,, is a cellular algebra
in the sense of Graham and Lehrer. Finally, we indicate that this cellular structure is endowed with a family of
JM-elements, in the sense of [32].

Our second diagram algebra has its origin in the theory of Soergel bimodules. Soergel bimodules were introduced
by Soergel in the nineties, first for Weyl groups and then for general Coxeter systems (W, .S). Building on the work
of Elias and Khovanov in type A,,, Elias and Williamson proved that in general the category of Soergel bimodules
D can be described diagrammatically, using generators and relations. For our second diagram algebra we choose
W of type Ay and consider a diagrammatically defined subalgebra of the endomorphism algebra Endp(w), where
w is a certain expression over S.

Our third diagram algebra is given by idempotent truncation, of the KLR-version of the generalized blob algebra
B,, at level 2, with respect to a singular weight in the associated alcove geometry.

In the last part of this thesis we show that these three diagram algebras are isomorphic. We do so by giving
a presentation for each of the three algebras, in terms of generators and relations. The three presentations turn
out to be identical and from this we obtain the isomorphisms between the three algebras. As far as we know, the
algebra defined by the common presentation of the three algebras has not appeared before in literature; it is the
nil-blob algebra NB,,.

For type A, it is already known that there are connections between the diagrammatical Soergel category D
and the KLR-algebra. For example in positive characteristic, Riche and Williamson showed in [37] that D acts on
the category of tilting modules for GL,,, via an action of the KLR-category. Our connection between the diagram
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algebras is however rather inspired by the categorical Blob vs. Soergel conjecture, that was recently formulated
n [23], by Plaza and Libedinsky. If this conjecture were true, the representation theory of the generalized blob
algebra, would be governed by the p-canonical basis for type A,. We view the results of the last part of this thesis
as evidence in favor of the categorical Blob vs. Soergel conjecture and in fact they are close to a proof of this
conjecture in type Ay
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Part 1

Generalities



Chapter 1

Graded cellular algebras and
Jucys-Murphy elements

1.1 GRADED CELLULAR ALGEBRAS

In this section we recall definitions and main results given by Hu and Mathas in [I7] on graded cellular algebras,
where they extend Graham and Lehrer’s theory of cellular algebras [I4]. We concentrate only in the case of
Z—graded cellular algebras.

Let R be a commutative integral domain with 1. A graded (Z—graded) R—module is an R—module M which
has a direct sum decomposition M = @ ., Mgy. If m € My, for some d € 7Z, then m is homogeneous of degree d
and we set degm = d. If M is a graded R—module let M be the ungraded R—module obtained by forgetting the
grading on M. If M is a graded R—module and s € Z, let M (s) be the graded R—module obtained by shifting the
grading on M up by s; that is, M(s)q = My_s, for d € Z.

A graded R—algebra is a unital associative R—algebra A = @,., Aq which is graded R—module such that
AgAe C Agqe, for all dye € Z. Tt follows that 1 € Ay and Ap is a graded subalgebra of A. A graded (right)
A—module is a graded R—module M such that M is an A—module and MjA, C Mgy, for all d,e € Z. Graded
submodules, graded left A—modules and so on are all definied in the obvious way.

Definition 1.1.1. Suppose that A is a Z— graded R— algebra which is free of finite rank over R. A graded cell datum
for A is an ordered quadruple (P,T,C,deg), where (P,1>) is the weight poset, T(\) is a finite set for X € P, and

C: LT xTO) = 45 (s,8) 7
repP

and

deg: T(P) — Z where T(P)= [] T(\)
AEP

are functions such that C' is injective and
1. {c}:s,t € T(N), X € P} is an R—basis of A.

2. Ifs,t € T(N), for some A € P, and a € A then there exist scalars r(,(a), which do not depend on s, such that

Cs/,\?ta’ = Zn,u(a)cé,n (modAP™)
v

where AP is the R—submodule of A spanned by {chy:n>X and a,beT(n)}

3. The R—linear map x : A — A determined by

()" =crs (AEP.steT(N),

s,t s
is an anti-isomorphism of A.

4. FEach basis element cﬁ‘,t is homogeneous of degree deg Cs/,\,t = degs + degt, for A € P and s,t € T(\).



A graded cellular algebra is a graded algebra which has a graded cell datum. The basis {62‘7t :5,teT(\), A€ P}
is a graded cellular basis of A.

If we omit itemof deﬁnitionwe recover Graham and Leherer’s definition of an (ungraded) cellular algebra.
Therefore, by forgetting the grading, any graded cellular algebra is an (ungraded) cellular algebra in the original
sense of Graham and Lehrer.

Definition 1.1.2. Suppose A is a graded cellular algebra with graded cell datum (P, T, C,deg), and fixr A € P. Then
the graded cell module C* is the graded right A—module

cr =,

2Z€EL

where C2 is the free R—module with basis {c} : t € T()\),deg(t) = 2} and where the action of A on C* is given by

cra= Z ew(a)cy
v

where the scalars riy(a) are the scalars appearing in item@ in definition m

Similarly, let C** be the left graded A—module which, as an R—module is equal to C*, but where the action
of A is given by a-x = za*, for a € A and x € C**. It follows directly from definition that C* and C** are
graded A—modules.

Let A®* be the R—module spanned by the elements {c/ :u> X and a,b € T(u)}. It is straightforward to

a,b
check that A% is a graded two-sided ideal of A and that
APA AP = C A @p Cr 2 P CMdegs)
s€T(N)

as graded (A, A)-bimodules for the first isomorphism and as graded right A—modules for the second.
Let ¢ be an indeterminate over Ny. If M = @ZEZ M, is a graded A—module such that each M, is free of finite
rank over R, then its graded dimension is the Laurent polynomial

dimy M = " (dimp M,)t*.
keZ
Corollary 1.1.3. Suppose that A is a graded cellular algebra and X\ € P. Then
dim O = Y geess,
s€T(N)

Consequently,

dim A= 3" 3 pessrdent = 3™ (dim, OV,

AEP 5,teT(N) AEP
Suppose that p € P. Then it follows from definition exactly as in [I4], that there is a bilinear form (,),

on C* which is determined by
n

ChaCly = (e ¢ )ucy,y  (modA™H),
for any s,t,a,b € T'(p).
Lemma 1.1.4. Suppose that i € P. Then the radical
Rad(C") ={z € C" : (z,y), =0 forall yeC"}
s a graded submodule of C*.
Proof. See [17]. O

The last lemma allows us to define a graded quotient of C*, for u € P.

Definition 1.1.5. Suppose that u € P. Let D* = C*/Rad(C").



By definition D* is a graded right A—module. Henceforth, let R = K be a field and A =
cellular K —algebra. Let Py = {\ € P : D* # 0}.

wez Az a graded

Theorem 1.1.6. Suppose that K is a field and A is a graded cellular K—algebra.

1. If p € Py then D* is an absolutely irreducible graded A—module.

2. Suppose that \, i € Py. Then D* =2 D*(k), for some k € Z, if and only if \ = p and k = 0.

3. The set {D"(k) : p € Py and k € Z} is a complete set of pairwise non-isomorphic graded simple A—modules.
Proof. See [17]. O

In particular, just as Graham and Lehrer proved (see [14]) in the ungraded case, every field is a splitting field
for a graded cellular algebra.

Corollary 1.1.7. Suppose that K is a field and A is a graded cellular algebra over K. Then {D" : u € Py} is a
complete set of pairwise non-isomorphic ungraded simple A—modules.

Proof. See [17]. O

1.2 Jucys-MURPHY ELEMENTS

In this section we recall the definition and some main results on Jucys-Murphy elements, given by Mathas and
Soriano in [32]. For the rest of this section let R be a commutative integral domain with 1 and A be a cellular
R—algebra (in the sense of [14]) with cell datum (P, T, C), and where each set T'(\) is a poset (T'(\),>). We also
define a partial order > on T(P), given by

s>t if and only if (shape(s) > shape(t)) or (shape(s) =shape(t) and s> t). (1.2.1)

Definition 1.2.1. A family of Jucys-Murphy elements (or for simplicity JM-elements) is a set {L1,...,Ly} of
commuting elements of A together with a set of scalars {ui(i) € R:t € T(P) and 1 <i< M}, such that for
every i = 1,... M we have L¥ = L; and, for all A € P and s,t € T(\),

3 Li = ug(i)e  + Z reo(Li)es,  (modA™M). (1.2.2)
o>t
We call uy(i) the content of t at i.
Implicity the JM-elements depends on the choice of cellular basis for A. Note that we also have a left analogue

to equation (|1.2.2):

Licy = us(D)d (+ > _reu(Li)c  (modA™). (1.2.3)

u>s

An important application of JM-elements is that they can detect when the modules D are not equal to zero.

Proposition 1.2.2. Let R = K be a field, and A be a cellular K —algebra with o family of JM-elements {L1,...,La}.
Fizx A € P and s € T(X). Suppose that whenever t € T(P) and s > t then uq (i) # u(i), for some 1 < i < M. Then
D* #0.

Proof. See [32]. O
The last proposition motivates the following definition

Definition 1.2.3. Let A be a cellular R—algebra with JM-elemnts {L1,..., Ly}, and let X € P. We say that the
JM-elements separate T(P) (over R) if whenever s,t € T(P) and s = t then ug(i) # u(i) for some 1 <i < M.

The separation condition (of definition [1.2.3)) also provides a semisimplicity criterion for the algebra A.

Corollary 1.2.4. Suppose that R = K is a field, and A is a cellular K—algebra with a family of JM-elements
{L1,...,Lu} that separates T(P). Then A is (split) semisimple.

Proof. See [32]. O



Chapter 2

Combinatorics and Tableaux

Let us recall the basic combinatorial concepts and notations associated with the representation theory of the
symmetric group &,, and the wreath product C; 1 &,,.

We denote by N the positive integers and by Ny the non-negative integers. For n € Ny, a composition A
of n is a sequence A = (A1, Ag,...) of elements of Ny such that [A| := >, Ay = n. If k is minimal such that
Ai =0 for all ¢ > k we also write A = (A1,...,Ag) for \. We say that a composition A = (A1, A2,...) of n is a
partition of n if it satisfies that Ay > Ag4q for all k > 1.

For integers [ > 0 and n > 0, an I-multicomposition of n is an [-tuple of compositions A = ()\(1), e )\(l)) such
that Zinzl IAN™)| = n. An l-multicomposition X = (A1), ..., A\D) of n is called an l-multipartition of n if all its
components A*) are partitions. The set of all I-multicompositions of n is denoted by Comp, ,, and the set of all
[-multipartitions of n is denoted by Pary ,.

Let A = (AM ..., A1) be an I-multicomposition. Then A is called a one-column l-multicomposition if all of its
components A9 are one-column compositions, that is each A\(?) is of the form \(*) = (/\gi)7 )\gi), ceey )\Ei)) where )\g-i)
is either 0 or 1 for all j.

A one-column l-multipartition is a one-column [-multicomposition which is also an l-multipartition. For A a
one-column [-multipartition each of its components A™ is a partition of the form \(") = (1,1,...,1) that is
M) = (19m) where a,, = |A(™)|. In other words, a one-column l-multipartition is of the form XA = ((1%1),..., (1%))
for certain non-negative integers a;. The set of all one-column [-multipartitions of n is denoted by Par,,.

We shall hold I fixed throughout the article, and shall therefore frequently refer to I-multicompositions (resp.
[-multipartitions, etc) simply as multicompositions (resp. multipartitions, etc).

Let A = (A1, Ag, ..., Ax) be a composition of n. Then we represent A\ graphically via its Young diagram [\]. We
use English notation so it consists of an array of k left adjusted lines of boxes denoted the nodes of the diagram, the
first line containing A; nodes, the second line Ay nodes, and so on. The nodes are labelled using matrix convention,
that is the j’th node of the #’th line of [A] is labelled (i,7) and in this case we write (i,j) € [A]. For example, if
A= (4,2,6,1) then the Young diagram [}] is

A= T

For an [-multicomposition A = (A(l),...,)\(l)) we define its Young diagram [A] to be the I-tuple of Young
diagrams ([AM],...,[A®]). The nodes of X are labelled by the triples (4,7, k) where (i, ) is a node of [A(*)]. For
example, if A =((1,1,1,1),(1),(1,0,1)) we have that

[]
[A] = v (2.0.1)



or if = ((1%), (19, (1%)) we have that

(1] = E,VJ, @ : (2.0.2)

For a multipartition A we define the i’th row of A as the set of nodes of the form (4, j, k).

There is a well known way to make Comp, ,, into a poset, the associated order relation being the dominance
order on Comp, ,, studied for example in [§]. However, this is not the only interesting order relation on Comp, ,,.

Let us fix a tuple § = (01,...,0;) € Z', called a weighting. Let v = (i,7,b) and 7/ = (i, 5',b’) be nodes
of multipartitions A and p, or more generally elements of N x N x {1,...,l}. Then we write v <1p 7’ if either
Op+j—1i) <Oy +7 —i")orif (Op+j—i)= Oy +7 —i')and b > V. (The last inequality is not an error). We
write v g if v <19y or if v =+,

This defines an order on NxNx{1,...,} that we extend to multipartitions as follows. Suppose that A € Comp, ,,
and p € Comp, ,,,. Then we write A < p if for each vo € N x N x {1,...,l} we have that

Hy € Al: vy o0} < {7y € [ul: v >0 0} (2.0.3)

This order relation <lg depends highly on the initial choice of weighting §. When restricted to Par; ; and choosing
0 such that 6; > 6,11 + n for all ¢ we recover the dominance order used in [DJM] which we refer to as <. This is
the separated case, but in this article we shall be mostly interested in another limit case, namely the one given by
the zero weighting 8 = (0,0,...,0). We refer to the corresponding order as <.

Note that for [ = 1, we have that <y is just the usual dominance order, for any 6.

In general, the order <y is only a partial order on the nodes of Par;,, or N x N x {1,...,1}, but it becomes a
total order upon restriction to the nodes of Par! or Nx {1} x {1,...,1}. Using this we can prove the following useful
Lemma that we shall use implicitly throughout the paper. It says that XA <y p if and only if p can be obtained from
A by moving nodes of A upwards.

Lemma 2.0.1. Suppose that A, u € Parl,. Then X <g p if and only if there is a bijection © : [A] — [u] such that
O(v) 2oy for all v € [A].

Proof. As mentioned <y is a total order on the nodes of N x {1} x {1,...,1} and so there is an order preserving
bijection from these nodes to N, where N is endowed with the opposite of the natural order, that is '1’ is the maximal
element. Using this, we may view A and p as ordered subsets of N. But in this situation one easily checks the
equivalence of with the existence of O. O

To illustrate the difference between <., and <y we consider their restriction to Par}t. In each case there is a
unique maximal element but the two maximal elements are different. The unique maximal elements with respect
to dy is

praree = ((1"),0,0,...,0)) (2.0.4)

To describe p™%*9 the unique maximal element with respect to <y, we use integer division to write n = ¢l +r
where ¢,] € Z such that 0 < r < [. Then we have that ™% is given by

rterms l—rterms

maz0 — (10l (19T (19), ..., (19)). (2.0.5)

For example, for n = 7 and [ = 3 we have that

e = | Lo ), ppent = @HH : (2:06)




In general, with respect to <., the big multipartitions tend to have their center of mass to the left of the
diagram, whereas with respect to <y the big multipartitions tend to have their center of mass in the middle of the
diagram.

For [ = 2, the restriction of <y to Par), is the total order used for example in [38] and [43]. Here is the n = 3

| (0,(1%)) <o ((1%),0) <o ((1), (1%)) <o ((1%), (1)) - (2.0.7)

For | > 3, the restriction of <Jjy to Par; is only a partial order. Here we illustrate the n =1 = 3 case:

@, (1%),0)
.9, (13)) (2.0.8)
Let A be a composition of n. A tableau of shape A or simply a A-tableau is a bijection t: {1,...,n} — [A]. In

this case we write shape(t) = A\. A A-tableau t is represented graphically via a labelling of the nodes of [A] using the
numbers {1,2,...,n} where the labelling of the node (i, 5) is given by t~1(4, 7). In this case we say that the (i,5)’th
node of t is filled in with t=1(i,j) via t. Let X be an l-multicomposition. The concept of A-tableauz is defined the
same way as for ordinary A-tableaux, that is a A-tableau is a bijection t: {1,...,n} — [A].

A M-tableau t is called standard if the corresponding labelling of [A] has increasing numbers from left to right
along rows and from top to bottom along columns. Similarly, for a tableau t of a multicomposition A we say that
it is standard if all its components are standard. For a composition A, we denote by Tab(\) and Std()\) the set
of all A-tableaux and the set of all standard A-tableaux and we use a similar similar notation for A-tableaux of a
multicomposition .

For a composition A and a A-tableau t and 1 < k < n we denote by ‘c|;€ the restriction of t to the set {1,2,...,k}.
A similar notation is used for tableaux for multipartitions. Let p be as in { . Then the following are u—tableaux

,VJ . I I (2.0.9)

but only the first is standard. Note that for all 1 < k£ < n we have that shape(t|) is a multipartition, but in the
case of § we have

shape(s[4) = ((1,0,1), 0, (L,1))

which is not a multipartition, only a multicomposition.
We extend the order <y to tableaux for multipartitions n, as follows. Let A and p be multicompositions of m
and n and let § and t be tableaux of shapes A and p. Then we write t Jys if for all 1 < k < min(m,n) we have that

shape(t|x) <p shape(s|x).

For example, considering the tableaux s and t from (8.0.25) we have that s < t.

Let A € Par;,, be a multipartition and let v € NxNx {1,...,I} \ [A]. Then we say that v is an addable node for
A if [A] U~ is the Young diagram of a multipartition. Dually we say that v € [A] is a removable node for X if [A]\ v
is the Young diagram of a multipartition. The set of addable (removable) nodes for A is totally ordered under <s.



For A € Par;,, we now define multipartitions Ag g, ..., A9, € Par;, recursively via Ago := (0,...,0) and for
i >0 via [Ag;] :== [Ai—1] U~e,; where vg,; € [A] satisfies the condition that it is the largest addable node for A;_1,
with respect to <y. We denote by t' the A-tableau which is given by (i) = g ;. If 0 = 0, we write £} for t) and
if 0 = 0y we write £} for t).

Suppose that A € Par’.. Then t} is the unique maximal element in Tab(\) and Std(X) with respect to <.
It is the A-tableau obtained by filling in the nodes of [A] from left to right along the columns. For example, for

A=((13),(1%),(1%) it is
6= II I (2.0.10)

Let still A € Pary,. Then t} is the unique maximal element in Tab(X) and Std(X) with respect to <. It is the
A-tableau t* in which 1,...,n are filled in increasingly along the rows of . For example, for A = ((13), (13), (12))

it is
e= |50 (.0.11)
8

The tableau tg‘ plays an important role in our paper, especially for 6§ = 6, so let us prove formally the claim on
maximality of tg‘.

Let first &,, be the symmetric group on n := {1,...,n}, and let S = {s1,...,8,-1} be its subset of simple
transpositions, i.e. for each k = 1,...,n—1 we have that s = (k, k+1). It is well known that &,, is a Coxeter group
on S. For any multicomposition X of n we have that &,, acts on the right on Tab(\) by permuting the entries inside a
given tableaux. Thus, if w = s;, 54, - - - ;,, where s;; € S and if t € Tab(A) we have that tw = (--- ((ts;,)ss, -+ )siy)-

We next need to introduce yet another order on Tab(\). Let A be a multipartition and let ¢, be A-tableaux.
For s € S we define t > 5 if s = ts and s > t. We let ¢ be the order on Tab(A) induced by t Ssforallse S,
that is § ¢ t if there is a finite sequence

T S B

with g =t and t, = 5. We call =4 the Weak order on Tab()\) It is clear that s =9 t = s >¢ t, but the converse is

false in general. Consider for example pu = ,(1%), ) and the p-tableaux
6417]
8]

Then with respect to 8 = (0,0, ...,0) we have that t>9 6 but t ¥y s.

We can now prove the promised claim for tg‘.
Lemma 2.0.2. Suppose that X € Par,ll.

a) Let t € Tab(X) and set s = tsy. Suppose that t(k) <g t(k + 1). Then we have that t <9 §
b) We have that t) is the unique mazimal element in Tab(X) and Std(X) with respect to <¢ and <.

Proof. The nodes of A are totally ordered with respect to <lg, and we have
(i) <o t2(9) iff i > j.

Let w be the one-column partition w := (1"). The nodes of w are also totally ordered, with respect to the usual
dominance order <, and hence there is a unique order preserving bijection

o : Tab(A) — Tab(w). (2.0.12)



For example, for § = 6y and XA = ((1°), (12), (1%)) we have that w = (1'?) and so

5]
4
B
5] 1]
— 6
9 L
10| 19|
Dy : — =3 (2.0.13)
13 —
— 10
ka 7
A IE
1]
B
12|
Note that ®y(t)) = t“. Let us now prove a) of the Lemma. We have that
1 (t3(1)) ! (t)(1))
t1(t7(2) t1(t)(2))
k+1 k
Dp(t) = | —— , Dy(s) = | — 2.0.14
S N GRIC6) M SICE) (2049
k k+1
TS 0) OO
and so we have
®y(shape(s|;)) = Pg(shape(t];)) (2.0.15)
for all j # k and
Dy (shape(s|i)) > Po(shape(t|y)) (2.0.16)

and so a) follows. In order to prove b) of the Lemma, we get from a) that for any A-tableau t # t) there is a
sequence of simple reflections s;,,...,s;, such that

t < tSil ] £5i13i2 <g ... <lg fSil Sip t Siny = ta)‘, (2017)

that is t <y t). Since this holds for any t # t} we deduce that t} is the unique maximal tableau in Tab(X) with
respect to both <y and <ly. In order to show that t) is also the unique maximal tableau in Std(X) we use that if
t € Std(\) then each term of the chain (2.0.17)) also belongs to Std(A). The Lemma is proved. O

We observe that if A is not a one-column multipartition then there is in general not a unique maximal element
in Std(\) with respect to <¢ or <lg. Consider for example A = ((1), (2)) with its two standard A-tableaux

&= ([1)[2]3]). s=([3}[1]2]). (2.0.18)

These are both maximal in Std(A) with respect to <o and <lg. This observation is the main reason why the methods
of our paper do not generalize in a straightforward way to general multipartitions.

Let () be the length function on &,,, viewed as a Coxeter group, and let < be the Bruhat order on &,, with
the convention that the identity element 1 € &,, is the largest element. Let A be a usual partition. For t € Tab(\)
we define d(t) € &, by the condition t*d(t) = t. Since the action of &,, is transitive and faithful we have that d(t)
is well defined and unique. For A a one-column multipartition and ¢ € Tab(\) we define d(t) in a similar way, using
t3'. Our next aim is to show a compatibility between the Bruhat order on &,, and the order <iyg on Tab(X). In the
case of the usual dominance order <1 on Tab(\) this result was proved originally by Ehresmann. In fact we shall
deduce our version of the Theorem from the original Ehresmann Theorem. Let us recall it.



Theorem 2.0.3. Suppose that A is a partition of n and that s,t € Tab(\) are row standard. Then we have that
d(s) < d(t) if and only if s < t.

Here is our generalization of this Theorem.

Theorem 2.0.4. Let A be a one-column multipartition of n and suppose that t and s are A-tableauxz. Then
d(s) < d(t) if and only if s <g t.

Proof. Again let w be the one-column partition w = (1™) and let &g : Tab(A) — Tab(w) be the order preserving
bijection that was introduced in the proof of Lemma Recall that in general ®(t}) = t~. But from this it
follows that for any t € Tab(A) we have d(t) = d(®y(t)). On the other hand, we have that § <y t if and only if
®(s) < ®(t) and so the Theorem follows from the original Ehresmann Theorem, that is Theorem [2.0.3] O

Let A € Par.. Then we conclude from the Theorem that the order relations <y on Tab(X) are all isomorphic.
However, the restrictions of the order relations <y to the relevant subsets Std(A) are not isomorphic.

In general <y is not a total order on the set of tableaux, only a partial order. On the other hand, on the set
of tableaux of one-column multipartitions of n there is related stronger order <y which is a total order. It is the
lexicographical order, defined via

t <gps if thereis 1 <k < n such that t|;=s|; for j <k but t|; <g s|i . (2.0.19)
It induces a total order on one-column multipartitions of n via
A <o piff ) <ot (2.0.20)

There is an extension of <y to the set of all one-column multipartitions that shall be of importance to us. It is
given as follows. Let A and g be one-column multipartitions of m and n and assume that m < n. Then we define

A< piff ) <gth|, . (2.0.21)

For example if 7 is an addable node for A and g is defined via [p] := [A] Uy then we always have that A <g p. In
general for k < n we define
A= shape(t)|z). (2.0.22)

Suppose that A and g are multipartitions of m and n and that m < n. Then by definition XA <g p|,, iff A <g p.

In the following we shall be mostly interested in the orders related to the zero weighting and when we write <,
<, =<, t*, etc we refer to <, <o, <o, tg‘, etc. We shall also mostly be interested in one-column multipartitions and
therefore 'multipartitions’ shall in the following refer to ’one-column multipartitions’, unless otherwise stated.
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Part 11

Graded cellular basis and Jucis-Murphy
elements for generalized blob algebras
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Chapter 3

Generalized blob algebras

In this chapter we define the family of algebras that we are interested in. Let I be a field of characteristic p, where
p is either a prime or zero, and suppose that ¢ € F\ {1} is a primitive e’th root of unity. (Thus if p > 0 we have
ged(e,p) = 1). Let I, := Z/eZ. Fix a positive integer [. The elements of i = (i1,...,i,) of I? are called residue
sequences modulo e, or simply residue sequences. For i € (i1,...,i,) € I™ and j € I, we define the concatenation
ij € I viadj := (i1,...,in,7). The symmetric group &,, acts on the left on I” via permutation of the coordinates
137 that is Sk 1= (il, ce ,Z'k+1,ik,. .. ,in).

Let & = (A1,..., A1) € Z' where [ is as before. Such a & is denoted a multicharge. We let k; € I. be the image
of &; under the natural projection and define k := (k1,...,%;) € I?. We shall throughout choose a representative
for each k;, also denoted by k;, between 0 and e — 1.

Definition 3.0.1. We say that & is strongly adjacency-free if it satisfies
i) Rig1 — R >n
it) ki —K; #0,£1 mod e for alli# j
iii) K1 # K1+ 2 mod e
) k1 < kg < ...< K.

We shall in the following always assume that & is strongly adjacency-free; in particular the inequality e > 21 will
always hold.

Our notion of a strongly adjacency-free multicharge is a generalization of the notion of an adjacency-free mul-
ticharge, which was introduced in [23] although already implicitly present in [28] and [38]. The difference between
the two notions are the conditions 4i7) and iv) which are omitted in [23]. These extra conditions will be useful later
on for our analysis of Garnir tableaux.

We can now define our main object of study.

Definition 3.0.2. Given integers e,l,n > 1 and a strongly adjacency-free multicharge i the generalized blob algebra
B];:n(/i) =B, of level l on n strings is the unital, associative F-algebra on generators

{’L/}l, .. 7'(/Jn—1} U {yl, .. 7yn} U {8(1) | = I:'}

subject to the following relations

e(i)e(j) = 6i je(d) (3.0.1)

e(i) =0 if iy & {k1,. .., ki} (3.0.2)

e(i) =0 if iy € {k1,...,ki} and iy =iy + 1 (3.0.3)
yre(d) = 0 if i € {K, ..., )} (3.0.4)

> e(i)=1 (3.0.5)

ielp
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yre(i) = e(d)y, (3.0.6)

YrlYs = YsYr (308)
Urys = ystr if s#FET,TH1 (309)
1/%«% = 'ws'(/}r Zf |S - Tl > 1 (3010)
wryr—&-le(i) = (yrwr - 5ir,ir+1)€(i) (3011)
yr-i—ld)re(i) = (1/)7“7!7" - JiT,ir+])6(i> (3.0.12)
0 if iy =ipy1
2 /sy e(i) if ir F 1,1 1
RGO A W R 0 S S| (3.0.13)
(Yr — Yrs1)e(d) if dpy1 =i, —1
(Vrp10rthr g1 — 1)e(2) if dpyo =i =dpp1 — 1
quz[}r—&-lwre(i) = (¢r+1wrwr+1 + 1)6(1) Zf ir+2 =i, = 7;7"+1 +1 (3014)
(Yr410rbrs1)e(2) otherwise.

The above definition of B,, is the one used in [3] and [23], but it is not the original definition of the generalized
blob algebra as presented in [28]. We will prove that the two definitions do coincide. The case when [ = 2 is the
original blob algebra, we will use this particular case in the last part of this thesis.

Let us take the opportunity to give the precise definition of the KLR-algebra, already mentioned above. It was
introduced independently in [20] and [39].

Definition 3.0.3. The cyclotomic KLR-algebra of type AS_)l, or simply the KLR-algebra, is the F-algebra R, on
generators

{wl,...ﬂﬁn,l}U {yl,...7yn} U {6(1) | 1€ Ig}
subject to the same relations as for the blob algebra B,, except for relation which is omitted.

Let 7 : R,, — B, be the projection map from the KLR-algebra to B,,. Then, for simplicity of notation, we shall
in general write « for 7(z) when © € R,,.

It follows from the relations that there is an antiinvolution * of B,,, and of R,,, that fixes the generators.

There is a diagrammatical way to view this definition which is of importance for our work. It was introduced
by Khovanov and Lauda in [20]. A Khovanov-Lauda diagram D, or simply a KL-diagram, on n strings consists of
n points on each of two parallel edges (the top edge and the bottom edge) and n strings connecting the points of
the top edge with the points of the bottom edge. Strings may intersect, but triple intersections are not allowed.
Each string may be decorated with a finite number of dots, but dots cannot be located on the intersection of two
strings. Finally, each string is labelled with an element of I.. This defines two residue sequences t(D),b(D) € I}
associated with the diagram D obtained by reading the residues of the extreme points from left to right. For the
details concerning this definition, the reader should consult [20].

Example 3.0.4. Lete =4 and n = 6. Let D be the following KL-diagram:

030221

In this case the bottom sequence is b(D) = (0,3,0,2,2,1) and the top sequence is t(D) = (2,1,0,0,2,3).
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We can now define the diagrammatic algebra Bgn(m)dmg = B%99. As an F-vector space it consists of the F-linear
combinations of KL-diagrams on n strings modulo planar isotopy and modulo the following relations:

= 0 ifilg{lil,...“‘il}

i in (3.0.15)

= 0 ifiy €{k1,...,x}and iz =1i3+1

i in (3.0.16)
\ = 0 ifilg{lil,...,lil}
i in (3.0.17)
X=X
oo gt (3.0.18)

X=X
{ J o1 J

where §;; is the Kronecker delta. Moreover

B

i ok i § k i ok

v (3.0.19)

(3.0.20)
where
-1 if i=k=j5-1
a= 1 if i=k=j5+1
0 otherwise
0 i i i (3.0.21)
where
5= 1 if li—j]>1
10 otherwise
and
1 if j=i+1
v = -1 if j=i—-1
0 otherwise.

The identity element 1 of B4%9 is the sum over all diagrams

11 2 in
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such that ¢ := (i1, 149, ...,4,) belongs to I7.

The multiplication DD’ between two diagrams D and D’ in B9 is defined by vertical concatenation with D
above D’ if b(D) = ¢(D’). If b(D) # t(D’) the product is defined to be zero. We extend the product to all pairs of

elements in BZ%9 by linearity.

1 12 n 1 r n 1 rir+l n (3022)

The F-linear map from B,, to B9 given by

e(i)— yre(i) —

, Yre(i) —

)

defines an isomorphism between B,, and B%49. In view of this, we shall write Bd49 = B,,.

We next show some useful relations that can be derived directly from the definitions.

AR

Proof. This is an immediate consequence of relations (3.0.18]), (3.0.19)) and (3.0.21)). O

Lemma 3.0.6. In B,, we have:

Proof. This is a consequence of relations (3.0.18]), (3.0.19) and Lemma m O

Lemma 3.0.7. If |i — j| > 1 then we have

Lemma 3.0.5. In B,, we have:

Proof. This is a direct consequence of the relations (3.0.18)), (3.0.19) and (3.0.21)). O

Lemma 3.0.8. If |i — j| = 1 then we have

where the positive sign appears when j =1 — 1 and the negative sign when j =1+ 1.

Proof. This is a direct consequence of relation (3.0.21)). O
Lemma 3.0.9. If j =i+ 1 then we have
T ] 4 I ) I

and if 3 =1 — 1 then we have that
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i g i oQ

Proof. This is a direct consequence of relation (3.0.20) and Lemma W O

Lemma 3.0.10. Let n > 2 and let 141, be the concatenation on the right of a diagram in B,, with a through line
of fized residue j, as indicated in the following figure

1112131415176 117213241576 )

Then tny1,; induces a (non-unital) algebra homomorphism typ11 5 : B,y — Byy1. It satisfies 111 ;(0) = 0.

Proof. Each of the relations (3.0.15) to (3.0.21) for B, maps under ¢,41,; to a relation for B,41 and 80 tp11; 18
well-defined. The second statement of the Lemma is obvious. O

We shall use the notation b- j or bj for ¢p41,;(b). We remark that it can be shown that ¢,,41 ; is an embedding.
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Chapter 4

A generating set C,, for B,.

We now take the first steps towards the construction of our cellular basis for B,,.

Let A be a multipartition and let v = (r,¢,m) be a node of [A]. Then we define the residue of v via
res(y) := km +c—1 € L. (4.0.1)

Recall that a multipartition A is assumed to be a one-column multipartition, unless otherwise stated. The nodes y
of a multipartition X are of the form v = (r, 1,m) with residue res(y) = kp, +1 — 7.
Any A-tableau t gives rise to a residue sequence 3t € T 2 defined via

it = (i1,...,in) € I" wherei; = res(t(j)). (4.0.2)

In the next couple of Lemmas and Corollaries we aim at showing that only the idempotents e(i)‘), with A
running over multipartitions, are needed in order to generate B,,. Our proof for this is not straightforward and
relies on several induction loops, all related to A. In essence our proofs are a chain of applications of the Lemmas
to [3.0.10| and could therefore have been formulated completely diagrammatically, in principle, but we choose
to encode these Lemmas in an symbolic notation that we explain shortly. This symbolic notation has the advantage
of enabling us to keep track of the induction parameter A. Our approach is therefore different from the approaches
of [45], [3] that rely on manipulations of the diagrams themselves. Our proofs are rather comparable to the proofs
of [2I] and, in view of this, maybe surprisingly short, after all.

Let p* = p™* be the multipartition introduced in ([2.0.5]), which is the unique maximal multipartition of n

n

with respect to <, and let us denote by t;'*" = t™%* the unique maximal pu;'**-tableau, as in Lemma We
denote by """ = ¢ € I" the corresponding residue sequence and by e(i"") € B,, the associated idempotent.
We denote by [res(t™?®)] the corresponding residue diagram, obtained by writing res(t™%*(k)) in the node t™* (k)

of [A]. For example, for n = 22,e = 10 and « = (0,2,4,7) we have the following residue diagram

0][2]
19111
8110
max — 1 4. .
[res(t™**)] ][9] (4.0.3)
16118]
5L
which gives rise to the following residue sequence
i =(0,2,4,7,9,1,3,6,8,0,2,5,7,9,1,4,6,8,0,3,5,7) € I?2 (4.0.4)
and corresponding idempotent
e(imam):
024791368025 791468¢03%57 (4.0.5)
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We now introduce our symbolic notation. Firstly we represent an idempotent like (4.0.5)) in the following way
e(@™*):=(0,2,4,719,1,3,6 | 8,0,2,5|7,1,9,4 ] 6,8,0,3 | 5,7) (4.0.6)

where the separation lines | indicate jumps from a row to the next in p™%* (although the separation lines are not

always meant to have an exact meaning, but rather to be a help for the eye). Secondly we introduce the following

dot notation for expressions like yjg9e(¢"*")

y19e(¢™*%) :=(0,2,4,719,1,3,6 | 8,0,2,5|7,1,9,4 | 6,8,(.),3 | 5,7). (4.0.7)
For any a € B,, we denote by (a) the two-sided ideal in B,, generated by a. When a,b € B,, and b € (a) we say
that b factorizes over a.

We write 4 & g if i = sxj where i # i1 £ 1 and we let ~ be the equivalence relation on I' generated by all

the £s. 1f 4 & J we say that ¢ is obtained from j by freely moving the string of residue i;41 past the string of
residue 7. We shall often use this concept as follows. Suppose that ¢ ~ j. Then we have both e(i) € (e(j)) and
do.m

e(g) € {e(2)), that is e(2) factorizes over e(j) and vice versa. Indeed, if X j then by relation ( we have that
e(t) = Yre(g)vr as well as e(j) = re(i)y, from which the general case follows. In particular, we have in this
situation that e(¢) = 0 if and only if e(j) = 0. The same way one sees that if ¢ ~ j where i = wj for w € &,,, then
for all r we have y,e(7) € (yse(y)) and yse(g) € (yre(i)) where s = w - r.

If ¢ ~ j we shall also write e(2) ~ e(j) and yre(i) ~ yse(j) where r and s are related as before. When using the
symbolic notation as in (4.0.6) we associate with ~ a similar meaning.

=M ax

We aim at proving that yre(d™*) = 0 for all k = 1,...,n. This is straightforward for small k, but gets more
complicated when k grows. Let us illustrate the argument on a few small values of k, using the above example
(14.0.5).

For k = 1 we must show that
yre(edm) = ((.)72,47 719,1,3,6|8,0,2,5|7,1,9,4|6,8,0,3|5,7) (4.0.8)
is equal to zero; this is however an instance of relation . For k = 2 we must show that
(0,5,4,7 |9,1,3,6]8,0,2,5]7,1,9,4|6,8,0,3|5,7) =0. (4.0.9)
Here we may move 2 freely past 0 and so
(0,2,4,7]...16,8,0,3]5,7) ~ (2,0,4,7|...]6,8,0,3]5,7) = 0 (4.0.10)
where the last equality follows from (3.0.17)), once again. The same kind of argument shows that yze(:™**) =

y4e(2**) = 0. For these small values of k, one can formulate these arguments diagrammatically. Here is the case

k=4:
Yae(i™) = P3thorhr (yre(s152538™) ) Yrihat)s =
(4.0.11)

024791368025 7914¢6128¢03357

where the last equality follows from the fact that yje(s;s2833™*"), that is the middle part of the diagram (4.0.11)),
is equal to zero.
Let us now go on showing that yre(¢"**) = 0 for k = 5,6,7,8 corresponding to the second row of the residue
diagram [res(t™**)]. For k = 5 we must show that
yse(3™**) = (0,2,4,719,1,3,68,0,2,5|7,1,9,416,8,0,3|5,7) =0. (4.0.12)

But 9 moves freely past 7,4,2 and so we have

(0,2,4,7]9,1,3,6 | ... | ...|5,7) ~(0,9,2,4,7]1,3,6|...|...|57) (4.0.13)
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which we must show to be zero. But using Lemma we have that

0,9,2,4,7]...15,7) € ((0,9,2,4,7|...15,7),(9,0,2,4,7] ... 5,7)) (4.0.14)

where (-) once again denotes ideal generation. Here the first ideal generator is zero by relation whereas the
second ideal generator is zero by relation . The other cases k = 6,7,8 are treated essentially the same way.

Let us now consider the cases where k corresponds to the third row of [res(t™%?)], that is we show that
yre(@™*) =0 for k =9,10,11,12. For k = 9 we must show that

yoe(i™**) = (0,2,4,719,1,3,6 | é,0,2,5 |7,1,9,416,8,0,3|5,7) =0. (4.0.15)
But é moves freely past 6,3 and 1 and so we have

Yoe(i™97) ~ (0,2,4,7]9,8,1,3,60,2,5|7,1,9,4|6,8,0,3 | 5,7) (4.0.16)

which we must show to be zero. But by Lemma [3.0.8] we have that

(0,2,4,719,8,1,3,6]...157)€((0,2,4,7]9,8,1,3,6]...|57), (0,2,4,7]8,9,1,3,6 | ... |57).  (4.017)
Here the first generator is zero by (4.0.12)) and for the second generator we have that
(0,2,4,718,9,1,3,6|...|5,7) ~(7,8,0,2,4]9,1,3,6 | ... |5,7) (4.0.18)

which is zero by relation (3.0.16)). The other cases k = 10,11, 12 are treated similarly. For k corresponding to the
next block, the inductive argument becomes more complicated and we prefer to present it as part of the proof of

~max

the general statement yie(i™*") = 0.

Lemma 4.0.1. In B,, we have for all 1 < k <n the following relations
yee(@™) =0 = e(¢™*)yx. (4.0.19)

Proof. By (3.0.6) we know that y, and e(2™“") commute and so we only need to prove the first relation.

We prove it by induction on n. For n = 1 it is trivial. We next prove it for a fixed n, assuming that it holds for
ny < n. For this fixed n, we use induction on k.

The basis step for this induction is 1 < k < [, which is however easily handled using the same arguments as
in the above example (4.0.6) and the case | + 1 < k < 2 where k belongs to the second row of p™%* can also be
treated this way.

Let us now consider the case (m — 1)l +1 < k < ml where m > 3. Since (m — 1)l +1 < k < ml we have that k
belongs to the m’th row of [™**]. Suppose that x1,..., ] are the residues of the j’th row of [res(¢™**)] and that
the residue of t™%*(k) is c. Then we must show that

yee(@" ) = (| kP ek R KK ] L) = 0. (4.0.20)

Here a+1 is the residue of the node on top of ™% (k) and so we can move A freely over the residues between them.

Hence (4.0.21]) is equivalent to

m—1

(s e LA, KT R LR L) =0 (4.0.21)

which by Lemma |3.0.8|is equivalent to the ideal

L]
<("'|’Zl;ri117""(a+1)’a7"'7;1’i2:_1‘K:,in7"/l7a7""ﬁ:’lrn | .")’ (4.0.22)
(ke a1 K |/{T7...,a7...,/ﬁ”|...)>

being zero. Here the first ideal generator is zero by induction since
(s (1) =0 (4.0.23)
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by the inductive hypothesis on n: this is the residue sequence of a 7" where n; < n. Here we also used that
concatenation maps zero to zero by Lemma [3.0.10f] We therefore focus on the second ideal generator of (4.0.22]),
that is

(or ] KT_l,...,a,a—l—l,...,/flm_l | Koo,y kYY) (4.0.24)

which is obtained from the original sequence e(2™**) by moving « past a + 1. We have that yge(¢"**) = 0 if and
only if this sequence is zero. In we now move « further to the left until it hits its first obstacle
which will be & — 1: this is so due the combinatorial structure of t™**] and strong adjacency-freeness of 4. On top
of the node of residue a there is a node of residue o« — 1 that can be freely moved to the right until it stands next
to a. Doing this we find that is zero if

(...a(a—l)a...|f£§”717...,@7a+1,...,ﬁ;"71\n’fb,...,@,...,/ﬁ”y..) (4.0.25)

is zero. We now apply Lemma to the triple a(a — 1)a and get that (4.0.25)) is zero if the ideal

((c.aala—1) . [ RPN @ a1 BT R e K] ), (4.0.26)
(...(a—laa...| /QT_l,...,&,a+1,...,/-€7L_1 I A )> e
is zero. As before, by induction on n the first generator is here equal to zero and so yre(¢"**) = 0 if and only if
the second term of is zero. We now go on the same way, moving o — 1 to the left, until it hits a residue
a—2 and as before yre(i™*") = 0 if the interchanging of those nodes produces a diagram which is zero. Continuing
in this way, the interchanging of nodes will finally take place in the first two rows of [u™%*], where by relations

3.0.15)) and (3.0.16f) it does produce zero. O
( )

We have the following consequence of the Lemma.

*max

Corollary 4.0.2. Suppose that v € I. and that the concatenation i, ““t is not of the form i for X any multipartition
of n+ 1. Then we have that
e, 1) = 0. (4.0.27)

n

Proof. We have that

e T G I il O A (4.0.28)

By the strong adjacency-freeness ¢ moves here freely to the left until it hits another ¢ or a pair ¢(¢ — 1). In the first
max

case, using Lemma we replace the appearing «t by by i, and get by the Lemma that e(z, **t) = 0, as claimed.

In the second case, we replace ¢(v — 1)t by a linear combination of ¢¢(t — 1) and (¢ — 1)w. Proceeding as in the
Lemma, we finally find that this is zero. O

Let us illustrate the Corollary on the example

(4.0.29)

[ o]~]e]e]]

[~[ee]e]=[—]w]

already considered in (4.0.3). Here we can use ¢ # 4,6,9,2 in the Corollary. We then conclude from the Corollary
that
e(0,2,4,7,9,1,3,6,8,0,2,5,7,9,1,4,6,8,0,3,5,7,¢.) =0

for these choices of .

We generalize the previous Lemma and Corollary to arbitrary multipartitions in the following way. Recall that
< is the total order introduced in (2.0.21)).

Lemma 4.0.3. For X any multipartition of n and for 1 < k < n we have that

yre(i®) = e(i)yp = Z D, (4.0.30)
B>
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where the sum runs over multipartitions p of n and D,, factorizes over e(i*). Suppose moreover that Dy is any
element of B, and that Dy factorizes over e(iA) and assume t € I,. Then we have that

Dx-1=> C, (4.0.31)

B>

where p runs over multipartitions of n+ 1 and C,, factorizes over e(i*). Furthermore, if i*0 is not of the form ¥
for any multipartition v of n + 1 then we have that

Dx-t= Y Cu (4.0.32)

where once again the sum runs over multipartitions p of n+ 1 and C, factorizes over e(*).

Proof. We first give an example which might be useful to have in mind while going through the arguments of the
actual proof. For n =28, e = 9 and X = ((19), (1%), (1%), (1°)) we have the following residue diagram for t*

EIEIC I

(][ ~]e[]=[re]ee ]
Sfe]o]=[w]e]n]e]]

(4.0.33)

[2[er]=]~]eo] ]

In this case, in order to prove || we must show for 1 < ¢ < 27 that yie(i)‘) is a linear combination
> u>x Dy as indicated and for (4.0.32) we must show that for ¢ € I \ {4,6} we have that Dy - ¢ is a linear
combination } -y Cy as indicated.

We now prove all statements of the Lemma by induction on n, the basis case n = 1 being straightforward. We
first prove 1] by induction on k. For k < n we use the inductive hypothesis on n to write yke(iA |r) in the

form
yke(i)‘|;€) = Z D, (4.0.34)
u>A|k
where the sum runs over multipartitions g of k and D,, € (e(3*)). Let i* = (i, ia,...,i,). We then get yre(i*) =
yke(ik|kik+1 -+ +iy) in the form
ye(@) = > D, (4.0.35)
T>p>A|)

by concatenating each D,, on the right with ¢;41 - -- ¢, and using in each step the inductive hypothesis for (4.0.31]).
Here p is as in (4.0.34)) whereas 7 runs over multipartitions of n. But 7 > p > Al implies 7 > X and so (4.0.35)

has the form indicated in (4.0.30)).
In order to show (4.0.30) for £ = n we return to our symbolic notation. We have

e(i™) = (K1, Rl | RS, kD | | KT R (4.0.36)

where /@{, ey n{j are the residues of the j’th row of [A]. In this notation, in order to show (4.0.30) we must show

that
2

Yne(i™) = (Kiy.ooo b, | Bkl | o] Kl,...,Q) = Z D, (4.0.37)
>
where a = K] .
We now move & freely to the left until it meets its first obstacle, which by strong adjacency-freeness is o + 1
coming from the node on top of the node of . We next use Lemmato replace our sequence involving («+ 1)02

by a linear combination of sequences involving (o + 1) and a(a + 1). As in the proof of (4.0.35)) the first term
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involving (« J.r 1)« is of the indicated form by induction hypothesis and we must therefore consider the second term
ala+1). We here move «a freely to the left until it meets its first obstacle which must be a, a +1 or a« — 1. If it
is @ we use Lemma to replace aa by oo and can once again use the induction hypothesis. If it is @ — 1, the
situation gives rise to a triple ao(ow — 11) A where the first o comes from the residue on top of the node of @ — 1. On
this triple, we use Lemma to rewrite (o — 1)ov as a linear combination of ca(or —1) and (a — 1)cer. Here the
first term is dealt with using the induction hypothesis for (4.0.30), whereas the second term is dealt with using the
induction hypothesis for .

We now consider the third case where o meets o+ 1. (In the previous Lemma this case did not occur).
But this case corresponds to a gap in the diagram, where a can be positioned giving rise to the diagram p of a
multipartition that satisfies ¢ > X. Summing up, this proves the inductive step of . The p’s that appear in
the final expansion are exactly those that arise from this last case.

Let us now focus on the claims (4.0.31)) and (4.0.32). Clearly it is enough to show them for Dy = e(i*) so let
us do that. We first note that (4.0.31]) is a consequence of (4.0.32)). Indeed, if i* is not of the form ¢ for any

multipartition v we have from (4.0.32)) that

Da-t= Y Cu=> Cy (4.0.38)

B> n>A

where we for the last equality used that in general g > p|,, see the definition of > given in . On the other
hand, if 4*¢ = 4 for a multipartition v of n + 1, then we have that v > X and e(i*t) = e(v ) and so (4.0.31)
also holds in this case.

Let us now prove (4.0.32) by downwards induction on <. For ¢* = ™% it holds by Corollary We now
fix an arbitrary multipartition A and assume that (4.0.32)) has been proved for multipartitions v such that v > A.
Then in the above sequence notation, and writing « for ¢, for (4.0.32) we must show that

e(iA)w:(n%,...,lilll |53,k | | R R @) = Z Cu (4.0.39)
I»L|n>>\

where « is positioned in the n + 1’st position. Since we assume that the sequence is not of the form ¢ for v for
any multipartition we can move « to the left until it meets its first obstacle, which must be o, « — 1 or a 4+ 1. If
it is a we proceed essentially as before: we use Lemma to replace aa by aa and can now use the induction
hypothesis. Indeed, if Q is situated in the k’th position we are dealing with yke(&‘) = yke('>‘|;C Tht1 " Inbntl)
where i,11 = k] and so on for the other i;’s. Using the inductive hypothesis for n on (4.0.30)) and (4.0.31) we get,
arguing as in connection with (4.0.35) m that

yke(ipirs1 - -in) = Y Dy (4.0.40)
T>A

where 7T runs over multipartitions of n. Finally, we use the inductive hypothesis for < to write

i*) 0= yre(iMpint1ining1) = 3 Dringr= > Duy= > D, (4.0.41)

e(i
T>A n>T>A Bln>A

where the last equality follows from the fact that 7 and g run over multipartitions of n and n + 1. Hence (4.0.41))

has the form required for (4.0.32)).

If the first obstacle is a — 1 we essentially argue as before: the situation gives rise to a triple a(a — 1)a which we

rewrite, using Lemma as a linear combination of o.goz(oz— 1) and (o —1)ac. Arguing as for d4.().40|) and (]4.0.41[)
we get the term involving o:oz(a —1) in the form indicated in , whereas for the term involving (a — 1)aa we
use the inductive hypothesis for .

Finally, if the first obstacle is aw + 1 we also argue as before, essentially. Indeed, in this situation there is a gap
where a can be placed. This gives rise to a multipartition 7 of k such that 7 > A|; where k is the position of «
and so we get, arguing as before, that

e(i) 1= e(iTip1 - ining1) Z D,. (4.0.42)
H|n>>\

This finishes the proof of the Lemma. O
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Corollary 4.0.4. For each i € I there is an expansion in B, of the form
i)=> D, (4.0.43)
73

where the sum runs over multipartitions p of n and D,, factorizes over e(i").

Proof. We argue by induction on n, the base case n = 1 being trivial. Assuming that (4.0.43) holds for n — 1 we

prove it for n. Suppose that ¢ = (i1,...,4,-1,4,) and set 4,1 = (41,...,%n,—1). Then by induction we have that
e(in-1)= > Du, (4.0.44)
Hp_—1

where g, ; runs over multipartitions of (n — 1) and where D,, _ factorizes over e(i*~-1). Using (4.0.31)) of the
previous Lemma we then get

e(?) =e(in-1) Z Dy, _in Z Z D, (4.0.45)

K1 Hp_1 VM,

and so e(%) is of the form claimed in (4.0.43)). O

For any w € &,, we choose once and for all a reduced expression s;,;, - -- S; and define ¢, € B,, via this
expression

Y = i Yiy - Yiy (4.0.46)

Note that 1, depends on the choice of reduced expression, not just on w. We denote by official reduced expression
for w the expression used in (4.0.47). If wi = s;, 55, - -+ s;, is another, “unofficial’, reduced expression for w then
the error term in using w; instead of w can be controlled, in the sense that we have that

Yw = V55, Yy = > Cho YE by = > diw o Y= (4.0.47)

kENY veEG,,, w<v EENG veS, ,w<v

where ¢ v, di,» € F and where for k = (k1,. .., k,) € N§ we define yk = ylfl y,’j” cB,.
Let A € Pari be a one-column multipartition and suppose that s,t € Tab(\). For the associated group elements
d(s),d(t) € &,, we have Vqs), Vqt) € By, defined via the official reduced expression for d(s) and d(t). We then set
Met = Ve e(i)Ya) € By (4.0.48)

and define C,, C B,, via
Cpn = {mst | 5,t € Std(N), X € Pary. }. (4.0.49)
A main goal of our thesis is to show that C, is a cellular basis for B,,. Our first step towards this goal is to show

that C,, is a generating set for B,,. We start with the following Lemma.

Lemma 4.0.5. Suppose that Dy € B, factorizes over e(X). Then there is an expansion of the form

D)‘ = Z CstMgt (4050)
s,tcTab(p), p>A

where cgy € F.

Proof. 1t is known that
Si={e(@)y" v, i€ I,k e Nj,w e &,} (4.0.51)

spans the KLR-algebra R,, over F, see (2.7) of [7] and section 2.3 of [20]. In fact, any permutation of the three
factors of S also gives an F-spanning set for R,, over F. But by definition B,, is a quotient of R,, and so these sets
also span B,, over F.

We now prove m sm downwards induction on <. The 1nduct10n basis is given by the multipartition
A= p*®introduced in 1 We may assume that Dx = ae(z )b where a,b € B, since Dy is a linear
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combination of such expressions. We now expand a in terms of the variation of S that uses the product order
Yy®e(i) and then expand b in terms of S. Inserting, we find expressions of the form

Dx= Z Cvw, ke ki, '(/)vy 16 2¢w ZCU wwv w (4052)

'vavkl 7E

where we used Lemma for the second equality. For each appearing v, w we must now show that wve(f‘)ww is
a linear combination of mg where §,t € Tab(X). We set 6 := t*v~! and t := t*w. Then we have by definition that
d(s) = v~! and d(t) = w and so
Dy = ch,wwve(ik)ww = chtmst (4-O~53)
v,W s,t

and so we obtain the required expansion for Dy, at least in the basis case A = pu;"*".

We next show the existence of the expansion for Dy for a general A, assuming that it exists for all

p > A Once again we may assume that Dy = ae( )b where a,b € B,, and once again we expand a in terms of

the variation of S that uses the product order 1,y% e(i) and b in terms of S. Inserting, we now get an expression
of the form

Dy = Z Co,w.ky ky %y =t 6( )y hy = ch,wwve(i)\)ww =+ Z D, (4054)

v,w, k k v,w >

where we this time ubed Lemma [4.0.3] for the last equality. Arguing as we did in the inductive basis step we now
rewrite Y, . €y wioe(t )ww as a linear combination of mg¢’s and then get

D= Y camsit+ » Dy (4.0.55)

§,t€Tab() w>X
We now use the inductive hypothesis on the terms D,, to conclude the proof of the Lemma. O
Lemma 4.0.6. The subset of B,, given by
{ms¢ | X € Par}., 5,t € Tab(A)} (4.0.56)

spans B, over IF.

Proof. Choose b € B,, and expand it in terms of S as follows

b= cinwe@) yE v (4.0.57)

where ¢; . € F. Using Corollary we write each appearing (%) as a linear combination of D,,’s where p runs
over multipartitions and D,, factorizes over e(3"). Inserting this in (4.0.57) we find that any b € B,, is a linear
combination of D,,’s. We can then apply the previous Lemma [£.0.5 to conclude the proof of the Lemma. O

Our next goal is to show that the non-standard tableaux are not needed in (4.0.56)). Our method for proving
this is an adaption of Murphy’s method using Garnir tableaux, see [31] and [35].

Let A be a multipartition and g a A-tableau. We say that g is a Garnir tableau if there is an 1 < i < n such
that

a) g is not standard, but gs; is standard.
b) If s € S and gs > g then s = s;.

I 4 i 1 I

. . 11

,7 ,, 12 (4.0.58)
7 7

In order to get a better description of Garnir tableaux we introduce some further notation. Let A be a one-
column multipartition and let v = (r,1,m) be a node of [A], which does not belong to the first row of [A]. We then

Here are some examples
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denote by v the node (r —1,1,m) of [A], that is y* is the node of [A] that is situated on top of v in [A]. We then
define the Garnir snake of v as the following interval in [A] with respect to <

Snake(y) := [y,7"] = {r € [\ [y <7 <7}, (4.0.59)

We also define
nSnake('y) = {Z S () ‘ t)\(l) € [777+]} (4060)

that is M gnake(y) is the set of numbers that are used to fill in Snake(y) for .

For A € Parl, and v = (r,1,m) a node of [A], not belonging to the first row, we define the classical Garnir
tableat @cias,y Dy setting geias, (%) := =t2(i) for i ¢ nSmke(,Y) and by requiring that the numbers from ng,4re(y) are
filled in consecutively from left to right in Snake(v) except for an upwards jump from + to y*. Here is an example

with v = (3,1,3)
Gclas,y = I I H H (4061)

It should be noted that gciqs,, is not a Garnir in the classical sense, as considered for example by Murphy and
Mathas. On the other hand, it is similar to the classical Garnir tableaux in the sense that if we view the components
of A as the columns of an ordinary partition (possibly with 'missing’ nodes as in the example) then gciqs,, becomes
a Garnir tableau in the classical sense.

We need another class of Garnir tableaux that we denote g, . They are defined by filling in the numbers from
N Snake(~) iNto Snake(y) in increasing order, beginning with ~, then ~T and the other nodes of the row of v+ and
finally the remaining nodes of the row of «. Here is an example with v = (3,1, 3)

Recall the weak order > on Tab(A). The following Lemma relates it to Garnir tableaux. Set first NStd(A) :=
Tab(A) \ Std(A), that is s € NStd(A) if and only if s is a non-standard A-tableau.

Lemma 4.0.7. Suppose that t € NStd(X). Then

a) The tableau t is a mazimal in NStd(X) with respect = if and only if t is a Garnir tableau.
b) If t is a mazimal in NStd(X) with respect > then t is a Garnir tableau.

Proof. Let us first prove a) of the Lemma. Assume that t is a maximal tableau in NStd(A) with respect to >=. Then
for all s; € S we have that either ts; <it or ts; € Std(\). If ts; <t t for all i we have that t = t* which contradicts
that £ € NStd(A). Hence there is an s;, such that ts;, >t and for this s;, we have ts;, € Std(A) by maximality of
t in NStd(A). On the other hand, there can only be one s;, with this property. Indeed, suppose that also ts;, > t.
Setting u := ts;, and v := ts;, we have that u and us;;s;, are standard tableaux, whereas us;, is non-standard.
This is only possible if g = jy and so t is a Garnir tableau, as claimed.

Now assume that t is not a maximal tableau in NStd(A) with respect to > . Then there is an s € S such that
ts >t and ts € NStd(X). This implies that t is not a Garnir tableau.

We now show b) of the Lemma. If t is a maximal tableau in NStd(A) with respect to > then t is also a maximal
tableau in NStd(A) with respect to >, since > is a weaker order than >, and so t must be a Garnir tableau by a).
This proves b) of the Lemma. O

The converse of b) of the Lemma does not hold as can be seen in the following example. Let A = (12,12,12,121)

and define
_ 6] _ 6]
8= < B\ Blsrlalo] ) (4.0.65)

Then both g; and go are Garnir tableaux, and it is easy to see that g1 > g2 and so go is not a maximal tableau in
NStd(A) with respect to >.
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Corollary 4.0.8. Lett be a A-tableau which is non-standard. Then there exists a Garnir tableau g and a w € &,
such that t = gw and I1(d(t)) = 1(d(g)) + I(w).

Proof. This is a consequence of a) of Lemma m O

Let us now give our characterization of Garnir tableaux.

Lemma 4.0.9. Given a multipartition X of n and let g be a A-tableau. Then g is a Garnir tableau if and only if
there is a node v € [A], not belonging to the first row, and an ig € n such that

(1) 8(io) =~ and g(ip +1) = ~*.
(2) For all i # ig we have g(i) > g(i + 1).
(3) For all i € m\ Ngpake(y) we have that g(i) = t(4).

Proof. Suppose first that g is a Garnir tableau. Then g is not standard and maximal with respect to < and hence
there is an ig € m such that gs;, is standard. The entries iy and ig + 1 belong to the same component (column)
of [A] and g(ip + 1) > g(ip). Let v = g(ip + 1) and 3 = g(ip). Suppose that 8T # v and choose a € n such that
g(a) = BT. Then v> 8T and since gs;, is standard we have that ig < a < ig+ 1, a contradiction. Therefore 8 = T
and by definition g(ig)™ = g(io + 1).

Since g is a Garnir tableaux, we have for i # iy that g > gs; and then g(i) > g(i + 1), see a) of Lemma [2.0.2]

Let us say that i € n defines a simple non-inversion if (i) > g(i + 1) and that i € n defines a simple inversion
if g(i) < g(i + 1). With this terminology we have so far proved that ¢ is the only simple inversion of n, all other
elements are simple non-inversions.

Let ko = min(g~*(Snake())) and k; = max(g~!(Snake(v))). Since iq is the only inversion of m we have that
ko — 1 appears before kg in g whereas kg — 2 appears before kg — 1 and so on until 1. On the other hand, no j > kg
can appear before ky in g, since for the smallest such j we would have that j — 1 is a inversion distinct from ig.
We have thus showed that for i = 1,2,...,kg — 1 we have that g(i) = t*(i). Similarly, one shows that also for
i=ki+1,k +2,...,n we have that g(i) = t*(i). Thus we have that g~ (Snake(7)) = ngnake(,) and that g verifies
the conditions (1), (2) and (3) of the Lemma.

Finally, if g is a A-tableau verifying the conditions (1), (2) and (3) of the Lemma, then clearly g is a Garnir
tableau. O

For the next Lemma we need condition #iz) from Definition of strong adjacency-freeness.

Corollary 4.0.10. Let A be a multipartition and let v € [A]. Suppose that g1 and g1 are Garnir tableaux of the
same shape X with respect to the same 7 as in part (1) of the previous Lemma . Then e(i%) ~ e(192).

Proof. 1t is enough to prove that for any Garnir tableau g = g;, satisfying the conditions of the Corollary, we have
that g1 ~ @cias,n- Let g be the one line (ordinary) partition g = (|nsnake(y)|). Then we can view g |ng, ..., 2 a
g-tableau t(g) by reading the numbers in Snake(y) from left to right. The Garnir tableaux from correspond
for example to the g-tableaux

o) =[7]8]4[5[6]3

. e =[3]8[4[5]6]7] (4.0.64)

where g = (6), whereas gc4s,, in general corresponds to t® (on the numbers n.g,41(+)), that is

#=3[4]5]6]7]8] (4.0.65)

in this case. Since & is strongly adjacency free, we have on the other hand that the residues of all of the nodes of
Snake(7y), except v and v, differ by 2 or more. Let now w € &,, be such that t(g)w = t and choose a reduced
expression w = s;, - -+ s;, for w. Then, for all j, we have that s;, , does not interchange the numbers appearing

in the nodes corresponding to v and v in t; := t(g)s;, ---54,. For example, for t(g;) in (4.0.64) the sequence
Siys- - -5 Siy Dever interchanges two numbers in the positions colored with red, and similarly for t(g2). The Corollary
follows from this. O

We have the following Lemma.

Lemma 4.0.11. Suppose that X € Par;, and that s,t € Tab(X). If t € NStd(X) then there is an expansion

Mat = Do catmay + > Cats Mty (4.0.66)
t1€Std(A),t1 D>t pn>X,60,t2€Std(p)

where cgt, , Csot, € F.
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Remark 4.0.12. A similar statement holds for s.

Proof. We shall argue via downwards induction on A with respect to <. Let us first consider the case A = pu;"**.

We consider mg¢ for s,t € Tab(X) and suppose that t € NStd(u™**). We show using downwards induction on ¢
with respect to <1 that mg¢, for t € NStd(p*), can be written in the form given by (4.0.66]).
In view of b) of Lemma the basis step for this induction is given by t = g a Garnir tableau. Let us do it.

By relation (3.0.7) we have that
Msg = ey (" )a(g) = Viys) Va(g) (%) (4.0.67)

and so for the basis step to work it is enough to prove that e(i®) = 0. Let v € [u™*] be the node associated with
g as in Lemma [£.0.9] Using Lemma [£.0.10] we may assume that

e(i%) ~ e(i%). (4.0.68)

Let j = ﬁ;l('y) Applying Corollary to the restriction of g, to the numbers {1,2,...,j — 1} and ¢ = res(y) we

now get that e(i%+) = 0, and so also e(2%) = 0 which proves the claim in this case.

Let us now consider the case of a general non-standard p'**-tableau t. Using Corollary [£.0.8] there exists a
Garnir tableau g and a w € &,, such that t = gw and I(d(t)) = (d(g)) + l(w). Hence there exists a reduced
expression for d(t) of the form d(t) = s;, ---siy s, ---sj,, where d(g) = s;,---5;, and w = sj, ---s;5,,. If this

reduced expression is the official one for d(t) we have that

Mst = Ve €(8" " )ha(g)hw =0 (4.0.69)

by the inductive basis, proved above. If it is not the official expression for d(t) we have by that the error
term that occurs when changing to the official expression is given by a linear combination of terms of the form y%4,
where k € N2 and v > d(t). Now for any non-trivial factor y* we have that e(:™*")y% is zero by Lemma and
for the terms v, we have by Theorem that v = d(t;) with ¢; > t, and so we may use the inductive hypothesis
on the non-standard t;’s that may occur.

Let us now consider a general multipartition A # p"**. We consider mg¢ for s € Tab(A),t € NStd(A) and once
again use downwards induction on t with respect to <1 to show that mg¢, for t € NStd(u™*), can be written in the
form given by . For t maximal in NStd(A) we have that t = g is a Garnir tableau for A and so, arguing the

same way as we did for (4.0.67]), we get
Msg = V() (2" )Va(g) = Vis)Va(g) €(3°)- (4.0.70)
Passing to g., as we did get in the inductive basis case, and using (4.0.31) and (4.0.32)) of Lemma we then get

Msg = Z D= Z CstMst (4.0.71)

n>A s,teTab(u), p>A

where we used Lemma for the second equality. We then use the inductive hypothesis on each appearing mygg,
to rewrite in terms of msg,¢, for s; and t; standard tableaux. This concludes the case t = g.
Finally, for the general non-standard A-tableau t we have that

Mat = Yoo ()o@ = Y catmst, + »_ Dy (4.0.72)

t EStA(A) £ >t p>A

where the second equality arises from the error terms 77/1;(5)6(1')‘)3/&1/11,. But as before we can apply the induction
hypothesis on each D,, rewriting it in terms of mg,¢, where s; and t; are standard tableaux. This concludes the
general t-case. Finally the s-case follows from the t-case by applying * and so the Lemma is proved. O

From the Lemma we deduce the following Corollary. It is the main result of this chapter.

Corollary 4.0.13. The subset C,, of B,, given by

Cp = {mgt | XA € Par}, 5,t € Std(A\)} (4.0.73)
spans B, over IF.
Proof. This is a consequence of Lemma [£.0.5] and Lemma O
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Chapter 5

Linear Independence of C,,.

In this chapter we show that the set C,, constructed in (4.0.49)) is a linearly independent set. Our methods used so
far, essentially being manipulations with the defining relations for B,,, are not sufficient for proving this and in fact
it cannot even be proved that mg¢ is non-zero with these methods.

To show the linear independence of C,, we shall rely on the seminal work by Brundan-Kleshchev and Rouquier,
see [7], [39] that establishes an isomorphism between the cyclotomic KLR~algebra R, and the cyclotomic Hecke
algebra H,,.

Let us give the precise definition of the relevant cyclotomic Hecke algebra.

Definition 5.0.1. Let F, e and & € Z' be as above, and let ¢ € F\ {1} be an e'th primitive root of unity. The
cyclotomic Hecke algebra H,,(q, k) is the F-algebra with generators Ly, ..., Ly, T1,...,Th—1 and relations

(L1=q")--(L1—¢")=0 (5.0.1)

(T, +1)(T,—q)=0 (5.0.2)

T Ty = Ty ToTosn (5.0.3)

LyLs=LsLy, T, Ly = Ly 11 (Tr — g+ 1) (5.0.4)
T.Ls=LT, if |r —s|>1 and T,Ts =TTy if s £ r,r+ 1 (5.0.5)

for all admissible r, s.

It follows from the relations that there is antiinvolution * of H,,, fixing the generators T; and L;. We have that
T, is invertible with 7.1 = ¢~ 1(T,. — ¢ + 1). From this one gets that

L1 =q 'T.L,T, (5.0.6)

and so Ls,..., L, are actually redundant for generating H,. The elements L; are called Jucys-Murphy elements
for H,,.

Let § be a variable and let K be the quotient field of the polynomial ring F[§]. Let O be the subring of K given

by O := {% | £(4),9(d) € Flg],9(q) # 0}. Then O is a local ring with maximal ideal m := (§ — ¢) = {% € 0|

f(q) = 0}. The evaluation map O — T, % — % induces an isomorphism O/m = F and so the triple (O, F, K)
is a modular system.

Let HO = HY(4, k) be the O-algebra given by the same presentation as H,,, but replacing ¢ by § € O, and let
similarly ’H,’f = ’H,’f((j, k) be the K-algebra given by the same presentation used for H,,, but replacing ¢ by § € K.
It is known that ’H,? is free over O of rank {"n!. Furthermore, we have that ’H,? Qo F = H,, where F is made into
an O-algebra via evaluation in ¢, and that HS ®0 K =2 HX| via extension of scalars. It follows that H,, and HX

both have dimension ["n!.
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The representation theory of ,, is governed by Par;,,, that is I-multipartitions of n. Let A be an element of
Par; , and let § € Tab(X). Then we define the content function of s via the formula

cs(i) = gD ¢ F (5.0.7)

where res is as in (4.0.1]). Note that since ¢ is an e’th primitive root of unity, this makes sense. The content function
for HO and HY is defined via X
@) =c@) =gt reo0cCkK (5.0.8)

where (i) = (r,¢, k). By the condition ) on the multicharge &, the content function satisfies the separability
condition given in [32] and so HX is a semisimple algebra.

The following concepts and results have their origin in Murphy’s papers. Let Std(n) := Uxepar, Std(A). For s
any element of Std(n) we define

- Ly - C{C(k) K
Fe=] 11 i €Hr. (5.0.9)
k=1 teStd(n) cg (k) =i (k)

X (k)#cE (k)

It is known that the F3’s form a complete system of orthogonal idempotents. The Fg’s are simultaneous eigenvectors
for the action of the L;’s and the corresponding eigenvalues are given by the contents:

LiFy = FyL; = X (i) F;. (5.0.10)

Unfortunately, a construction in #, similar to does not lead to idempotents in #H,. Note also that
Fs ¢ HO because of the denominators. In order to get idempotents in HY and H,,, we consider the sum over the
Fy’s for s belonging to a class of a certain equivalence relation on tableaux, that we now explain. Let § and t be
tableaux for multipartitions A and p. Then we set s ~. t if res(s(i)) = res(t(¢)) mode for all i, or equivalently
¢s(i) = ¢¢(4) for all ¢. This indeed defines an equivalence class on the set of all tableaux. We denote by [s] = [s].
the class under ~, represented by s and set

Eg:= Y F. (5.0.11)
te[s]NStd(n)

Then Mathas has proved in [30], building on Murphy’s ideas in the symmetric group case, that Efs belongs to HO
and hence Ejg) ®o 1 belongs to H,. We shall write Ejg for Ejg @0 1 as well. Clearly the Ejg’s are orthogonal
idempotents in both #,, and HY.

Any equivalence class [s] gives rise to a residue sequence ° := (i1, 42, ...,i,) € I” via ij := cs(j). By construc-
tion, #° is independent of the choice of representative of [s].

The Brundan-Kleshchev and Rouquier isomorphism Theorem establishes an isomorphism of F-algebras f : R,, =
H,.. We need to explain the images of the generators under f.

In the case of f(e(¢)), Brundan and Kleshchev describe it as the idempotent for the generalized eigenspace for
the joint action of the L;’s, that is

fle(@)Hp ={h € Hyp | (Lg —ix)™h = 0 for some m > 1}. (5.0.12)

There is however a more concrete description of f(e(¢)) due to Hu-Mathas, see [I7]. It is of importance to us
because it allows us to lift f(e(2)) to HX, via (5.0.11). It is given by the formula

Eiq) if ¢ =14° for some s € Std(n)

fled)) = { 0 otherwise. (5.0.13)

In order to describe f(y;) and f(1;) it is enough to describe f(y;)Els) and f(t;) Efg), since we have that 3, Ejg) = 1.
In [7] f(y;) is described as the 'nilpotent part of the Jucys-Murphy element L;’, or more precisely

fi)Erg) = (1 - csl(z‘)Li> Elg). (5.0.14)
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We have a lift of this to HX as well. Supposing that cg(i) = ¢"=T°"" € F we let G5(i) := ¢"»+¢~" where ¢ —# € Z
is any preimage of ¢ — r mode. Then our lift of (5.0.14) is

<1 - (;(Z)L) t% F=Y (1 - CE(”) F e HE. (5.0.15)

te(s] (1)
The y;’s are nilpotent elements of R,,. Using this, Brundan and Kleshchev define in [7] formal power series
P;(),Q;(2) in F[[y;, yi+1]]. They give the formula
bie(i) = (T; + Pr(4))Qi(4) 'e(d) (5.0.16)

which defines f(v;) since we already know f(y;) and f(e(2)).

To make use of these formulas we shall rely on {fs¢ | 5, € Std(M\), A € Par,}, the seminormal basis for HX
constructed by Mathas in [30]. We have that

Fsfsit, Ft = 0s 5,0t t, fst (5.0.17)

where dg 4, and dy¢, are Kronecker delta functions, and so {fs¢} is a K-basis for HE consisting of eigenvectors for
the action of the L;’s.

We need the following analog of the classical formulas for the action of s; on the seminormal basis of the group
algebra of the symmetric group. In this particular case, they are due to Mathas, see Proposition 2.7 of [30].

Proposition 5.0.2. Lets and u be standard A-tableaur and let t = ss;. If t is standard then
—1)el i .
R fus + fut if 5ot
JusTi = (5.0.18)
(g=1)cg (9) Fus + (CICLC(Z')—C{C(i))(q’f(i)—QCiC(i))fut if s <t

e () —ck (0) (cf (1) —cF (1))?

whereas if t is non-standard then

qfus if i and i+ 1 are in the same row of §
JusTi = (5.0.19)
—fus ifi and i+ 1 are in the same column of s.

There are versions of (5.0.18) and (5.0.19), with T; multiplying on the left.

Actually there are some minor sign errors at this point in [30]. In fact, our formulas are completely
identical with the formulas used by Mathas in [30], but only our formulas are correct since Mathas’ quadratic
relations take the form (7, — 1)(T; + ¢) = 0 whereas ours are (T, + 1)(T, — q) = 0, see ([5.0.2)).

Note that the formulas of the Proposition depend on the order <., although we believe that it is possible to
obtain similar formulas depending on <y. Note also that it follows from the formulas that spang{fs | shape(s) =
Ao} is a two-sided ideal of HX where A is any fixed multipartition. Finally, note that all coefficients appearing in
the formulas are nonzero. In the case of the second coefficient of , this is a consequence of the condition %)
on the multicharge &.

We have the following formula relating the seminormal basis to the Fi’s

1
Fe=—fu (5.0.20)
Tt

where t is any standard tableau of a multipartition A and where ¢ € K* is a known constant.

We need the following Lemma.

Lemma 5.0.3. Let A € Par; be a one-column multipartition and let t* be the mazimal X-tableau, as above. Suppose
that s € [\)\{t*} and that shape(s) € Par’. Then s > t.

Proof. Let s € [t*] \ {#} and let i € n be minimal such that §(i) # t*(i). The nodes (i) and t*(i) have the same
residues since § ~, t* and so strong adjacency-freeness of &, together with the fact that § is standard, implies that
i is situated higher in § than in t*, that is (i) > t*(i). But then we have either s > t* or shape(s) ¢ Par, which
proves the Lemma.
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With these preparations, we can now prove the linear independence of our proposed basis.

Theorem 5.0.4. The set C,, = {mg | A € Pary,, s,t € Std(A\)} introduced in is linearly independent over
F and hence it is a basis for B,.

Proof. Let us assume that there is a non-trivial linear dependence between the elements of C,

Z Aetmst = 0. (5.0.21)
s,t

Letting 7 : R,, — B,, be the projection map from the KLR-algebra to the blob-algebra and taking inverse images

on both sides of (5.0.21)) we then get

> Asemst +p =0 (5.0.22)
s,t
for some p € ker m and so
> stf(mse) + f(p) = 0. (5.0.23)
5.t

We now note that any f(mg) = f (w;kl(s)e(i)‘)z/}d(t)) can be written as a linear combination of terms of the form
Ty 90(y) Elr) fu(y)Tw where g,(y), fu(y) € Flys, ..., yn] for some v, w € &,, with v > d(s) and w > d(t) and where
9a(s)(y) and fq (y) are invertible, that is of nonzero constant terms. That this is possible follows from and
an observation due to Hu and Mathas, see the proof of Lemma 5.4 of [I7]. Combining this expansion with Lemma

we get that

fimse) = Ty BpnTawy + Y tww Ty EpnTuw + Y f(Du) + f(p1) (5.0.24)
v>d(s),w>d(t) u>A

where D, € (e(i*)), piy.w € F and p; € ker 7. This expression for f(ms¢) takes place in H,,, but can be lifted to HS

via (5.0.13) and then embedded in HX. Let us now analyse the various ingredients of (5.0.24)), starting with f(p;).
We have that

kerm = (e(?) | i1 € {K1,...,K1},52 =491 +1mod e) TR, (5.0.25)
corresponding to the omission of relation (3.0.3)). Using (5.0.11) and (5.0.13) we then get that

for)= Y > af Fiaf, (5.0.26)

seStd(n) tefs]

where af ;,af, € HY and where s € Std(n) satisfies res(s(1)) € {s1,..., 5} and res(s(2)) = res(s(1)) + 1mod e.
These conditions, together with the conditions on &, imply that for each t € [s] we have shape(t) ¢ Par,. Combining
this with Proposition [5.0.2| and (5.0.20) we get that
f(p1) € spany{fst | 5,t € Std(X), X ¢ Par), }. (5.0.27)
Let us now consider the terms f(D,,) of (5.0.24). We have that
f(Dyp) = Z ag,1 Fyag2 (5.0.28)

te(tH]

where ag1,at2 € HN. For each appearing t we have t > t* by Lemma Combining this with g > A, that is
t* > t*, we get that t > t* and so there is a k such that t|,= t*|; and t(k+ 1) >t (k +1). But then t(k + 1) ¢ [A],
which implies that shape(t) > X. Hence we have that

f(Dy) € spany{ fst | 5,t € Std(v), v > A}. (5.0.29)

Similarly, for all tableaux t in [t*] we have that shape(t) > X. Hence from (5.0.24), (5.0.27) and (5.0.29) we get
that

flmst) € Ty FaTuwy + > pow T ATy + spang{fat | 5,6 € Std(v),v > Aor v ¢ Par)}  (5.0.30)
v>d(s),w>d(t)
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where X as a subscript refers to t*.

Let us now focus on Tj(s)FATd(t). Let d(t) = si,8i, - Siy be a reduced expression for d(t). When calculating
ATy using this expression and Proposition we obtain an expression for fxTg) as a K-linear combination
of certain fyy’s. But by the formulas of the Proposition, for each appearing u we have that d(u) is a subexpression
of 4,84, - -+ sy and so by our version of the Ehresmann Theorem, that is Theorem [2.0.4] we have that t Ju for each
occurring fay. Letting t; := t)‘si1 ... 8, we have t; <t forallk=1,...,N —1 and so in the above expansion
of faTys) the term fx¢ corresponds exactly to the subexpression of s;, s;, - - - 8;,, Where no s; is omitted. By the
remarks following the Proposition, the corresponding coefficient 4 is nonzero and so we have

INTawy = aefre + Z Qu fry (5.0.31)

up>t

where ag, ay € K and where ag # 0. Acting on the left with Tj(s), and arguing the same way as we did for (5.0.31)),
we obtain an expansion
T;(s)fATd(t) = astfst + Z aubfuu (5-0~32)
u,0>t
where apy, ast € K and where agt # 0. Let us now focus on the term T,y FxT,, of (5.0.30). But arguing as was done
for T 4 FxTy(t), we can write T FAT,, as a linear combination of feu’s. Moreover, since v > d(s) and w > d(t) we

get for each appearing u and v the relations u>s and v > t.
All together we can now write (5.0.30f) in the form

f(met) € agefst + Z Qo fuo + spany{ fst | 6, € Std(v),v > X or v ¢ Par,} (5.0.33)

u>s,o>t

where ag € K* and aye € K.

Let us finally return to the linear dependency . Let us extend the order < to pairs {(s,t) € Std(A)? | A €
Parl} via (s,¢)<1(s1,t) if §<18; and t<it; and let us choose (8g, to) minimal such that Ag.¢, # 0. Let Ao = shape(so).
Using we can rewrite ((5.0.23) in terms of the fg¢’s. In this expression, there are no cancellations for the
coefficient of fg,¢,’s which is therefore Ag.¢, - as,¢, 7 0. But this is in contradiction with the fact that the fs¢’s form
a basis for HX and so the Theorem is proved. O
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Chapter 6

Cellularity of C,, and JM-elements

In this chapter we obtain our main results of this part of the thesis, showing that C, is a cellular basis for B,, with
respect to <1, endowed with a family of JM-elements.

In the previous chapters we have proved that C,, is a basis for B,, and in fact one can even deduce from the
results of these sections that C,, is a graded cellular basis for B,,, with respect to <. However, we aim at proving
the stronger statement that C, is a graded cellular basis with respect to <. The key combinatorial ingredient that
allows us to pass from < to < is given by the following two Lemmas.

Lemma 6.0.1. Let A € Par}l be a one-column multipartition and let t* be the maximal A-tableau, as before. Suppose
that t € [t*]\ {*} and that shape(s) € Par’. Then shape(t) > X.

Proof. Set p := shape(t). By Lemma it is enough to find a bijection © : [A] = [p] such that ©(y) > v for all
7 € [A]. Our candidate for this bijection is © := to (£*)~1. Surely © is a bijection so let us check that © satisfies the
order condition. Assume to the contrary that there is v = t*(k) € [A] such that ©(y) <7, or equivalently t(k) <it*(k),
and let ko be the minimal such k. Let t*(ko) = (ro,1,jo) and t(ko) = (r,1,5). By strong adjacency-freeness of x,
and the fact that t* (ko) and t(ko) have the same residue, we have that r > 7o + 1, that is t(ko) is located at least
two rows below t*(kg). But by minimality of kg we have that t(k) is located above t*(k) for all k < ko. This is
impossible since t is standard. 0

For the next Lemma we need the conditions 4ii) and iv) from Definition of strong adjacency-freeness.

Lemma 6.0.2. Let A € Par), be a one-column multipartition and let g be Garnir tableau of shape X. Lett € [g]\ {g}
and suppose that shape(t) € Par.. Then shape(t) > .

Proof. We shall follow the same approach as in the proof of the previous Lemma. Set p := shape(t). As in the
previous Lemma it is enough to find a bijection © : [A] — [p] such that ©(8) > 3 for all 8 € [A]. This time the
candidate for the bijection is © := to (g)~!. This O is also clearly a bijection so we must check that © satisfies the
order condition. Assume to the contrary that there is 8 = g(k) € [A] such that ©(8) <3, or equivalently t(k) <g(k),
and let kg be the minimal such k. Let g(ko) = (ro, 1, jo) and (ko) = (r, 1, 7). Using the previous Lemma, and part
(3) of the characterization of Garnir tableaux given in Lemma we conclude that g(ko) € Snake(y), where
is the special node for the Garnir tableau g, according to Lemma [£.0.9] But then from strong adjacency-freeness
of £ we conclude that » = rg + 2, since there are no nodes of the same residue in consecutive rows of A, that
is t(ko) = (r,1,7) is situated two rows below g(ko) = (r9,1,j0). On the other hand, using condition iv) of the
Definition of strong adjacency-freeness, we get that those nodes in the r’th row of [res(t*)] that have the same
residues as nodes in the ro’th row, are all shifted one to the right. In other words, we have that j = jo + 1. But
this produces a gap between t(kg) and Snake(y) and so t cannot be standard. The Lemma is proved.

Let us illustrate this last point on the following example with A = ((111), (111), (111), (119), (1), (12)), e = 13 and
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v=1(9,1,2):

1] 2] [3] [4][5][e] 0| [2] [4] [6][8] 10
78] 9] 10 12) (1] (3] 5] [9]
12| 13} 14] |15 1) 0] 2] 4]
16) [17) 18] [19] 10} 12 |1 |3
20| |21 |22 |23] 9 [11] [o] [2]
o= ||24], 25, 26/, 27|,  [res(t™)] = [ [ 8], [10],12],/ 1], , (6.0.1)
28] 29] |30 |31 NAREARISINIG
32| [35] [36] |37 6] 8] [10] [12
33] [34] |38] |39 51 17] 9] 1]
40| |41] 42| 143 4] 16] 8] 10
44] 45] [46] |47 3] 5] L7 19

The numbers appearing in Snake(y) of g have been colored red. We are supposing that ¢ < g. Consider the case
where g(ko) = (8,1,2), that is kg = 35. Then for t to be standard we must have either t(35) = g(40) or ¢(35) = g(41).
But t(35) is of residue 8 whereas neither g(40) nor g(41) is of residue 8, and so we get the desired contradiction in
this case. The other cases for g(kg) are treated similarly.

For completeness, we now give a tableau t in [g]. One checks easily that t > g.

1] 2] [3] [4]
7| (8] [9] 10
12| 13 [14] [15]
16) 17 [18] [19)
20| [21] [22] [23]

t=| 24, [25],]26], [27], . (6.0.2)
28 [20] [30] [31]
32| 3] [37]
33 3] [39)
10 a2 [13
44 [ag] [47]

O

We can now generalize the first statement of Lemma [4.0.3

Lemma 6.0.3. For X any one-column multipartition and any k we have that

yee(i™) = e( )y, = Z CstMst (6.0.3)
s,teStd(A),u>A

where the sum runs over one-column multipartitions p of n and cgs € F.

Proof. We first note that by construction of the mg¢’s we have that

. o Mgt if1 = ’l:s
e(i)mse = { 0 otherwise. (6.0.4)

Let us now consider the expansion of yke(i)‘) in the basis Cy,:

yre(i®) = > CotMast (6.0.5)
5,teStd(X),AeParl,

where cg¢ € F. We have that

Do cama=ye(i) = e(@@yre() = Y care(i)ma (6.0.6)

5,teStd(X),AEPar, 5,teStd(X),AEPar},

and hence we get via (6.0.4) that t € [i*] whenever cg # 0 and so also shape(s) > A, via Lemma The Lemma
is proved. O
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We can also generalize the third statement (4.0.32) of Lemma in the relevant case of a Garnir tableau g.

Lemma 6.0.4. Let g be a Garnir tableau for the multipartition X. Then we have an expansion of the form

e(i®) = > CotMst (6.0.7)

s,teStd(p),u>A
where cgy € F.

Proof. From the Lemmas and we have the expansion

e(i%) = > CotMst (6.0.8)

s,teStd(p),u>A

with unique coefficients cg¢ € F since the mg¢’s are a basis. Thus arguing as in the previous Lemma [6.0.3] we get
that s € [g] and so shape(s) > A by Lemma O

The following Lemma generalizes Lemma [4.0.11} replacing < by <.

Lemma 6.0.5. Suppose that X € Par), and that §,t € Tab(X\). If t € NStd(\) then there is an expansion

Mst = Z cstl mﬁtl + Z cﬁzt2m§2t2 (609)
t €Std(A),t1 >t, NDA,sg,tQGStd(u)

where Cet, , Copt, € F. A similar statement holds for s.

Proof. We go through the proof of Lemma [6.0.5] checking that each occurrence of > can be replaced by . There

are two types of occurrences of >. The first ones are in reference to (4.0.30]) of Lemma But here Lemma
allows us to replace > by >. The second ones are the use of Garnir tableaux in 4.0.67 and 4.0.70). But in view

of Lemma [6.0.4] we can also here replace > by [>. O

The following Lemma corresponds to the JM-property of the y;’s, that we shall consider in more detail later on.

Lemma 6.0.6. Suppose that mgq is an element of C,,. Then we have that

YpMgt = Z Cs,tMg,t + higher terms (6.0.10)

s1D>s

where cg,¢ € F and where ’higher terms’ means a linear combination of me,t, where shape(sa) > shape(s). A similar
formula holds for yi acting on the right of mgs.

Proof. We have that mj; = mys and so we get the formula for metyx by applying * to the formula for yimee. Suppose
that d(s) = s;, - siy_,5iy is the official reduced expression for d(s) so that we have Vg = Vi, - - Vin_ iy We
now have from relations (3.0.9)), (3.0.10)), (3.0.11) and (3.0.12) that

Gin Uiy - Vi () Yaqy) if i #in, iy + 1
Vi Ykt 1Vin_, - i e(8) + iy, i (@) if i =iy, iy 41

where § = 0,£1. Using relations (3.0.9)), (3.0.10), (3.0.11)) and (3.0.12]) once again, we continue commuting the
appearing yr+1’s to the right as far as possible, until they meet e(i”). This gives rise to a linear combination of
terms of the form

kst = Yk iye) (i) aw) = { (6.0.11)

TV Vig_y 'd’jle(i)‘)?//d(t) (6.0.12)

where sj, - 8;,._,5i, is a strict subexpression of s;, - - s;,_, 5, together with 97 )Yi€ (’)‘)z/Jd(t) for some j, cor-
responding to y; commuted all the way through % d(s)’ But this last term belongs to the ’higher terms’, by the
previous Lemma [6.0.3] The other terms that arise are linear combinations of mg,¢’s where 81 > 6 by the proof of
Theorem [£.0.11] This proves the Lemma. O

We can now prove the promised cellularity of C,.
Theorem 6.0.7. The pair (Cn,Par}L) is a graded cellular basis for B, with respect to <, in the sense of Definition
[L11
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Proof. Condition (i) of Definitio is easily verified so let us concentrate on the multiplication Condition (ii).
It is enough to check it for a any of the generators e(i), y; and ;. Here the case a = e(4) is easy and the case
a = y; is given by Lemma so we are left with the case a = v;. We here consider right multiplication on mgy
with 1);. We first write 94¢¢)%; as a linear combination of the elements S = {e(4) yEi, |i€ 1M ke N"we &,}

from (4.0.51)). Upon right multiplication we get that mg¢); is a linear combination of w;(s)e(iA)ww modulo higher
terms. For each appearing w we consider t; := t*w and get that w;(s)e(iA)ww = Mg, . If t; is standard we have

that mg¢, € C,. Otherwise, we use Lemma to rewrite mge, in terms of elements of C,, modulo higher terms.
Hence Condition (ii) has been verified and since C,, consists of homogeneous elements we are done. O

We remark that B,, even satisfies the stronger property of being a quasi-hereditary algebra. This follows from
Remark 3.10 of [I4].

The following definition appears for the first time in [32]. It formalizes important properties of Jucys-Murphy
elements. These properties go back to Murphy’s work on the symmetric group and the Hecke algebra of finite type
Ay, see [33], [34] and [36].

Definition 6.0.8. Let A be an F-algebra which is cellular with respect to C = {cs¢ | A € A,s,t € T(N)}. Suppose
also that each set T(\) is endowed with a poset structure with order relation >x. Then we say that a commuting
subset L ={L1,...,Ly} C A is a family of JM-elements for A with respect to C if it satisfies that L} = L; for all
i and if there exists a set of scalars {c((i) | t € T(X), 1 <1i < M}, denoted the content functions for A, such that
for all x € A and t € T(\) we have that

cstLi = (i) st + Z TenCep mod A* (6.0.13)
veT(N)
o>t

for some rs, € F.

We can now prove the following main Theorem of our thesis, proving that the Jucys-Murphy elements introduced
in (5.0.4) give rise to JM-elements in the sense of the previous Lemma.

Theorem 6.0.9. Let L; € H,,(q, k) be the Jucys-Murphy element introduced in and define L; == f~1(L;) €
R.. Then the set {L; |i=1,...,n} is a family of JM-elements for B, with respect to the cellular basis C,,. The
corresponding content function is the one introduced in :

cs(i) = @), (6.0.14)

Proof. By Theorem 1.1 of Brundan and Kleshchev’s work, [7], we have that

L= q"(1—yke(i) (6.0.15)

ielr
from which we get
Lre(i®) = (cs(k) — yr)e(s®) (6.0.16)
for any standard tableau s. The Theorem now follows from Lemma [6.0.6] O
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Chapter 7

Comparison with the original definition
of B,,.

In this chapter we show that B,, is isomorphic to the original generalized blob algebra, introduced by Martin and
Woodcock in [28]. For the original blob algebra the coincidence of these two definitions was proved in [38]. Our
proof is an extension of an argument presented in [38].

Let Ho be the cyclotomic Hecke algebra for n = 2, as introduced in Definition [5.0.1} It follows from strong
adjacency-freeness of & that Hs is a semisimple F-algebra. Following [28], for j = 1,...,n we let e% be the primitive,
central idempotents associated with the one-dimensional module given by the multipartition A% := @,...,(2),...,0)
of 2, that has the partition (2) positioned in the j’th position. Since Hs C H,, we may consider e% as an element
of H,, and so we may consider Z,, C H,,, the two-sided ideal generated by e'% for j =1,...,n. The generalized blob

algebra B/ introduced in [28] was now defined via
B, :=H,/Z,. (7.0.1)

In [28], concrete formulas for eg were found. For [ = 2 these formulas gave rise to an isomorphism between B! and
the usual blob algebra. The following Lemma gives another description of eJ,.

Lemma 7.0.1. Let Ftké € HY be the idempotent defined in . Then th; € HS and eé = F@% ®o F.

Proof. 1t follows from strong adjacency-freeness of & that the only standard tableau in the class [9%] is X2 itself
and so

E[txg] = Z Fe=r,. (7.0.2)
te [t)‘%]ﬂStd(n)

Since E[@%] € HS this shows that F,‘x; € HS. On the other hand, we have by (5.0.10) that

I R q"“-?‘FA% ifi=1
(P ctxg (4) & gt F@\% ifi=2 (7.0.3)
and moreover, using ((5.0.2)) and (5.0.20]), we have that
TFyy =qF - (7.0.4)
The two conditions 1' and |D characterize eg uniquely and so the Lemma is proved. O

We can now prove the promised isomorphism between the two definitions of the generalized blob algebra.
Theorem 7.0.2. Viewing F@% as elements of H,, we have the following equality in R,
M) =Y, e (7.0.5)

el
11=Kj,l2=K;j+1

FUE,

t

corresponding to relation of B,,. In particular, B, = B,.
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Proof. We have that 1 =3, . €(2) = X scsia(n) f71(Es). On the other hand we have that

) - ) - FEg ifilzlij,iQZKJj—Fl
FogFs = Z Fogle = { 0  otherwise (7.0.6)
testd(n)

and so the Theorem follows. O
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Part 111

The Nil-blob algebra: An incarnation of
type A; Soergel calculus and of the
truncated blob algebra
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Chapter 8

The nil-blob algebra

For the rest of this thesis, we fix a field F with char(F) # 2. All our algebras are associative and unital F-algebras.
We also shall denote by B,, the blob algebra (the generalized blob algebra of level 2).

In this chapter we introduce and study the basic properties of the nil-blob algebra. Let us first recall the
definition of the classical blob algebra B,,. It was introduced by Martin and Saleur in [27]. We fix ¢ € F* and define
for any k € Z the usual Gaussian integer

(k] = ¢F 4 g" 3 RS R (8.0.1)

Definition 8.0.1. Let m € Z with [m] # 0. The blob algebra B, (m) = B,, is the algebra generated by Vo, Vy,...,V, 4
subject to the relations

VI = —[2]V;, if 1 <i<mn; (8.0.2)
V,V,;V; =V, ifli—jl =1 andi,j > 0; (8.0.3)
V,V; =V,V,, if i — j| > 1; (8.0.4)
V1VoVy = [m — 1]Vy, (8.0.5)
VE = —[m]Vo. (8.0.6)

An important feature of B,, is the fact that it is a diagram algebra. The diagram basis consists of blobbed
(marked) Temperley-Lieb diagrams on n points where only arcs exposed to the left side of the diagram may be
marked and at most once. The multiplication D1 D> of two diagrams D; and D5 is given by concatenation of them,
with D; on top of Dy. This concatenation process may give rise to internal marked or unmarked loops, as well
as arcs with more than one mark. The internal unmarked loops are removed from a diagram by multiplying it by
—[2], whereas the internal marked loops are removed from a diagram by multiplying it by —[m — 1]/[m]. Finally,
any diagram with r > 1 marks on an arc is set equal to the same diagram with the (r — 1) extra marks removed.
These marked Temperley-Lieb diagrams are called blob diagrams. Here is an example with n = 20.

VAT,
(A AN /78 AN

The color red is here only used to indicate those arcs that are not exposed to the left side of the diagram and
therefore cannot not be marked. For any of the black arcs the blob is optional.

(8.0.7)

Motivated in part by B, we now define the nil-blob algebra NB,, and its extended version I\AIfB%n They are the
main objects of study of this part of the thesis.



Definition 8.0.2. The nil-blob algebra NB,, is the algebra on the generators Uy, Uy, ..., U,_1 subject to the relations

U? = —2U;, if1<i<n; (8.0.8)
U,U,U; = U, ifli —jl =1 andi,j > 0; (8.0.9)
U,U; = U,U;, if i — 4] > 1; (8.0.10)
U,UoU; =0, (8.0.11)
Ug = 0. (8.0.12)

The extended nil-blob algebra NIVBH is the algebra obtained from NB,, by adding an extra generator J,, which is central
and satisfies J2 = 0.

Remark 8.0.3. Note that the sign in (8.0.8)) is unimportant. Indeed, replacing U; with —U; we get a presentation
as in Definition but with the sign in (8.0.8) positive.

It is known from [38] that B,, is a Z-graded algebra. This is also the case for NB,, and I\ﬁ%n but is actually much
easier to prove.

Lemma 8.0.4. The rules deg(U;) = 0 for i > 0 and deg(Uy) = deg(J,,) = 2 define (positive) Z-gradings on NB,,
and NB,,.

Proof. One checks easily that the relations are homogeneous with respect to deg. O

Our first goal is to show that NB,, is a diagram algebra with the same diagram basis as for B,,, but with a slightly
different multiplication rule. Indeed, in NB,, internal unmarked loops are removed from a diagram by multiplying it
with —2, whereas diagrams in NB,, with a marked loop are set to zero. Moreover, in NB,, diagrams with a multiple
marked arc are also set equal to zero. This defines an associative multiplication with identity element

1= ces (8.0.13)

That NB,, has this diagram realization follows from the results presented in the Appendix of [9], but for the
reader’s convenience we here present a different more self-contained proof of this fact, avoiding the theory of
projection algebras. Let us denote by NBff‘lg the diagram algebra indicated above, with basis given by blob
diagrams and multiplication rule as explained in the previous paragraph. We then prove the following Theorem:

Theorem 8.0.5. There is an isomorphism between NB,, and NBY induced by

X,

1
Uy — e | | s U; — (8014)

N

1

In particular, NB,, has the same dimension as B,,, in other words

dimp(NB,) = (2”) . (8.0.15)

n

Proof. One easily checks that the diagrams in satisfy the relations for the U;’s in Definition [8.0.2 and so
at least induces an algebra homomorphism ¢ : NB,, — NB&9,

Although it is not possible to determine the dimension of NB,, directly, we can still get an upper bound for it
using normal forms as follows. For 0 < j <7 < n — 1 we define

Uij =0U,0;_1-- 'Uj_HUj € NB,,. (8016)
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We consider ordered pairs (I, J) formed by sequences of numbers in {0,1,2,...,n — 1} of the same length &k such
that I = (i1,42,...,%;) is strictly increasing, such that J = (ji,jo2,..., k) is strictly increasing too, except that
there may be repetitions of 0, and such that j; < is for all 1 < s < k. For such pairs we define

U[J = Uiljlwmz "'Uikjk' (8017)

A monomial of this form is called normal. We denote by N'M,, the set formed by all normal monomials in NB,,
together with 1. For n = 2 we have

NM; = {1,Up, U1, U1Up, U1, UoU1 Up}, (8.0.18)

whereas for n = 3

NMjy ={1,Uy,U; Uy, Uy, U2U, Uy, U Uy, Uy, UgU; U, UgUy, UgU2 U1 Uy, UgU2 Uy, UgUsz, U1 UgUaU; Uy,

8.0.19
U,UoU2Uy, U1UoUs, U1 Ug, UgU1 Ug U U1 Uy, UgU1 U U Uy, UgU1 UgUs, UgU, Uz } ( )

In general, using the relations given in Definition [8.0.2] one easily checks that N'M,, spans NB,,. Indeed, we have
that {Uy,Uy,...,U,—1} € N M, and that any product of the form U;U;; can be written as a linear combination
of elements of A’M,,. On the other hand, the set 'M,, is in bijection with the set of positive fully commutative
elements of the Coxeter group of type B,. In particular, the cardinality of A’M,, is known to be (2721), see for
example [I]. Hence we deduce that

dim NB,, < dim NB&* (8.0.20)

since dim NBff‘lg = dimB,, = (2:) Thus, in order to show the Theorem we must check that ¢ is surjective, or
equivalently that the diagrams in (8.0.14]) generate NBff”g .

Let us first focus on the ‘Temperley-Lieb part’ of NBX®9  that is the subalgebra of NB“Y consisting of the linear
combinations of Temperley-Lieb diagrams, the unmarked diagrams from NBffag . There is a concrete algorithm for
obtaining any Temperley-Lieb diagram as a product of the ¢(U;)’s, where ¢ > 0, and so these diagrams generate
the subalgebra. Although it is well known, we still explain how it works since we need a small variation of it.

In the following, whenever U € NB,, we shall often write U € NB%9 for (U). This should not cause confusion.

Let D be a Temperley-Lieb diagram on n points with [ through lines and let k = (n—1)/2. We associate with D
two standard tableaux top(D) and bot(D) of shape A = (1!7% 1*) as follows. For top(D) we go through the upper
points of D, placing 1 in position (1,1) of top(D), then 2 in position (1,2) if 2 is the right end point of a horizontal
arc, otherwise in position (2, 1), and so on recursively. Thus, having placed 1,2...,7—1 in top(D) we place 7 in the
first vacant position of the second column if 7 is the right end point of a horizontal arc, otherwise in the first vacant
position of the first column. The standard tableau bot(D) is constructed the same way, using the bottom points of
D. For example for the following diagram

ALY %\
(8.0.21)
f\ f\ N

we have that

1]3 1]3
2[4 2(6
57 418
6]9 5/9
810 710
top(D) = [11]13], bot(D) = [11]14 (8.0.22)
12[15 12/16
14[19 13]17
16]20 15|18
17 119
18] 20]
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It is well known, and easy to see, that the map D — (top(D),bot(D)) is a bijection between Temperley-Lieb
diagrams and pairs of two column standard tableaux of the same shape.

For t any Young tableau and 1 < k < n we define t|; as the restriction of t to the set {1,2,...,k}. We may then
consider a two-column standard tableaux t as a sequence of pairs (i,diff(t|;)) for ¢ = 0,1,2...,n, where diff (t|;)
is the difference between the lengths of the first and the second column of the underlying shape of t|; (here i = 0
corresponds to the pair (0,0)). We then plot these pairs in a coordinate system, using matrix convention for the
coordinates.

This may be viewed as a walk in this coordinate system, where at level i we step once to the left if ¢ + 1 is in
the second column of t and otherwise once to the right. In we have indicated the corresponding walks for
top(D) and bot(D) where D is as above in (8.0.21)).

A Temperley-Lieb diagram D is given uniquely by (top(D),bot(D)) and so we introduce the corresponding
half-diagrams. For example the top and bottom half-diagrams for D in (8.0.21) are as follows

V/\VUuUu/|VVU]|\U
T::U U U B:= ‘ ‘ (8.0.23)
/A AN /AN
top(D) = 1<9 bot(D) :1<9 (8.0.24)

Recall that for any two column partition A there is unique maximal A-tableau t* under the dominance order.
It is constructed as the row reading of A. For example, for A = (1'!,1%) we have t* and its corresponding bottom
half-diagram as follows

= |11{12 B* = (8.0.25)

15/16 NNNNNNNNN
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The walk corresponding to t* is as follows where in the second and third figures we have colored it red and have
combined it with the walks for top(D) and bot(D) from (8.0.24).

01 2 3 4 01 2 3 4 01 2 3 4
1 1 1

3 3

()

Dr (8.0.26)

12

14§

164

/ 19
20 0 20

The algorithm for generating the Temperley-Lieb diagrams consists now in filling in the area between the walks
for t* and bot(D) (resp. top(D)) one column at the time, and then multiplying with the corresponding U,’s. For
example, using the below figure (8.0.27)),

01 2 3 4

(8.0.27)

we find that to obtain bot(D) from the walk for t* we should first multiply by UsU4UgUgU12U14U16 corresponding
to the blue area, and then with UsU;U;3U;5, corresponding to the green area, that is we have that

B = B)\(U2U4U6U8U12U14U16)(U5U7U13U15) (8028)
where B is the half-diagram in (8.0.23) and B* is the diagram defined in (8.0.25)). Similarly, we have that
T = Ulg(U17U19)(U2U6U8U12U14U16U18)T>\ (8029)

where T is the half-diagram in (8.0.23) and T* is the reflection through a horizontal axis of B*. Since T*B* =
U,U3U05U,Ug9U;1U;3U15U;7 we get now D as a product of U;’s:

D=TB= Ulg(U17U19)(U2U6U8U12U14U16U18)T>\B)\ (U2U4U6U8U12U14U16)(U5U7U13U15). (8030)

Summing up, we have shown that any unmarked blob diagram can be obtained as a product of the generators
U;’s, for i > 0.
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We now explain how to obtain the marks on the arcs. In the case of B as before there are three arcs that may
carry a mark, namely the black arcs below

(8.0.31)

AARN AR

1 11 19

A main general observation for what follows is that these arcs are in correspondence with the ‘contacts’ between
the associated walk and the vertical 0-line. To be precise for i = 0,1,...,n — 1 we have that (¢,0) belongs to the
walk for B if and only if 4 + 1 is the leftmost point of an arc that may be marked. For instance, using the walk in
for the above B we see that these points are 1,11 and 19, as one indeed observes in .

These contacts points induce a partition of the indices 1 < ¢ < n and we call the corresponding classes for blocks.
Thus in the above example , the first block consists of the indices 1 < ¢ < 10, the second of 11 < i < 18
and the third of 19 and 20. We stress that the smallest number in each block is odd. On the other hand, under
the above process of filling in the areas, the U;’s, where ¢ corresponds to the rightmost index of some block, are not
needed. But from this we deduce that the indices corresponding to distinct blocks give rise to commuting U;’s and
hence we can in fact fill in one block at the time. We choose to do so going through the blocks of each walk from
bottom to the top.

Our second observation is that any diagram of the form

1 3 5 7 2i+1
vVuuu VU
(8.0.32)
NNNN N
can be generated by the U;’s since indeed it is equal to
(U1U3U5 - - - Ugi41)Ug(UgUyUs - - - Ugj42) (U1 UsUs - - - Ugjyq). (8.0.33)
Here is for example the case i =2 and n =9
(VRV RV ‘
NnNN
(8.0.34)

‘UUU UUUH‘

N NN NnNNN
UUU‘

NnNNN

The algorithm for obtaining any marked diagram now consists in filling in by blocks, from bottom to top, and
multiplying by a diagram of the form given in 7 for each block that requires a mark. Let us illustrate a few
step of it on the blob diagram given in . Its bottom and top halves are given in . Both of them have
three blocks. The third block is {11,12,...,20} for the top diagram and, as we have already seen, {19, 20} for the
bottom diagram. Multiplying with the corresponding U;’s on T*B* we get the diagram

VUUVUUUNV\\V)

(8.0.35)

NNNNANNNNNN
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Suppose now that we want to produce the blob diagram from (8.0.7). Then we need a mark on the first through
line and thus we multiply below with a diagram of the form (8.0.32)) with i = 8 which gives us

VUUVUUUNV\\V)

(—2)° (8.0.36)

NNNNANNNNNN

settling the third block, at least up to a unit in F. The algorithm now goes on with the second block, etc. The
Theorem is proved. O

In view of the Theorem we shall write NB,, = NBX“9. Similarly we shall in general write U for ¢(U).

The next two corollaries are an immediate consequence of Theorem [8.0.5]
Corollary 8.0.6. The set NM,, is a basis for NB,,. Similarly, the set
NM, = {XJ\| X e NM,,ic{0,1}} (8.0.37)

is a basis for ﬁBn Consequently, dim N\IJBS,L = 2(2:).
We refer to the set N M., (resp. ./\mn) as the normal basis of NB,, (resp. ﬁB,L).

Corollary 8.0.7. NB,, is a cellular algebra in the sense of Graham and Lehrer, see [T4)], with the same cellular
datum as for By, see for example [38] for this cellular structure.

Definition 8.0.8. We define the JM-elements Y1,Ys,...,Y, of NB, via Y; = Uy and recursively

Yig1 = (U; + DYi(U; + 1), i > 1. (8.0.38)

Here are the JM-elements for n = 3.

| ‘ -V v

Y + +

S LB

Lemma 8.0.9. The Y;’s have the following properties.

(8.0.39)

C

Y3

+

>

a) Y;Y,; =Y,;Y; for alli,j.
b) Y? =0 for all i.
Proof. We give the proof in Remark [11.0.13 O

The Y,’s are (nilpotent) JM-elements for NB,, in the sense of Mathas, see [32], with respect to the cellular
structure on NB,, given in Corollary On the other hand, in the next chapter we shall show that there is a
completely different cellular structure on NB,,, given by Soergel calculus. That cellular structure is also endowed
with a family of JM-elements, that we define now.

Definition 8.0.10. We define the JM-elements Ly,Ls, ..., L, of NB,, via Ly = Uy and recursively
Liss = UiL; + L;U; —2U0; Y Ly, i > 1. (8.0.40)

Lemma 8.0.11. The LL;’s have the following properties.
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a) LZ]L] = LJ]LZ fOT all Z,j
b) L2 =0 and that L? = —2L; 2" _ 1 L; for all 1 < i < n.

J=

Proof. We shall give the proof in Remark [9.0.10 O

Here are these JM-elements for n = 3.

Ly Ly = v +U‘ Ly = y ¥ y+ y+ Y QNU(&OAI)
Nl AL N n /N N N
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Chapter 9

Soergel calculus for Aj.

In this chapter, we start out by briefly recalling the diagrammatical Soergel category D associated with the affine
Weyl group W of type A;. This category D was introduced in [11], in the complete generality of any Coxeter
system (W, S). The objects of D are expressions w over S and hence for any such w we can introduce an algebra
A, = Endp (w). In the main result of this chapter we show that A, and a natural subalgebra A,, C A, of it are

isomorphic to the nil-blob algebras NJVBn and NB,, from the previous section.

Let S :={s,t} and let W be the Coxeter group on S defined by
W= (s,t]| s> =t? =e). (9.0.1)

Thus W is the infinite dihedral group or the affine Weyl group of type A;. Given a non-negative integer n, we let

ng 1= sts. .. ng = tst... (9.0.2)
n-times n-times

with the conventions that 0 := 0; := e. It is easy to see from (9.0.1]) that n, and n, are reduced expressions and
that each element in W is of the form n, or n; for a unique choice of n and s or t. Note that the elements of W are
rigid, that is they have a unique reduced expression.

The construction of D depends on the choice of a realization § of (W, .S), which by definition is a representation
b of W, with associated roots and coroots, see [11], Section 3.1] for the precise definition.

In this thesis, our h will be the geometric representation of W defined over F, see [16], Section 5.3]. The coroots
are the basis of b, that is h = FaY @ Fay' and in terms of this basis the representation h of W is given by

s—><_(1) ?) t%(;_g). (9.0.3)

The roots ay, ay € h* are now given by

as(a)) =2, a(al)=-2, as(a))=-2, a(a)) =2 (9.0.4)
and so the Cartan matrix is
<_§ _5 ) : (9.0.5)
Note that we have
Qs = —0y. (9.0.6)
Let R := S(h*) = ®;>05%(h*) be the symmetric algebra of h*, or in view of
R = Fla] = Flay]. (9.0.7)

In other words, this is a just the usual one variable polynomial algebra. We consider it a Z-graded algebra by
setting the degree of a; equal to 2. Since W acts on § it also acts on h* and this action extends in a canonical way
to R. We now introduce the Demazure operators ds,0; : R — R(—2) via
f=sf f=tf
9s(f) = ; d(f) = . (9.0.8)

Qs Qi
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We have that
s = o, toy = Qg (9.0.9)

and so we get
63(0[5) = 8t(at) = 27 as(at) == 8t(as) = -2 (9010)
We now come to the diagrammatical ingredients of D.

Definition 9.0.1. A Soergel graph for (W, S) is a finite and decorated graph embedded in the planar strip R x [0, 1].
The arcs of a Soergel graph are colored by s and t. The vertices of a Soergel graph are of two types as indicated
below, univalent vertices (dots) and trivalent vertices where all three incident arcs are of the same color.

(9.0.11)

A Soergel graph may have its regions, that is the connected components of the complement of the graph in R x [0,1],
decorated by elements of R.

Here is an example of a Soergel graph

fa fD
(b (9.0.12)

fs 7

5

where the f;’s belong to R. Shortly we shall give many more examples. We define
exp :={w=(s1,82,...,8:) | s €S, k=1,2,...} UD. (9.0.13)

as the set of expressions over S, that is words over the alphabet S. The points where an arc of a Soergel graph
intersects the boundary of the strip R x [0, 1] are called boundary points. The boundary points provide two elements
of exp called the bottom boundary and top boundary, respectively. In the above example the bottom boundary is
(t,s,t,t,8,s) and the top boundary is (¢, s,t,t,s).

P S I B

Definition 9.0.2. The diagrammatical Soergel category D is defined to be the monoidal category whose objects are
the elements of exp and whose homomorphisms Homp(z,y) are the F-vector space generated by all Soergel graphs
with bottom boundary x and top boundary y, modulo isotopy and modulo the following local relations

-—T~

P2 IRES - ~
/ AY / \
! \ ! \
[ .1 = 1 | (9.0.14)
\ ! \ /
\ / \ /
-~ —_———
7 ~
/ \
! Voo \
I = I (9.0.15)
\ / \ /
\ /
~—_ \\_’/
Piaai i RN
/ AY /7 \
! [ \
I = Qs (9.0.16)
\ / \ /
\ / \ /
/ \ /7 \ 7/ \\
/ v R /
v f = ) Osf (9.0.17)
\ / \ / \ /
\ 7/ \ / \ /
A AN \\I’/



=0 (9.0.18)

There is a final relation saying that any Soergel graph D which is decorated in its leftrmost region by an f € (ay),
that is a polynomial with no constant term, is set equal to zero. We depict it as follows

a; D =0 (9.0.19)

The relations (9.0.14)—(9.0.19) also hold if red is replaced by blue, of course.

For A € F and D a Soergel diagram, the scalar product AD is identified with the multiplication by A in any region
of D. The multiplication Dy Dy of diagrams Dy and Dy is given by vertical concatenation with D1 on top of Do
and the monoidal structure by horizontal concatenation. There is natural Z-grading on D, extending the grading on
R, in which the dots, that is the first two diagrams in have degree 1, and the trivalents, that is the last two

diagrams in (9.0.11), have degree —1.

Remark 9.0.3. Strictly speaking the category defined in Definition [9.0.2]is not the diagrammatic Soergel category
introduced in [II]. To recover the category from [II] the relation (9.0.19)) should be omitted.

Let us comment on the isotopy relation in Definition [0.0.2] It follows from it that the arcs of a Soergel graph
may be assumed to be piecewise linear. It also follows from it together with (9.0.15) that the following relation

holds
PR i LT~

R \\ /, ~

/ \ / \
1 \ — \
I | | 1 (9020)
\ 1 1

\ / \ 7

\ 4 \ /

\\‘_‘// \\ ’/

In other words the two trees on three downwards leaves are equal. We also have equality for other trees. Here is
the case with four upwards leaves. Note the last diagram which represents the way we shall often depict trees.

-

—_——

= | \ (9.0.21)

Let now n be a fixed positive integer and fix w :=ns € exp as in (9.0.2). We then define
Ay := Endp(w). (9.0.22)
As mentioned above, w is a rigid element of W and therefore we use the notation A, instead of fl&.

By construction, A,, is an F-algebra with multiplication given by concatenation and the goal of this chapter is
to study the properties of this algebra. First, for i = 1,...,n — 2 we define the following element of A,

123 1 n

U; = oo e | (9.0.23)

and similarly

U= ||| |- | (9.0.24)
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The following Theorem is fundamental for what follows.

Theorem 9.0.4. There is a homomorphism of F-algebras ¢ : NB,_1 — Ay giwen by U; — U; fori=0,1,...,n—2.
Proof: We must check that Uy, Uy, ..., U,_2 satisfy the relations given by the U;’s in Definition In order to
show the quadratic relation (8.0.8]) we argue as follows

123 i n 123 i n 123 i n

3
I
I

I =2l e )eee| | |= —2Us (9.0.25)

! 1 1

where we used (9.0.14)), (9.0.16)), (9.0.17) and (9.0.18).

We next show that (8.0.10]) holds. If [i—j| > 2 then clearly holds, that is U;U; = U;U;, but for |i—j| =2
it is not completely clear that it holds. We shall only show it in the case n =5, ¢ = 1 and 7 = 3: the general case
is proved the same way. We have that

o m H i i (9.0‘26)
N1 Nl

where we used the ‘H’-relation (9.0.15) for the third equality and ((9.0.20) for the last equahty But U,Us is obtained
from UsU; by reflecting along a horlzontal axis, and since the last dlagram of is symmetric along this axis,
we conclude that U;Us = UsU; as claimed.

The relation , in the case n = 4,7 =1 and j = 2, is shown as follows.

l l
U,0,U; = = < =U; (9.0.27)
1 1
The general case is treated the same way. We finally notice that (8.0.11)) and (8.0.12)) are a direct consequence
of (9.0.19). The Theorem is proved. a

For a general Coxeter system (W, .S), Elias and Williamson found in [I1] a recursive procedure for constructing an
[F-basis for the homomorphism space Homp(z,y), for any z,y € exp. It is a diagrammatical version of Libedinsky’s
double light leaves basis for Soergel bimodules and the basis elements are also called double light leaves in this case.
On the other hand we have fixed W as the infinite dihedral group, and in this particular case there is a non-recursive
description of the double light leaves basis that we shall use.

In order to describe it we first introduce some diagram conventions. First, in view of our tree conventions given

in (9.0.21)) we shall represent the diagram from (9.0.26) as follows

!

UUs = (9.0.28)

Ak

This can be generalized: for example using the last diagram in (9.0.26]) we get that
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! U lllw(

UUsUs = = = = (9.0.29)

Nl AN rIImD\

Even more generally, we have that

i i+2+42k
N
UiUiv2 -+ Uiyor, = (9.0.30)
ATt
if 7 is odd and
7
N
UUita - Uiyor = (9.0.31)
ATr
if i is even. We now introduce a different kind of elements in A,,, namely the JM-elements L; of A,,, via
123 2 n
L; := l (9.0.32)

I

where black means red if 7 is odd and blue if ¢ is even. Note that L; = Up. (The name JM-element is motivated
by the thesis [40] where it is shown that L; indeed is a JM-element in the sense of Mathas [32], for any Coxeter
system).

Lemma 9.0.5. Let 1 < i < n. Then we have the following formula in A,

i—2
Li=Ui1Li1+LiaUioy = 2U; 1 Y _ L. (9.0.33)

Jj=1

Consequently, for all 1 < i < n we have that L; belongs to the subalgebra of A, generated by the elements
L,Uy, ..., U, 2.

Proof: Let us show the formula ((9.0.33)) in the case i = n — 1 and ¢ odd. The general case of the formula, that is
the case where ¢ is any number strictly smaller than n, is shown the same way. We have that

123 n 123 n 123 n 123 n

Li = eee = eee Lo o — eee _|_

| | | I

|,\,‘Js>._

(9.0.34)
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(9.0.35)

l I l

The first two diagrams of (9.0.35)) are U;_1L;—1 and L;_1U;_; and so we only have to check that the last diagram of

(19.0.35)) is equal to —2U;_; Z;:l L;. But this follows via repeated applications of the polynomial relation (9.0.17)),
moving a, = —ay all the way to the left. '

The L;’s are important since they allow us to generate variations of (9.0.30) and (9.0.31)) with no ‘connecting’
arcs, as follows

12 3+ 2k n
Lld]...] 8
(U1U3Us - - - Ust1) Log+3(U1UsUs - - - Ugg1) = ISR =
tle 1"t
(9.0.36)
n 12 3+ 2k n
Ll ]...1%
_ (-2F
T, 113

where we for the last equality used the polynomial relation (9.0.17) as well as (9.0.19)). Thus any diagram of the
form (9.0.37) belongs to the subalgebra of A,, generated by the L;’s and the U;’s. Note on the other hand that in
order for this argument to work, the diagram in question must be left-adjusted, that is without any through arcs

on the left as in (9.0.37).
]/

The diagrams corresponding to double light basis elements of A,, are built up of top and bottom ‘half-diagrams’,
similarly to the Temperley-Lieb diagrams and the blob diagrams considered in the previous chapter. These half-
diagrams are called light leaves.

We now introduce the following bottom half-diagrams, called full birdcages by Libedinsky in [22].

(9.0.37)

(9.0.38)

tit t

We say that the first and the last of these half-diagrams are non-hanging full birdcages, whereas the middle one
is hanging. We also say that the first two full birdcages are red, and the third one is blue. We define the length of
a full birdcage to be the number of dots contained in it. We view the half-diagrams

‘ l l (9.0.39)
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as degenerate full birdcages of lengths 0. A full birdcage which is not degenerate is called non-degenerate. We shall
also consider top full birdcages, that are obtained from bottom full birdcages, by a reflection through a horizontal
axis. Here are two examples of lengths four and three.

AR EREYE AR E)
(9.0.40)

Light leaves are built up of full birdcages in a suitable sense that we shall now explain. We first consider the
operation of replacing a degenerate non-hanging full birdcage by a non-hanging non-degenerate full birdcage of the
same color. Here is an example

(9.0.41)

tlt

The reason why we only consider the application of this operation to non-hanging birdcages is that applying it to a
degenerate hanging birdcage only gives a new, larger full birdcage; in other words nothing new. Here is an example

(9.0.42)

Following Libedinsky, we now define a birdcagecage to be any diagram that can be obtained from a degenerate
non-hanging birdcage by performing the above operation recursively a finite number of times on the degenerate
birdcages that appear at each step. Here is an example of a birdcagecage.

Now, according to [22], any light leaf is built up of birdcagecages as indicated below in . Here in
the number of bottom boundary points is n. Zone A consists of a number of non-hanging birdcagecages whereas zone
B consists of a number of hanging birdcagecages. On the other hand zone C consists of at most one non-hanging
birdcagecage.

(9.0.43)

m m (9.0.44)

{ zone A } { zone B }{ zone C }

Note that each of the three zones may be empty, but they cannot all be empty since n > 0. In the case where
zone B is empty, we define zone C to be the last birdcagecage. In other words, if zone B is empty then zone C is
always nonempty, whereas zone A may be empty.

The hanging birdcagcages of zone B define an element v € W. It satisfies v < w where < denotes the Bruhat
order on W. In the above example we have v = tst. The double leaves basis of A, is now obtained by running
over all v < w and over all pairs of light leaves that are associated with that v. For each such pair (D1, D2) the
second component Dy is reflected through a horizontal axis, and finally the two components are glued together.
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The resulting diagram is a double leaf. Here is an example

zone A A
)

{
11W1

(9.0.45)

{ zone A JER H zoneC 1}

Note that although the total number of top and bottom boundary points of each double leaf is the same, the number
of boundary points in each of the three zones need not coincide, although the parities do coincide. In the above
example, there are for instance nine top boundary points in zone C but only five bottom boundary points in zone
C. Note also that the number of top and bottom birdcagecages in zone B always is the same, three in the above
example. This is of course also the case in zone C but not necessarily in zone A, although the parities must coincide.
In the above example, we have five top birdcagecages in zone A but only three bottom birdcagecages in zone A.
Moreover, there are nine top boundary points in zone A but eleven bottom boundary points in zone A.

For future reference we formulate the Theorem already alluded to several times.
Theorem 9.0.6. The double leaves form an F-basis for A,,.
Proof: This is mentioned in [22]. It is a consequence of the recursive construction of the light leaves. O
Definition 9.0.7. Let A, be the subspace of A, spanned by the double leaves with empty zone C .

With these notions and definitions at hand, we can now formulate and prove the following Theorem.
Theorem 9.0.8. Let w € W with w = ng. Then, we have
a) As an algebra A, is generated by the elements Uy, ..., Un_o and Ly, ..., L,.
b) A, is a subalgebra of Ay It is generated by Uy, ..., U,_o and Ly = Uy.

¢) The dimensions of A, and A, are given by the formulas

n n

dimp(A,) = (2”> and  dimgp(A,) =2 <2n> . (9.0.46)

Proof:  We first prove a) of the Theorem. We define
L;’s. Thus, in order to show a) we must prove that A7,
double leaves basis elements for A,,.

We first observe that the diagrams in ((9.0.30)) and ((9.0.31]) both belong to fl;u In fact, multiplying them together
we get that any diagram of the form

}ll
an

as the subalgebra of Ay generated by the U;’s and the
A,. We shall do so by proving that A/ contains all the

A
w

D (9.0.47)

belongs to Aﬁﬂ Here the length of each full birdcage on the bottom (which may be zero) is equal to the length of
the corresponding full birdcage on top of it, that is the diagram in ((9.0.47)) is symmetric with respect to a horizontal
axis. Note that the diagram D in (9.0.47) is a preidempotent; to be precise we have that

D? = (=2)h D, (9.0.48)
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where [y, 1, ..., are the lengths of the bottom full birdcages that appear in D. Now we can repeat the calculations
from (9.0.36) and (9.0.37) in order to remove the connecting arc between the first bottom full birdcage of D and
its top mirror image:

DLy, D = (9.0.49)

II...

In other words, we get that Dy := (—2)~ 1T+ DLy D is equal to D, but with the first connecting arc removed,
and that D; belongs to A’ .

From D; we can now remove the next connecting arc as follows

Ky ko k, Ky ko

(_2)11+...+l,, (9050)
Continuing this way we find that any diagram of the form
ky ks
AN 2N B
(9.0.51)

AT =T AT TS

belongs to A/, .

The diagrams in consist of a number of non-hanging full birdcages followed by a number of hanging
full birdcages. We shall now prove that the rightmost hanging full birdcage of may be transformed into a
non-hanging full birdcage and still give rise to an element of flﬁu. Let ¢ < n be a positive integer of the same parity
as n. We consider the diagram F; := U;U;43 - Up—a:

i

NL
an

We notice that only the rightmost top and bottom full birdcages of F; are non-degenerate, of length [ := (n —14)/2.
Then we have that F;L,F; € fl;, On the other hand, we also have that

(9.0.52)

EL,Fi =] (9.0.53)

(9.0.54)
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We consider the first diagram X of the last sum. Moving «; all the way to the left we get that
X =-2FY L (9.0.55)

Therefore, X belongs to ;1;, But from this we conclude that also the second diagram of the sum belongs to A'w
Finally, multiplying this diagram with diagrams from ([9.0.51)) we conclude that any diagram of the form

AT AN AT AT

belongs to A , proving the above claim. In other words, we have shown that any double leaves basis element of
A, that is bullt up of full birdcages and is symmetric with respect to a horizontal axis, belongs to A’

We next show that omitting the symmetry condition in the diagrams (9.0.56) still gives rise to an element of A’,.
Our first step for this is to produce a way of ‘moving points’ from a full birdcage to its neighboring full birdcage.
We do this by multiplying by ‘overlapping’ U;’s. Consider the following example

w\‘J (9.0.56)
ATy

P=lrltitIN Al (9.0.57)

11

consisting of two full birdcages, both of length 5. In this case the overlapping U;’s are Uy and Uy;. Multiplying
D below with Uy produces a diagram with two full birdcages as well, but this time of lengths 4 and 6, whereas
multiplying D below by U;; produces a diagram with two full birdcages, of lengths 6 and 4:

This gives us a method for moving points from one full birdcage to a neighboring full birdcage that works in
general, for hanging as well as for non-hanging full birdcages, and so we get that any diagram of the form

A el BN
AT AT TN

belongs to fl;u. These diagram are not horizontally symmetric anymore but still the total number of top full
birdcages is equal to the total number of bottom full birdcages. Actually, by the description of the light leaves
basis, this is expected in zones B and C, but not in zone A. However, multiplying a full birdcage in zone A with an
JM-element L; of the opposite color it breaks up in three smaller full birdcages, the middle one being degenerate.
For example, for

(9.0.60)

o 9.0.61
D=4ATelelele]y (9.0.61)
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we have that

DLg = rrIrrr :*mrrtr (9.0.62)
!

Combining this with the procedure of moving points from a full birdcage to a neighboring full birdcage, we
conclude that in the diagram (9.0.60) we may assume that the number of top full birdcages in zone A is different
from the number of bottom full birdcages and still the diagram belongs to Al .

Thus, to finish the proof of @) we now only have to show that the full birdcages in the diagram (9.0.60) may be
replaced by birdcagecages. It is here enough to consider a single bottom birdcage.

The replacing of a degenerate non-hanging birdcage by a non-degenerate full birdcage can be viewed as the
insertion of a non-hanging birdcage in a full birdcage of the opposite color. But this can be achieved via multipli-
cation with appropriate diagrams of the form and . Consider for example the birdcagecage D in
. It can be obtained as follows

(9.0.63)

Repeating this process we can obtain any birdcagecage. This finishes the proof of a).

We next show ¢). For this we first note that there is a bijection between double leaves with empty zone C
and double leaves with nonempty zone C, given by removing the connecting line between the last bottom and top
birdcagecage. Hence we have that

dimp(A,) = 2dimg(Ay). (9.0.64)

On the other hand, from the vector space isomorphism given in Corollary 8.3 of [I0] it follows that dim(A,) =

dim I\,H\B?;N and so ¢) follows from Theorem and Corollary (Note that in [I0] the authors use the notation
A, for Ay).

We finally show b). Let A’ be the subalgebra of A,, generated by Uy, ...,U,_o and Uy = L;. In view of Lemma
we first observe that A! is the same as the subalgebra of Aw generated by Uy,...,U,—2 and Lq,...,L,_1.
On the other hand, going through the proof of a) we see that the last JM-element L,, is only needed for the steps
(9.0.52) and ([9.0.53)) where a hanging birdcage at the right end of the diagram is transformed into a non-hanging
one, and so we have that A, C A/. But from Theorem we have that dim(A4],) < dimNB,,_; = dim(A4,)
where we used ¢) for the last equality. Hence the inclusion 4,, C A’ is an equality and b) is proved. |

Corollary 9.0.9. Let w € W with w = ns. Then, we have
a) The map ¢ defined in Theorem induces an algebra isomorphism ¢ : NB,_1 — A,,.

b) Setting J, := L1+ Lo + ...+ L,, we have that the extension of ¢ to ﬁ%n_l gien by p(Jn—1) = Jpn induces an
algebra isomorphism ¢ : NB,_; — A, .

Proof: Part a) was already proved in the previous Theorem so let us concentrate on part b). Here we have already
checked all the relations that do not involve .J,, and so we only have to check that J2 = 0 and that J, is central in
A, Now by [10, Lemma 3.4] we know that L? = 0 and that

1—1
L} =-2L; Y L (9.0.65)
j=1
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for all 2 <4 <n. Thus we obtain

J2=(Li+Ly+... ZL2+2Z Z LiL, (9.0.66)

i=1 j=i+1
n i—1
=23 "> "LiL; +2Z Z LiL; =0, (9.0.67)
1=2 j=1 =1 j=i+1

as claimed. Now let us show that J, is central in A,,. It is enough to show that [U;, J,,] = 0, for all 1 < j < n — 2,
where [-, -] denotes the usual commutator bracket. We notice that [U;, L;] = 0if i # j,j + 1,5 + 2. Then we are
done if we are able to show that

[Ui, L+ Ly + Li+2] =0. (9.0.68)

But we have that

123 ii+1i+2 n 123 i i+1i+2 n 123 ii+1i+2 n
l l l
Ui (Li + Liy1 + Lig2) = ||| . + 11| + ..
I o1 1
In the second diagram we first rewrite oy = — % — % and next use the polynomial relation ((9.0.1 ?|), to take the
first —%* out of the birdcage to the left and the second —%* out of the birdcage to the right. This will give rise to

a cancellatlon of the first and the third terms in the expresswn for U; - (L; + Li+1 + L;42) and so we have that

123 i itli+2 n

23
Ui (Li + Lis1 + Liyo) = ‘ A1 F |- = - H H‘
! !

—
o
w

i i+1i+2 n 12

This last diagram is symmetric with respect to a horizontal reflection and so
U; - (Lz + Ly + Li+2) = (Li + Ly + LH_Q) -U; (9069)
as claimed. The Corollary is proved. ]

Remark 9.0.10. Combining the isomorphism NB,,_; = A,, with Lemma|9.0.5] we obtain a proof of Lemma8.0.11

Remark 9.0.11. All the results in this chapter consider the case w = n,. Of course, they remain valid if we replace
ng by ng.
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Chapter 10

Idempotent truncations of B, and
related alcove geometry

10.1 IDEMPOTENT TRUNCATIONS OF B,

From now on we shall study a certain subalgebra of B, that arises from idempotent truncation of B,. This
subalgebra has already appeared in the literature, for example in [10], [23].

Definition 10.1.1. Suppose that A € Par.. Then the subalgebra B, (\) of B,, is defined as
Bn(A) := e(i*)Bpe(i™). (10.1.1)
Let us mention the following Lemma without proof.

Lemma 10.1.2. Let A = (1*,1%2) € Par). Set p := (1*2,1*) € Par} and v = (1M~M 1*2=M) ¢ Pmém_gM
where M = min{ A1, Ao }. There is an isomorphism B, (X) = B,,_on (v) of F-algebras.

We shall from now on fix A of the form
A=(1",1%. (10.1.2)

Remark 10.1.3. When defining B,,(A) we could have taken more general A, but in view of the Lemma it is enough
to consider A either of the form (17,1°) or p := (1°,1"). Moreover, we have that

e(i*)Bpe(i*) = e(i™)B! (e — m)e(i™). (10.1.3)

On the other hand, the methods and results for B,,(A) that we shall develop during the rest of the thesis will have
almost identical analogues for the right hand side of (10.1.3)), as the reader will notice during the lecture, with the
only difference that one-column bipartitions and tableaux are replaced by one-row bipartitions and tableaux. Thus,
there is no loss of generality in assuming that X is of the form given in .

One of the advantages of the choice of A in (10.1.2)) is that the residue sequence i s particularly simple since
it decreases in steps by one. Let us state it for future reference

i*=(0,-1,-2,-3,...,—n+1) € I (10.1.4)

In the main theorems of this chapter we shall find generators for B, (A), verifying the same relations as the

generators NB,, or NTBBn The following series of definitions and recollections of known results from the literature
are aimed at introducing these generators.

It follows from general principles that B, (\) is a graded cellular algebra with identity element e(i*). Let us
describe the corresponding cellular basis. Set first Std(Parl) := Uepar: Std(p) and define for ¢ € I3

Std(i) := {t € Std(Par;,) | i* = i}. (10.1.5)

Furthermore, for p € Par}l define
Stda(p) := Std(s™) N Std(p). (10.1.6)

Then we have the following Lemma.
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Lemma 10.1.4. a) Fors,t € Std(p) we have that
e(i#)wd(t) = wd(t)e(it) and 1/);(5)6(1'“) = e(is)’(ﬂ;(s). (1017)

b) The set Co(N) := {m¥ | 5,t € Std(:*), u = shape(s) = shape(t)} is a graded cellular basis for B,(\).

Proof. From the multiplication rule in B, we have that ire(?) = e(sgé)yy for any k = 1,...,n — 1 and ¢ € I2.
Hence if d(t) = 84,84, -+ Si, 18 a reduced expression we get that

e(t*) Vgt = Yae(siy -+ Sin 8, 8) = Yagpye(d'), (10.1.8)

proving the first formula of a). The second formula of @) is proved the same way. On the other hand, by using a)
and B.0.1] we obtain

e(iM)mbe(iY) = e(PM) o) e(i*)ae(i™) = e(i)e(i) 1] o Yae(i)e(iY) = Gz 205 samb (10.1.9)

and so b) follows. O

10.2 AN EXPLICIT ALGORITHM FOR THE ELEMENTS d(t)

We now explain an algorithm for producing a reduced expression for the elements d(t) for t € Std(A). This algorithm
has already been used in [38], [15], [10] and [23].

We first need to reinterpret standard tableaux as paths on the Pascal triangle.

Let t € Std(A). Then we define p; : {0,1,...,n} — Z as the function given recursively by p((0) = 0 and
pi(k) =pi(k — 1)+ 1 (resp. p(k) =p(k —1) — 1) if k is located in the second (resp. first) column of t. Moreover,
we define P : [0,n] — R? as the piecewise linear path such that P(k) = (p¢(k),k) for k =0,1,...,n and such that
Py|( k+1) is a line segment for all k =0,1,...,n — 1.

We depict P; graphically inside the standard two-dimensional coordinate system, but reflected through the
r-axis. For instance, if § and t are the standard tableaux in ((10.2.1|)

(10.2.1)

then P, and P; are depicted in ((10.2.2), with P; in red and P; in black. In general, we denote by P the path
10.2.2

obtained from the tableau t*. Thus in ) we have that P, = Py for A = (15, 19).
’ (10.2.2)

Note that in general the integral values of P; belong to the set {(p,k) | k € Z>o, p=—k,—k+2,...,k—2,k}.
This set has a Pascal triangle structure which is why we say that standard tableaux correspond to paths on the
Pascal triangle.

It is clear that the map t — P; defines a bijection between Std(A) and the set of all such piecewise linear paths
with final vertex (A2 — A1,n). For this reason, we sometimes identify A with the point (Ay — Ay, n).
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Suppose now that both t and ts; are standard tableaux for some A € Par:L and s € S. Then k and k+ 1 are in
different columns of t and so we conclude that the functions p; and ps, are equal except that p(k) = pis, (k) £ 2,
and hence also the paths Py and P, are equal except in the interval [k — 1,k 4 1] where they are related in the
following two possible ways

p p p p

(10.2.3)
Pt: k Ptsk,: k or Pt: k Ptsk,: k

Conversely, if s and t are standard tableaux in Std(A) such that P, and P; are equal except in the interval [k—1, k+1]
where they are related as in (10.2.3]), then we have that s = ts;. Let us now consider the following algorithm.

Algorithm 10.2.1. Let X € Par, and t € Std(\). Then we define a sequence seq := (s, , Si,, - - -, Siy ) Of elements
of S, as follows.

Step 1. Set Py := Py. If Py # P, then choose i; any such that t*s; € Std(A) and such that the area bounded by
Py := Py, and P is strictly smaller than the area bounded by Py and F;.

Step 2. If P, = P, then the algorithm stops with seq := (s;,). Otherwise choose any i such that t*s;,s;, € Std(\)
and such that the area bounded by P» := Pixg, s, and P is strictly smaller than the area bounded by P;
and Pt~

Step 3. If P, = P, then the algorithm stops with seq := (s, , 8i,). Otherwise choose any i3 such that t*s;, s;,s;, €
Std(A) and such that the area bounded by P3 := P 55y 54 and Py is strictly smaller than the area bounded
by P2 and P{.

25ig

Step 4. Repeat until Py = P;. The resulting sequence seq = (Si,, Sy, - - -, Siy ) gives rise to a reduced expression
for d(t) via d(t) = i, 8iy - Sin-

Note that it follows from (10.2.3|) that the i;’s in Step 2 and Step 3 do exist and so the Algorithm |10.2.1| makes
sense. For example in the case of the tableau s from ((10.2.1]) we get, using (10.2.2)), that for example

d(s) = $2545357595851059 (10.2.4)
is a reduced expression for d(s). For completeness, we now present a proof of the correctness of the Algorithm.

Theorem 10.2.2. Algorithm|10.2.1] computes a reduced expression for d(s).

Proof: This is a statement about the symmetric group &,, viewed as a Coxeter group. Let t; := t"sils“ - 84, be
the tableau constructed after k steps of the algorithm. Then we have that d(tx) = si, 84, - - - S, and we must show
that I(si, 84, -« - i, ) = k where I(+) is the length function for &,,. We therefore identify d(t;) with a permutation of
{1,2,...,n} via the row reading for t;. To be precise, using the usual one line notation for permutations, we write

dt) = [a@ ) le@e) | ... (%)~ () (10.2.5)

We call this the one line representation for d(t). If for example t;, = s from ((10.2.1) then we have the following
one line representation for d(t)

dis)= [1TaT2]s 3]s Jro]7[u]s]o] (10.2.6)
whereas for ¢, = t* from we have the identity one line representation, that is
de) = [1]2]s[a]s5]6]7[s]9]0]u1] (10.2.7)

In general, by the Coxeter theory for &,,, we have that I(d(ty)) is the number of inversions of the one line repre-
sentation of d(tx) that is

U(d(tr)) = inv(d(t)) := [{(i,5) + i < j and ()71 (5) > ()7 ()} (10.2.8)
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To prove the Theorem we must now show that inv(d(t;)) = k. We proceed by induction on k. For k = 0 we have that
inv(d(ty)) = inv(d(t})) = 0, see 7 and so the induction basis is ok. We next assume that inv(d(ty_1)) = k—1
and must show that inv(d(t;)) = k. At step k of Algorithm we have that t,_1,t; € Std(\) and tx_1s;, =t
and hence t,_; and t; are in one of the two situations described in Let p be as in [10.2.3] Then, since t;
is closer to t than t,_;, we have that t,_; and t; are in the first situation of [10.2.3]if p < —1 and in the second
situation of if p > 0. In other words, the first situation of only takes places in the left half of the
Pascal triangle and the second situation of only takes places in the right half of the Pascal triangle
(110.2.2)), with the vertical axis p = 0 is included.

These two situations translate into the following two possible relative positions for k and &+ 1 in t5_1.

* *
. . 10.2.9
: r T : ( )
* *
E+ 1 * * i
* * * >k

Here, in both tableaux k and k + 1 are in different columns, but in the first tableau, corresponding to p < 0, we
have that k + 1 is in a strictly lower row than k, whereas in the second tableau, corresponding to p > 0, we have
that k + 1 is in a lower or equal row than k.

On the other hand, in each of the two cases of (10.2.9) we have that k appears before k + 1 in the one line
representation for t;_; and so inv(d(ty)) = inv(d(tx—1)) + 1. This proves the Theorem. O

Remark 10.2.3. We remark that the reduced expression for d(s) obtained via Algorithm is by no means
unique. In general, we have many choices for the ix’s and the reduced expression obtained depends on the choices we
make. On the other hand, it is known that d(s) is fully commutative. In other words, any two reduced expressions
for d(s) are related via the commuting braid relations.

10.3 ALCOVE GEOMETRY

We now introduce an A; alcove geometry on R2. For each j € Z we introduce a wall M; in R? via
M; = {((j — e+ m,a) | a € R} C R (10.3.1)

The connected components of R? \ | J ; M; are called alcoves and the alcove containing (0,0) is denoted by .A°
and is called the fundamental alcove. Recall that we have fixed W as the infinite dihedral group with generators s
and t. We view W as the reflection group associated with this alcove geometry, where s and ¢ are the reflections
through the walls My and My, respectively. This defines a right action of W on R? and on the set of alcoves. For
w € W, we write A := A% - w.

Let P :[0,n] — R? be a path on the Pascal triangle and suppose that P(k) € Mj for some integers k and j. Let
r; be the reflection through the wall M;. We then define a new path P5:3) by applying rj to the part of P that

comes after P(k), that is
ki) gy . J P, H0<t<Fk
i { P(t)rj, ifk<t<n. (10.3.2)

k,j . ; . .
For two paths on the Pascal triangle we write P () Q if @ = P%9) and denote by ~ the equivalence relation on the

paths on the Pascal triangle induced by the (lf’vj)’s. Then we have the following Lemma which is a straightforward

consequence of the definitions.
Lemma 10.3.1. Suppose that s,t € Std(Par’). Then i° =i' if and only if Py ~ P.
We can now provide an alcove geometrical description of Std(ik). It is a direct consequence of Lemma |10.3.1

Lemma 10.3.2. Let [Py] be the equivalence class of Py under the equivalence relation ~. Then, Std(:™) = [Px].
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M_y M_3 M_q M_q Mg My Moy Mg My

K
hetdt t Wit h: # W htfs
(A
(10.3.3)
/|
x|
V| /
// //
K X X
\\ // //
N /
A= K2 Hy K3 My

In (10.3.3) we indicate for m = 2,e = 5 and n = 23 the paths corresponding to elements in Std(’i)‘)7 according to
Lemma [10.3:4] The path Py is the one to the extreme left. The endpoints of the paths are enumerated according
to the order relation <1 on Par;, with pg = A, p; the rightmost path, and so on.

To illustrate the connection between paths and tableaux, we present in the six elements of Stdx(p,)
for as tableaux. We have colored the entries of each tableau by blocks. The zero’th block corresponds to
the path segment from the origin (0,0) to the first wall My and its entries have been colored red. The first full
block corresponds to the path segment from My to the next wall which may be either M_; or M; depending on the
tableau and the corresponding elements have been colored blue, and so on. We shall give the precise definition of
full blocks shortly.

In we have also given the residue tableau resp, for p,. By definition, it is obtained from [u,] by
decorating each node A with its residue res(A). Using it, one checks that for each t € Stdy(p,) the corresponding
residue sequence is i>‘, as it should be:

i*=1i'=1(0,4,3,2,1,0,4,3,2,1,0,4,3,2,1,0,4,3,2,1,0,4, 3,2, 1) (10.3.4)

1 9 9 4 4] 0] [2

1 1 1 ) [ 5] (4] L

1 1 1 6 | 6 3] [0}

1 1 1 7 | 7] 2] | 4]

1 1: 1: 8 | 8] (1] ]3]

1 9 1 k) ]. K 1 ) _9 2 l

Std)\([.l,4) = 9 2 1 1 1_ s [resu4] = i l (1035)

2 2 1 1 11 3] |0

2 2 1 1 12 2] |4

2 2 1 1 13 (1] 3]
0]
4
3]

//
q
I D
/1 N (10.3.6)
1IN N
K y N
q /1 N
/1 N q /1 N
/| N // N /1 N
A X X N
A1 N /1N N /| N
/ N /| N N / N
/ N/ N N /] N
AN XU
A
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The structure of Std(iA) depends on whether A is singular or regular:

Definition 10.3.3. Let the integers K, = K and 0 < R,, ,, = R < e be defined via integer division n— (e —m) =
Ke+ R. Then we say that A is singular if R = 0 and otherwise we say X that is reqular. Graphically, X is singular
if it is located on a wall, otherwise it is regular.

The paths in (|10.3.3]) represent a singular situation whereas the paths in (|10.3.6]) represent a regular situation.
In both cases, regular or singular, the cardinality |Stdx ()| is given by binomial coefficients and so we have the
following Lemma.

Lemma 10.3.4. a) Let [Py] be the equivalence class of Px under the equivalence relation ~. Then, Std(i™) = [Py].
b) Suppose that A is singular. Then 3 ,c(py () [Stda(p)]?= (2115)

c) Suppose that X is regular. Then -, c(p,j(n) [Stda(p)|*= 2(21?).

We now define the integer valued function
fom(3) = [(j) = —m+ jefor j € Z,. (10.3.7)

Then for t € Stdx () we have that k = f(1), f(2),..., f(K) are the values of k such that Py (k) belongs to a wall
M; and we then define for i = 1,2,..., K the ¢'th full block for X as the set

Bi=[f()+ 1, () +2,.... f(i) +e]. (10.3.8)

For example, in the situations ((10.3.3)) and ([10.3.6) we have the following full blocks

By = [4,5,6,7,8], B, = [9,10,11,12,13], By = [14,15,16,17,18], By = [19,20,21,22,23]. (10.3.9)

For 1 < i < K we next define U; € G,, as the order preserving permutation that interchanges the blocks B; and
Bi+1 that is
U =@ +LfE+D)+D)(fO)+2,fe+1)+2) - (f(&) +e, f(i+1)+e). (10.3.10)

For example, in the situation (|10.3.9)) we have
U = (4,9)(5,10)(6,11)(7,12)(8,13) (10.3.11)

written as a product of non-simple transpositions. We need a reduced expression for (10.3.10) and therefore for
1 < j of the same parity we introduce the following element of &,,

S[ig] = SiSi42 " Sj-28; (10.3.12)

Then we have
U, = Sla,a]Sla—1,a+1] " " " Sla—e+1,a+e—1] " " Sla—1,a+1]5[a,a] (10313)

where a = f(i + 1) which upon expanding out the sf; ;’s becomes a reduced expression for U;. We can now recall
the following important definition from [23].

Definition 10.3.5. For 1 < i < K we define the diamond of X at position f(i) by
U;\ = ine(i}\) = q/)[a,a]w[a—l,a—‘rl] T ¢[a—e+1,a+e—1] T w[a—l,u-‘rl]w[a,a]e(i)\) (10314)
where a = f(i + 1) and ¢y j1 == Yithiy2 - P21

The name ‘diamond’ comes from the diagrammatical realization of B,,(X). Here is for example the n = 13, m =
2,e=>5and i =1 case

Uy = (10.3.15)

0432104321043
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Chapter 11

A presentation for B, (\) for A singular

In this chapter we consider the case where A is singular. Our aim is to show that B,,(A) and NBy are isomorphic
F-algebras. The first step towards this goal is to prove that the following subset of B,,(\)

GA) :={U}1<j<K}U{ye(s®)[1<i<n} (11.0.1)

is a generating set for B,,(X). To be precise, letting B/ (A) be the subalgebra of B, (X) generated by G(X) we shall
show that each element m%; of the cellular basis C,,(A) for B, (), given in Lemma [10.1.4] belongs to B/, (A). The
proof of this will take up the next few pages.

We shall rely on a systematic way of applying Algorithm [10.2.1]to get reduced expressions for the elements d(t),
t € Std(i*). Let us now explain it.

Let Apax € Paril be the maximal element in the W-orbit of A with respect to the order <. Clearly, Apax is
located on one of the two walls of the fundamental alcove. Recall that Py is the path associated with the tableau
tAmax: it zigzags along the vertical central axis of the Pascal triangle as long as possible, and finally goes linearly
off to Apmax. The set of paths P for t € Std(iA) together with Py which does not belong to Std(i)‘)7 determine
three kind of bounded regions that we denote by h;,u; and u}:

b = <§8> = %% . @ (11.0.2)

See also (11.0.3)). In (11.0.2)) as well as we have indicated Py, with bold blue.

In general the h;’s are completely embedded in A?, whereas the ‘diamond’ regions u;’s have empty intersection
with A°. The ‘cut diamond’ regions u/’s have non-empty intersection with .A° but also with one of the alcoves A°
or A'. Note that the union of h; and v forms a diamond shape. We enumerate the regions from top to bottom as
in 7 with the h;’s starting with ¢ = 0 and the w} and u;’s with ¢ = 1. Note that there are repetitions of the

u;’s.

max )

S&

(11.0.3)
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For each of the three kinds of regions h;,u;, v, we now introduce an element H;,U;,U! € &,, in the following
way. For R = h;,u;,u} we let O(R) be the boundary of R with respect to the usual metric topology. Then for
any R = h;,u;,u, we have that O(R) is a union of line segments and we define the outer boundary, J,,:(R), as the
union of the two line segments that are the furthest away from Py, . Moreover we define the inner boundary as
Oin(R) = O(R) \ Oout(R), where the overline means closure with respect to the metric topology.

Suppose now that R = h; (resp. R = u; and R = u}). We then choose any tableau b € Std(Pary) such that
Oin(R) C Py. Let P} be the path obtained from Py by replacing 0, (R) by Oout(R). Then we define H; € S, (resp.
U, € 6, or U] € 6,,) by the equation

Py = Pon, (resp. Py = Py, and Py = Peyy). (11.0.4)

In other words, H; (resp. U; and U) is simply the element of &,, that is used to fill in the region h; (resp. u; and
u}) in the sense of Algorithm [10.2.1) where each s; appearing in H; (resp. U; and U/) corresponds to the filling in
of one of the little squares of h; (resp. u; and u}). For example, in the situation (11.0.3) we have that

Hy = 525456535554, H1 = s9511510, U{ = 5[8,12]5[7,13]5[6,14] 5[5,15]5[6,14] 5[7,13] 5[8,12] 5[9,11] 5[10,10] (11.0.5)

where we used the notation from (10.3.12)) for the formula for Uj. Note that the U;’s coincide with the U;’s defined
in ((10.3.10). It is also possible to give formulas for the H;’s and the U/’s, in the spirit of (10.3.10)), but we do not
need them.

For any t € Stdx(p) we now introduce a reduced expression for d(t) by applying Algorithm in a way
compatible with the regions. To be precise, starting with Py, we first choose those regions h; that give rise to a
path closer to Py than Py by replacing the inner boundaries with the outer boundaries. Having adjusted Py,
for those h;’s we next choose those regions w that the same way give rise to a path even closer to Py and finally we
repeat the process with the regions u;. It may be necessary to repeat the last step more than once. The product
of the corresponding symmetric group elements is now a reduced expression for d(t): this is our favorite reduced
expression for d(t) that we shall henceforth use.

In (11.0.7) we give two examples with e = 6 and m = 2.

max ?

We let ¢y, (resp. Yy, and 1y:) be the element of B,, obtained by replacing each s; € &, in H; (resp. U; and
U;) with the corresponding ;. We then get an expression for gy by replacing each occurring H; (resp. U; and

U/) in the above expansion for d(t) by ¢m, (resp. ¢y, and ¢y/). Note that Yu,e(i™) = U € G(A) from (11.0.1).
For example, in the cases ([11.0.7]) we have

Yas) = YEVH, YV H Y VE YU UL and Vay = VE VYV H VE U YU YU YUY, (11.0.6)

(11.0.7)
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With the same s and t we have in terms of KLR-~diagrams

02514035241302e 0 —

e(i”)wd(s) = (1108)

05432105432105e0e = ¢

02514035241302 eee —;

e(i* ) ha(y = (11.0.9)

05432105432105 eee = >

Let us give some comments related to the combinatorial structure of (11.0.8)) and (11.0.9)); these hold in general.
Note first that only the lower residue sequence of (]11.0.8[) and (]11.0.9[) is 2* and so e(i* Jhas) and e(i* )1hq() actually
do not belong to B, (\), only to B,,. Secondly, note that the KLR-diagrams for the v y,’s are located in the ‘top
lines’ of (|11.0.8) and (|11.0.9), whereas the diagrams for the Yy;’s and the ¢y,’s are situated in ‘the middle and the
bottom lines’ of (I11.0.8D and ([11.0.9[), respectively. For each i only one of the diagrams ¢y, or ¢y, appears. The
appearing ¢g,’s and ¢y/’s are ordered from the left to the right, with ¢p,, that always appears, to the extreme
left and so on. On the other hand, in general the ¢y;,’s do not appear ordered.

Next, we observe that the shapes of ¢ g,’s and the ¢y;’s depend on their parity. In other words, if ¢ and j have
the same parity then ¢y, and g, (resp. Yy, and ”(/)U/) have the same shape. In we have encircled with
blue the even diagrams ¢y, and ¢y, and with red the ‘odd diagrams ¢y, and Y.

Our next observation is that the diagrams ¢y, always lie between two diagrams g, , and ¥ g, ,,, except possibly
for the rightmost ¢7;. The rightmost ¢y, is always preceded by ¢ g, , but it may be followed by ¢y, , ,, as in (11.0.9),
or by a number of through lines, as in (11.0.8)).

In general, we have that the ¥ g,’s are ‘distant’ apart and so pairwise commuting. This is not the case for the
Yy:’s. However, we still have that ’l/JU/’l/JU/ z/JU/ vy if |i — j| > 1. By the previous paragraph we know that each
occurrence of ¢y is surrounded by wHL , and ¢H, 11+ We conclude that if ¢y, and ’(/JUJ/ occur in the diagram of
some gy then |i — j| > 1, and therefore, they do commute. The relations between the ¢y,’s are known from [23],
we shall return to them shortly. Between the different groups there is no commutativity in general, that is 1y, does
not commute with ¥y, , and ¢y, , and so on.

Finally, we observe that the all of the dlagrams 1/)H1,1/JU/ and L/JU are organized tightly. There are for example
only two through lines in . In both (| and | we have colored blue the through lines that
correspond to the places Where P5 and Py change from the left to rlght half of the Pascal triangle, or reversely. In
general these lines lie between two t,’s. Thus the contours’ of (11.0.8) and (11.0.9)) are a mirror of the shapes of
the paths , with the modification that the through blue lines indicate a change from left to right of reversely.

For t € Std(:*) we define 6(t) as the element of &,, obtained from the favorite reduced expression for d(t) by
erasing all the U;-factors and similarly we define u(t) € &,, by erasing both the H; and the U/-factors. Then clearly

d(t) = 0(t)u(t). (11.0.10)

We now have the following Lemma.
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Lemma 11.0.1. Suppose that s,t € Stdx () and let Ps, and Py, be the paths obtained from Ps and Py by replacing
outer boundary with inner boundary for all the u;-regions. Then we have that 0(s) = d(s1) and 6(t) = d(t1).
Moreover

Mg = sy M 6 Yu(y- (11.0.11)

Proof. The result is a direct consequence of the definitions. O

Our goal is to prove that m; belongs to Bj,(A). On the other hand, 1, (s) and 9, in (11.0.11)) are products of
UM’s and so it follows from Lemma [11.0.1| that to achieve this goal it is enough to consider the case where 5 = 5,
and t = t;. Let us give the corresponding formal definition.

Definition 11.0.2. Let t € Std(i*). We say that t is central if u(t) is the empty word. Equivalently, t is central if
d(t) = 6(t).
Geometrically, t is central if the path P; stays close to the central vertical axis of the Pascal triangle. In other

words, P; does not cross the walls M_; and M,, except possible once in the final stage. For example, in (11.0.7))
we have that s is central but t is not. In view of Lemma [11.0.1] we will from now on only consider central tableaux.

Suppose therefore that t € Stdx(p,,) is central where g, is as described in (10.3.3). Then one checks that the
total number of ¥p,’s and y,’s appearing in g is k. We now define a (2 x k)-matrix c(t) = (c;;) of symbols
that completely determines 14). It is given by the following rules.

1. If H; appears in appears in d(t) then ¢ ;41 := H; and ¢z ;41 := 0.
2. If U! appears in d(t) then co ;11 = U;’ and ¢1 ;41 := 0.

We view the matrix c(t) as a codification for 1), where the first row of c(t) corresponds to the top line of
Yaee) and the second row of ¢(t) to the second line of 14). The comments that were made on the structure of
(11.0.8) and (11.0.9) carry over to the matrices ¢(t). In particular, exactly one of H; or U/ appears in ¢(t) for each
i. Moreover, Hy always appears and each U], except possibly U], is surrounded by H;_1 and H;q.

For example if 144 is as in (11.0.8), then

o(s) = [Ho| 1| Ho) Hs : Hs| He (11.0.12)
Uj Uz

Note that we leave the entries containing ) empty. Similarly, let t be as in (11.0.7)) but with the regions Ug and Uy
eliminated. Then t is central and 4 is obtained by deleting ¥y, and vy, from (11.0.9) and we have

by = (11.0.13)

with corresponding matrix

e(t) = [Ho Hy| Hs| | H5|Hs (11.0.14)
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We are interested in the elements mt,. In the above cases (11.0.8)) and (11.0.13)) it is as follows

ol | o

(o, t) =[BT [ (11.0.15)
Hy Hs| Hj| Hy Heg

In general, for t € Stdx(py,) central we define ¢*(t) as the (2 x k)-matrix (d;;) where di; = ¢3; and da; = cj;.
Here we set §* := (). Moreover, for s,t € Stdx () both central we define c(s, t) as the (4 x k)-matrix that has ¢*(s)
on top of ¢(t). Then c(s,t) is our codification of mk;. In (11.0.15) we have given c(s, t) next to m

st*

Our task is now to show that any diagram as in (11.0.15)) can be written in terms of the elements from G(A). This
requires calculations using the defining relations for B,,. Let us first recall a couple of results from the literature.

Lemma 11.0.3. The idempotent e(i) € B,, is nonzero only if i = i' for some t € Std(Par;,).

Proof. This follows from Lemma 4.1(c) of [I7], where it was proved for cyclotomic Hecke algebras in general,
combined with the fact that B,, is a graded quotient of the cyclotomic Hecke algebra of type G(2,1,n), see [38]. O

Lemma 11.0.4. Let B; be a full block for A as introduced in and suppose that k,1 € B;. Then we have
that

yre(i®) = yre(i™). (11.0.16)
Proof. This follows from relation (3.0.21)) and Lemma [11.0.3 O

Lemma 11.0.5. Suppose that v € Par}l and that t € Std(Par}L). Suppose moreover that Pi|j = Pyljo,k for some
integer k > 0. Then for all 1 < r <k we have in B, that

yre(it) = 0. (11.0.17)

Proof. Recall that P, zigzags along the vertical central axis of the Pascal triangle and finally goes linearly off to
v. If r belongs to the zigzag part of P,, the result follows from the Lemmas 14 and 15 of [25], see also Theorem
6.4 of [I0]. Otherwise, if r belongs to the linear part of P,, we argue as in the previous Lemma and get that
yre(i') = y,_1e(i'). Continuing like this, we finally end up in the zigzag part of P,,. O

Henceforth, we color the intersections of our KLR-diagrams according to the difference of the relevant residues.
More precisely, we shall use the following color scheme

Vo X w XX .
11 11 i 11 ¢ i£1

whereas for all other crossing we keep the usual black color. In this notation we now have the following Lemma

which is a direct consequence of the relations (3.0.18]) and|3.0.21

Lemma 11.0.6. We have the following relations in B,

?2 - >< ;2 B __><_ (11.0.19)

We can now finally prove the Theorem that was announced in the beginning of this chapter.
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Theorem 11.0.7. The set G(\) introduced in (11.0.1]) generates B, (X).
Proof. Using the coloring scheme introduced above, the diagram (|11.0.15)) looks as follows

iR U]
oY HG| Hi|H3| Hy| | H5|Hg (11.0.20)
Hy Hy| Hy Hs| Hg
Ul U U

We must show that the elements m%; can be written in terms of the elements of G(A). We will do so by pairing
the elements of the columns of the corresponding c(s, t).

Note that the residue sequence for the middle blue horizontal of (11.0.20)) is 2. The idea is to apply Lemma
11.0.5| and therefore it is of importance to resolve the columns from the right to the left.

Let us first consider columns containing pairs {H}, H;}, starting with the rightmost of these columns. Thus
in the above case we consider first {H¢, Hg}. We now use relation to undo all the crossings in H; and H;,
arriving at a diagram like . Here we use an overline on the two dots to denote that the result is a difference
of two equal diagrams but each with one dot in the indicated place. Note that the residue sequence for the middle
line has now changed, and correspondingly we have changed the color from blue to red and green around the two
dots. In the above case, the new middle residue sequence is 4" where t; = t*Hj, that is t; is obtained from t* by
replacing 0y, (hg) with 0oyt (hg). In the first figure of , we have indicated Py, using the same colors red and
green. On the leftmost dot, given by y40 in the above example, we can now apply Lemma with t = t; and
v as indicated in We conclude from the Lemma that the corresponding diagram is zero.

Thus in the above case (11.0.21]) only the second term dot with y41 stays. We now repeat this process for all

the other pairs of the form {H}, H;}, from the right to the left. For example in the case (11.0.21]) we arrive at the
diagram (|11.0.22). We have indicated the blocks for A on the top of the diagrams (11.0.21)) and (11.0.22)). Note

that each H; (resp. H, U] and U/*) ‘intersects’ both of the blocks B; and B;1; and that the dots of (11.0.22) are
all situated at the beginning of a block.

By Bs By Bs Bs Br Bg By Bio

B,
me = JﬂJ L jﬂm (11.0.21)
343
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By B> Bs

By Bs
(22—
) | ﬁ
3 q

Next we treat the pairs of the form {U/*, H;} or {H},U/}. By the combinatorial remarks made earlier, each
appearing H;-term (resp. H}-term) fits perfectly with the corresponding U/*-term (resp. U/-term) to form a
diamond. We then move the H;-term up (resp. the H}-term down) to form this diamond. Note that this process
does not involve any other terms since the H;-terms (resp. the H-terms) are distant from the surrounding dots.
In the above case we get the following diagram.

Bs B Bg By Bio

(11.0.22)

By By B3 Bg By Bs By Bio

By Bs
m
p

We are only left with columns containing pairs of the form {U/*,U/}. By the previous step there is now a dot
between the top U/* and the bottom U/, at the left end of the ‘line segment’ between them, see . We show
that this kind of configuration C; is equal to diamond vy,. In fact, the arguments we employ for this have already
appeared in the literature, see for example [23]. Let us give the details corresponding to ¢ = 7 in ; the
general case is done the same way. Using relation to undo the black double crosses, next relation

to undo the last blue cross and finally (3.0.21f) on the red double cross, we have the following series of identities.

“%

(11.0.23)

Br B Br B Br B B;  Bs
Cr = - - - = - (11.0.24)
But this process can be repeated on all the blue double crosses and so we have via Lemma [11.0.6[ that
B Bsg
Br B
Cr=(-1)! b = (=1)! = (-1 y,. (11.0.25)




The same procedure can be carried out for the other columns of the form {U/*,U/}. In the above case there is
only one such column, corresponding to ¢ = 4 and so get finally that

By B> Bs By Bs Bs Br Bs By Bio
mgt::l: % (11.0.26)

In other words, since multiplication in B,, is from top to bottom, we have that

mby = £ ysUD 17U yss UR (11.0.27)
All appearing factors of mk; belong to G(A) and so we have proved the Theorem. O

Let us point out some remarks concerning Theorem and its proof. First of all, we already saw that only
a few of the y;’s are needed to generate B, (A). Let us make this more precise. Choose any k in the i’th block B;.
Then we define
V) = yre(i®) € B (N). (11.0.28)
Note that by Lemma we have that Y2 is independent of the choice of k. Moreover, it follows immediately
from Theorem that B,,(A) is generated by the set

{UM1<j<K}u{P}1<i<K} (11.0.29)
Secondly we remark that the proof of Theorem [11.0.7] gives rise to an algorithm for writing the above mk in

terms of the generators in (11.0.29). Although the algorithm itself is not necessary for what follows, for the sake of
completeness we prefer to establish it formally.

Algorithm 11.0.8. Let g € Parl and let s,t € Stdx () be central tableaux. Let c(s, t) be the matrix associated
with mk;.

Step 0. Add an empty column to the right of c(s, t).

Step 1. For each column in c(s, t) containing {U/*, H;} (resp. {H},U/}) we remove H; (resp. H;) from c(s, t) and
replace U/* (resp. U/) in c(s, t) by U;.

Step 2. Working from the right two the left, for each column in ¢(s,t) containing {H}, H;} we remove H and H;
from c(s,t) and write Y41 in one of the two middle boxes of the following column, one to the right.

Step 3. Each column in c(s, t) containing {U/*, U/} will now also contain Y;. We replace these three ingredients of
that column by one U; which is placed in one of the two middle boxes of the column.

Step 4. Replacing each U; by U and each Y; by Y} we form the product of all appearing elements of c(s, t),
starting with the top line, then the two middle lines and finally the bottom line. This product is +mk;.

Let us give an example to illustrate how the algorithm works. Suppose that s and t are central tableaux and
that c(s, t) is as follows.

U3 Ui
c(s, t) = Ho | 1) A Hil Hs Hy| Hy (11.0.30)
H Hy Hy| Hy| Hg| H7
Uj Uj U}
Then going through the algorithm we get
Uj Us Us
s t) | Vsl IVs|Ve) |¥s| |, Vi) JUs) |Ve[Ve| |V (11.0.31)
U, Us Us Uy Us
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and so we conclude that
mk = +US VXU VRVRVRURUR (11.0.32)

Our next step is to show that actually only ) is needed in order to generate B, (A). Let us first prove the
following result.

Lemma 11.0.9. For all1 <i < K we have

Y4UR = U2V + (-1 = V). (11.0.33)

Proof. Let us first recall the following relations valid in B,,, see Lemma 5.16 of [23].

‘ (11.0.34)
i 1+1 4 i t+1 4 i t—1 4 i 1—1 4
They are a consequence of the braid relation (3.0.20) together with Lemma[11.0.3

Let us now show the Lemma for ¢ = 1, since the general case is treated the same way. We take e = 6. Then we
have that via repeated applications of relatlon ) that

The first diagram is here U} )7 so let us focus on the second diagram. Using the first relation in (11.0.34)) repeatedly
we get that it is equal to

_ e L = (CD) R - ) (11.0.36)

where we used the quadratic relation (??) for the last step. Combining ((11.0.35) and (11.0.36)), we then get
(11.0.33). O

Let us recall the commutation relations between the U}’s, see Proposition 5.18 of [23].

Theorem 11.0.10. The subset {U> | i = 1,...K — 1} of B,,(\) verifies the Temperley-Lieb relations, or to be
more precise

(UM? = (=1)*7 120, if1<i<K; (11.0.37)
UXUMUD = U, if i — j| = 1; (11.0.38)
Uru} = UMD, if i — | > 1. (11.0.39)

With this at our disposal we can now prove, as promised, that )7 is the only y} which is needed in order to
generate B, (\).

Theorem 11.0.11. The set
G\ ={U}1<i<K}u{}} (11.0.40)

generates B, (X) as an F-algebra.
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Proof. Recall that e(i>‘) is the identity element of B,,(\), for simplicity we denote it by 1. Let us define

S} =U} + (—-1)°. (11.0.41)
Then from Theorem we get that
(51?2 =1 (11.0.42)
On the other hand, we notice that using the notation introduced above, the relation becomes
VA8t = SP (11.0.43)
Finally, by combining and we obtain
VA = spvrsy (11.0.44)
and the result follows. O

We are now in position to prove the main result of this chapter.

Theorem 11.0.12. There is an isomorphism f : NBx — B, (\) given by
Up — V) and U;— (1)U for1 <i< K. (11.0.45)

Proof. In view of Theorem and the Pascal triangle description of the cellular basis for B,, (), the two algebras
have the same dimension. Hence, we only have to show that f is well defined since, by Theorem [11.0.11] it will
automatically be surjective.

Let us therefore check that f(Up) and the f(U;)’s verify the relations for NByx. The Temperley-Lieb relations
(8.0.8)), (8.0.9) and (8.0.10) are clearly satisfied by Theorem [11.0.10{ whereas the relation (V)2 = 0 follows from
relation (3.0.17) and (??). Hence we are only left with checking relation (8.0.11)). It corresponds to UPYPUD = 0
which via Lemma [11.0.9]and (11.0.37) is equivalent to the relation

(VP 4+ MU = 0. (11.0.46)
For this we first write (—1)¢~1U7" in the following form

By By

Hg

(- U = o (11.0.47)

We have here used e = 6 as in the examples of the proof of Theorem [11.0.7] The middle blue horizontal line has
the same meaning as in ((11.0.21)); its residue sequence is #* for the corresponding p. Using this we get

(DU - - - ”f!b - - fﬁi e e KJL%
(11.0.48)
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where the first equality comes from relation (3.0.18]), the second from Lemma|11.0.5|and the other equalities from
(11.0.34). On the other hand, for (—1)*"' YU} we have almost the same expansion with only a sign change coming
from relation B.0.18

B, Bs By By

|£°
P
|EJ
B

By By

[l
[

Comparing (11.0.48)) and (11.0.49f) we see that (11.0.46| holds. The Theorem is proved. O

Remark 11.0.13. Using (11.0.44) and (11.0.42) we extend (V)2 = 0 to (V)2 = 0 to all 4. Thus the isomorphism
v :NB, = A, gives us a proof of Lemma The recursive formula for the Y;’s is given by

(=)' VUP - - - (11.0.49)

ats
=
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Chapter 12

A presentation for B,(\) for A regular

In this chapter we consider the case where A is regular, in other words we assume that R > 0, see Definition
We define B,, (M) := e(i™)B,e(i™) just as in the singular case but, as we shall see, the regular case is slightly more
complicated than the singular case since we need an extra generator. Recall first the function f = f, ,, from (10.3.7)
which was used to define the full blocks in the singular case, see . Let K be as in Definition |10.3.3] Then
in the regular case there is an extra non-full block B}, defined as follows

Biost = [f(K+1)+ 1, f(K+1)+2,...,f(K+1)+ R =[f(K+ 1)+ 1, f(K+1)+2,...,n] (12.0.1)
For example in the situation described in (10.3.6)), we have n = 25,e =5, m = 2 and so K = 4, R = 2 and therefore

By =[4,5,6,7,8], By = [9,10,11,12,13], Bs = [14,15,16, 17, 18], By = [19,20, 21,22, 23], Bja.: := [24, 25].

(12.0.2)
/] N
/| AN
/| N
// N / \\ (12.0.3)
A LN
/ N / N / N
/ N / N
{ ) ( )
AN b N AN
A
Let 7 :=n — R and let X := (17,1°) € Par. We notice that
n=f(K+1). (12.0.4)

It is clear from the definitions that X is singular. On the other hand, any 5 € Std(i)‘) gives rise to two tableaux
5(I) and §(0), in Std(i*), as follows. The tableau 5(I) (resp. §(0)) is defined as the unique tableau t € Std(:™)
whose path P; coincides with Ps on the restriction to [1,2,...,7] and whose restriction to By, is a straight line
that moves P; closer to (resp. further away from) the central vertical axis of the Pascal triangle. We say that t is
an inner tableau (resp. an outer tableau) if it is of the form t = 5(I) (resp. t = 5(0)) for some 5 € Std(s*). It is
easy to see that any tableau t in Std(*) is of the form t = 5(I) or t = §(0) for a unique 5 € Std(:*).

In we have indicated with blue the restriction to Bj,s: of the paths corresponding to inner tableaux,
and with red the restriction to Bj,s: of the paths corresponding to outer tableaux. Note that Py is always the path
of an outer tableau.

Let ¢19%¢ € IR be the restriction to Bjas of the residue sequence for > and let e(il“St) be the corresponding
idempotent diagram, consisting of R vertical lines with residue sequence i'*!. For z € B, we define the element
u(x) ==z A e(i"") € B, as the horizontal concatenation of z with e(i'**") on the right. We notice that

Way) = xy Ae(i™) = (z A e(i'™))(y A e(i)) = u(@)ely), (12.0.5)
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for all z,y € B;. Furthermore, ) B
e(i™)) = e(i™) A e(3') = e(i*). (12.0.6)

We shall shortly prove that mt, = L(mg). Combining this with (12.0.5) and (12.0.6) we conclude that there is an
algebra inclusion

t(Br(A)) CBL(AN). (12.0.7)
We define U := ((U}) € B,(A) and Y} := (Y}) € B, (A), for 1 <i < K and 1 < j < K.
It turns out that the outer tableaux are easier to handle than the inner tableaux.

Lemma 12.0.1. Let X be regular and suppose that s = 5(0) and t = t(O) are outer tableaux in Stdx(w). Let I be
the shape of 5 and t. Then we have that

m = (m*). (12.0.8)

st

Consequently, m¥, belongs to the subalgebra of B, (\) generated by {UN |1 <i < K} and Y}

Proof. Using Theorem [11.0.11| we see that the second statement follows from the first statement (12.0.8). In order
to prove the first statement we note that since s and t are outer tableaux we have that

d(s) = d(3) and d(t) = d(T). (12.0.9)

~/0
hy
hy
h3
b, (12.0.10)
A
On the other hand we have that e(i*) = t(e(i")) and so we obtain
U(mk) = L) e(i)am) = (W) (e(i)u(Wam) = Vi e(i)aq) = mbi. (12.0.11)

O

Suppose now that s = 5(I) € Stdx(p) is an inner tableau. Then d(s) and d(s) are different but still closely
related. Let as be the region of the Pascal triangle bounded by P; and P,, and let az be the region bounded by Fs
and Py, where i1 denotes the shape of 5. Then a; = as U s, where s, is the region bounded by P, and P r), see
for two examples in which we have indicated s, with the color red. Note that s,, only depends on p and
not on s, which is the reason for our notation. When applying Algorithm there is an independence between
the regions az and s,. Indeed, let Az € &,, be the element obtained by filling in az as in the algorithm, and let
similarly S, € &,, be the element obtained by filling in s,,. Then we have that

d(s) = S, As. (12.0.12)
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(12.0.13)

S
SN

)/

P

Definition 12.0.2. Let s =5(I) be an inner tableau. We say that s is central if 5 is central.
We can now prove the following Lemma.

Lemma 12.0.3. Let s = 5(I) and t = t(I) be central inner tableauz in Stdx(w). Let p be the shape of 5 and t.
Then, we have

(Ya+1 — yﬁ)b(mgz) = L(mg})(yﬁﬂ —yn), ifpdg A%
mb, =+ B (12.0.14)
Yar1t(mL) = (ml)yns1, if pe A
Proof. The proof is a calculation similar to the ones done in Lemma [11.0.9] and Theorem [11.0.12] Our general
strategy is to first focus on the crosses that come from the region s,,. Let us prove the first formula in ((12.0.14).
Thus we assume that we are in the case where p does not belong to the fundamental alcove. This case is a bit easier
since, as we will see below, the crosses associated to the s,, region can be eliminated without altering the other parts

of the diagram. We illustrate the computation in the case where s is given by the first diagram of (12.0.13]) and
where t = 5. For these choices we calculate as follows, using the defining relations in B,, together with (11.0.34]).

Mgy =

eeee — :]:
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= UmE)E= (Y1 — ya)u(mE)= (mE) (ya11 — yn) (12.0.17)

X

as claimed. The general case is done the same way.

Let us now prove the second formula in , corresponding to the case where p belongs to the fundamental
alcove. In this case s, is as small as possible, as for example in the second diagram of . The proof is
essentially the same as the proof of the first formula with the only difference being the vanishing of the factor y;
which is due to Lemma Let us do the calculation in the case where s is given by the second diagram of

(12.0.13), and t = s. We have then

« By Bs  Bust se Br Bs  Biast e B Bs  Bust  se Br Bs  Biast e By Bs  Biast

(12.0.18)

where the blue horizontal, red and green lines have the same meaning as in (11.0.21)). The fact that the fourth

diagram of (12.0.18)) vanishes is shown using Lemma|11.0.5] arguing the same way as two paragraphs above[11.0.23
in the proof of Theorem [I1.0.7] The proves the Lemma.

O
Suppose that i in any element of Bj,s;. Then we extend the definition in by setting
Vioq = yie(i®) € By (N). (12.0.19)
We get from Lemma that Y%, is independent of the choice of i.
Corollary 12.0.4. Let G1(X) be as in Theorem[11.0.11] Then the set
Go(A) = Gi(AN) U{Vx 1} (12.0.20)

generates By, (A).

Proof. Let B, (M) be the subalgebra of B, (\) generated by Ga(A). Let s,t € Stdx(e). We need to show that
mb, € B, (A). If s, t are outer tableaux then the result follows by a combination of Theorem [11.0.11] and Lemma
12.0.11 Suppose now that s and t are inner tableaux. If both tableaux are central then the result follows by
combining Theorem [11.0.11] and Lemma [12.0.3] Otherwise, the same argument given in the proof of Lemma [11.0.1
allows us to conclude that there exist central standard tableaux s1,t; € Stdx(p) and monomials M, and M in the
generators {U,...,Up_,} such that

mby = Memk M, (12.0.21)
and the result follows in this case as well. O
Corollary 12.0.5. Yy, is a central element of By, (X).

Proof. This follows from Corollary [12.0.4] once we notice that Y, commutes with all the elements of G1(A). O
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Lemma 12.0.6. We have that (Y3 ,)* = 0.
Proof. Fori=1,2..., K + 1 we introduce the following elements of B,,(A)
LY =0 -, (12.0.22)

with the convention that Vg := 0. Then in Theorem 6.9 of [I0] it was shown that these elements £} satisfy the
JM-relations of Lemma[R.0.T1l On the other hand we have that

Vo1 =L + Ly + -+ L3 (12.0.23)
and so the calculation done in (9.0.66) shows that (Y, ,)? =0, as claimed. The Lemma is proved. O

We can now establish the connection between the extended nil-blob algebra and B, ().

Theorem 12.0.7. Suppose that X is regular. Then the assignment Uy — Y, T +> y;\(H and U; — (=1)¢U for
all 1 <i < K, induces an F-algebra isomorphism between NTBK and B, (X).

Proof. Combining Theorem [11.0.12] Corollary|12.0.5|and Lemma [12.0.6| we get that the assignment of the Theorem
defines an algebra homomorphism, which is surjective in view of Corollary [12.0.4] The two algebras have the same
dimension 2(211(( ), and hence the Theorem is proved. O

The following is the main result of this part of this thesis. It establishes a connection between the algebras A,
and B, (), as predicted in [10] and [23].

Theorem 12.0.8. Let X be a regular bipartition. Suppose that A is located in the alcove A,,. Then, A, = B, (X)
as F-algebras.

Proof. This is an immediate consequence of Corollary and Theorem O
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