Proyecto de Tesis Doctorado

Jorge Espinoza Espinoza Profesor Guía: Steen Ryom-Hansen

> Instituto de Matemática y Física Universidad de Talca

> > 2015

Contenidos

- 1 Introducción
- 2 Álgebra de Yokonuma-Hecke
 - lacksquare Representación tensorial de $\mathcal{Y}_{r,n}$
 - Base celular de $\mathcal{Y}_{r,n}$
 - Una nueva presentación para $\mathcal{Y}_{r,n}(q)$
- 3 Álgebra de "Braids and Ties"
- 4 Problemas abiertos

Contenidos

- 1 Introducción
- - Representación tensorial de $\mathcal{Y}_{r,n}$
 - Base celular de $\mathcal{Y}_{r,n}$
 - Una nueva presentación para $\mathcal{Y}_{r,n}(q)$

Historia

■ El álgebra de Yokonuma-Hecke, $\mathcal{Y}_{r,n}(q)$, es originalmente introducida por T. Yokonuma en la teor\(\text{A}\) a de representaciones de grupos finitos de Chevalley, y la cual es una generalización natural del álgebra de Hecke $\mathcal{H}_n(q)$. Hace pocos a\(\text{nos}\) arás, J. Juyumaya reactivó el inter\(\text{e}\) por el estudio de esta álgebra encontrando una nueva presentaci\(\text{o}\) para $\mathcal{Y}_{r,n}(q)$ con la finalidad de utilizar \(\text{e}\) sta para construir un traza de Markov.

El álgebra de braids and ties, introducida por Aicardi y Juyumaya, es originalmente construida con el propósito de definir nuevas representaciones del grupo de trenzas. Hace algunos años atrás Ryom-Hansen encontró una base lineal y una representación tensorial fiel de esta álgebra, la cual le permitió estudiar sus módulos simples.

Historia

■ El álgebra de Yokonuma-Hecke, $\mathcal{Y}_{r,n}(q)$, es originalmente introducida por T. Yokonuma en la teorÃa de representaciones de grupos finitos de Chevalley, y la cual es una generalización natural del álgebra de Hecke $\mathcal{H}_n(q)$. Hace pocos años atrás, J. Juyumaya reactivó el interés por el estudio de esta álgebra encontrando una nueva presentación para $\mathcal{Y}_{r,n}(q)$ con la finalidad de utilizar ésta para construir un traza de Markov.

■ El álgebra de braids and ties, introducida por Aicardi y Juyumaya, es originalmente construida con el propósito de definir nuevas representaciones del grupo de trenzas. Hace algunos años atrás, Ryom-Hansen encontró una base lineal y una representación tensorial fiel de esta álgebra, la cual le permitió estudiar sus módulos simples.

- Encontrar una base celular para el álgebra de "braids and ties".

- Encontrar una base celular para el álgebra de "braids and ties".
- 2 Construir una traza de Markov para el álgebra de "braids and ties".
- Construir un representación tensorial fiel para el álgebra de Yokonuma-Hecke, con el objetivo de encontrar una dualidad de Schur-Weyl para esta álgebra.
- Encontrar una base celular para el álgebra de Yokonuma-Hecke.

- Encontrar una base celular para el álgebra de "braids and ties".
- Construir una traza de Markov para el álgebra de "braids and ties".
- Construir un representación tensorial fiel para el álgebra de Yokonuma-Hecke, con el objetivo de encontrar una dualidad de Schur-Weyl para esta álgebra.
- Encontrar una base celular para el álgebra de Yokonuma-Hecke.

- Encontrar una base celular para el álgebra de "braids and ties".
- Construir una traza de Markov para el álgebra de "braids and ties".
- Construir un representación tensorial fiel para el álgebra de Yokonuma-Hecke, con el objetivo de encontrar una dualidad de Schur-Weyl para esta álgebra.
- 4 Encontrar una base celular para el álgebra de Yokonuma-Hecke.

Contenidos

- 1 Introducción
- 2 Álgebra de Yokonuma-Hecke
 - lacktriangle Representación tensorial de $\mathcal{Y}_{r,n}$
 - Base celular de $\mathcal{Y}_{r,n}$
 - Una nueva presentación para $\mathcal{Y}_{r,n}(q)$
- 3 Álgebra de "Braids and Ties"
- 4 Problemas abjertos

Álgebra de Yokonuma-Hecke

Definición

Sean n y r enteros positivos, $\xi = e^{\frac{2\pi i}{n}} y$ $R = \mathbb{Z}[q, q^{-1}, \xi, r^{-1}]$. El álgebra de Yokonuma-Hecke, denotada por $\mathcal{Y}_{r,n}(q)$, es la R-álgebra asociativa generada por $g_1, \ldots, g_{n-1}, t_1, \ldots, t_n$, sujetos a las siguientes relaciones:

$$t_i^r = 1$$
 para todo i (1)

$$t_i t_j = t_j t_i$$
 para todo i, j

$$t_j g_i = g_i t_{j S_i}$$
 para todo i, j (3)

$$g_i g_i = g_i g_i \qquad para |i-i| > 1 \tag{4}$$

$$g_i g_j = g_j g_i \qquad para |i - j| > 1 \tag{4}$$

$$g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1}$$
 para todo $i = 1, ..., n-2$ (5)

$$g_i^2 = 1 + (q - q^{-1})e_ig_i$$
 para todo i (Relación cuadrática) (6)

donde los e_i 's son idempotente definidos como $e_i := r^{-1} \sum_{s=0}^{r-1} t_i^s t_{i+1}^{-s}$.

El álgebra de Yokonuma-Hecke puede ser considerada como una generalización del álgebra de Hecke de tipo A_{n-1} , de hecho se tiene que $\mathcal{Y}_{1,n}(q) = \mathcal{H}_n(q)$. De otro modo, el álgebra de Hecke puede ser obtenida como un quociente de $\mathcal{Y}_{n,n}(q)$ nor enviar cada t's a 1.

(2)

Álgebra de Yokonuma-Hecke

Definición

Sean n y r enteros positivos, $\xi = e^{\frac{2\pi i}{n}} y$ $R = \mathbb{Z}[q, q^{-1}, \xi, r^{-1}]$. El álgebra de Yokonuma-Hecke, denotada por $\mathcal{Y}_{r,n}(q)$, es la R-álgebra asociativa generada por $g_1, \ldots, g_{n-1}, t_1, \ldots, t_n$, sujetos a las siguientes relaciones:

$$t_i^r = 1$$
 para todo i (1)

$$t_i t_j = t_j t_i$$
 para todo i, j (2)

$$t_{j}g_{i} = g_{i}t_{j}s_{i} para todo i, j (3)$$

$$g_i g_j = g_j g_i \qquad para |i - j| > 1 \tag{4}$$

$$g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1}$$
 para todo $i = 1, ..., n-2$ (5)

$$g_i^2 = 1 + (q - q^{-1})e_ig_i$$
 para todo i (Relación cuadrática) (6)

donde los e_i 's son idempotente definidos como $e_i := r^{-1} \sum_{s=0}^{r-1} t_i^s t_{i+1}^{-s}$.

El álgebra de Yokonuma-Hecke puede ser considerada como una generalización del álgebra de Hecke de tipo A_{n-1} , de hecho se tiene que $\mathcal{Y}_{1,n}(q) = \mathcal{H}_n(q)$. De otro modo, el álgebra de Hecke puede ser obtenida como un cuociente de $\mathcal{Y}_{r,n}(q)$ por enviar cada t_i 's a 1.

Resultados obtenidos

Relación con el álgebra de Ariki-Koike

El álgebra de Yokonuma-Hecke también puede ser vista como una deformación del grupo de reflexiones complejo $C_r^n \rtimes \mathfrak{S}_n$ la cual es diferente a la deformación más famosa, el álgebra de **Ariki-Koike**, cuya definición en términos de generadores y relaciones es la siguiente

```
Definición Sea\ S = \mathbb{Z}[q,q^{-1},Q_1,\dots,Q_r].\ El\ álgebra\ de\ Ariki-koike,\ denotada\ por\ \mathcal{H}_{n,r},\ es\ la\ S-álgebra\ asociativa\ generada\ por\ g_1,\dots,g_n,\ sujetos\ a\ las\ siguientes\ relaciones: <math display="block">(g_1-Q_1)(g_1-Q_2)\cdots(g_1-Q_r)=0 \qquad (7) g_1g_2g_1g_2=g_2g_1g_2g_1 \qquad (8) g_ig_j=g_jg_i \qquad para\ |i-j|\geq 2 \qquad (9) g_ig_{i+1}g_i=g_{i+1}g_ig_{i+1} \qquad para\ i=2,\dots,n-1 \qquad (10) g_i^2=1+(q-q^{-1})g_i \quad para\ i\geq 2 \qquad (11)
```

Nótese de las últimas tres relaciones que el álgebra de Hecke es naturalmente una subálgebra de $\mathcal{H}_{n,r}$.

Resultados obtenidos

Relación con el álgebra de Ariki-Koike

El álgebra de Yokonuma-Hecke también puede ser vista como una deformación del grupo de reflexiones complejo $C_r^n \rtimes \mathfrak{S}_n$ la cual es diferente a la deformación más famosa, el álgebra de **Ariki-Koike**, cuya definición en términos de generadores y relaciones es la siguiente

Definición

Sea $S = \mathbb{Z}[q,q^{-1},Q_1,...,Q_r]$. El álgebra de Ariki-koike, denotada por $\mathcal{H}_{n,r}$, es la S-álgebra asociativa generada por $g_1,...,g_n$, sujetos a las siguientes relaciones:

$$(g_1 - Q_1)(g_1 - Q_2) \cdots (g_1 - Q_r) = 0$$
 (7)

$$g_1g_2g_1g_2 = g_2g_1g_2g_1$$

$$g_i g_j = g_j g_i$$
 $para |i-j| \ge 2$

$$|i-j| \ge 2 \tag{9}$$

$$g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1}$$
 para $i = 2, ..., n-1$

$$g_i^2 = 1 + (q - q^{-1})g_i \quad para \ i \ge 2$$
 (11)

Nótese de las últimas tres relaciones que el álgebra de Hecke es naturalmente una subálgebra de $\mathcal{H}_{n,r}$.

(10)

Sea V el R-módulo libre con base $\{v_i^t \mid 1 \le i \le n, \ 0 \le t \le r-1\}$. Luego, definimos los operadores $\mathbf{T} \in \mathrm{End}(V)$ y $\mathbf{G} \in \mathrm{End}(V^{\otimes 2})$ como sigue:

$$v_i^t)\mathbf{T} := \xi^t v_i^t$$

)

$$(v_l^\ell \otimes v_j^\delta)\mathbf{G} := \left\{ \begin{array}{ll} v_j^S \otimes v_l^\ell & \text{si } t \neq s \\ qv_l^\ell \otimes v_j^S & \text{si } t = s, \ i = j \\ v_j^S \otimes v_l^\ell & \text{si } t = s, \ i > j \\ (q - q^{-1})v_l^\ell \otimes v_j^S + v_j^S \otimes v_l^\ell & \text{if } t = s, \ i < j. \end{array} \right.$$

Extendemos estos operadores a operadores T_i y G_i actuando en el espacio tensorial $V^{\otimes n}$ por actuar con T en el el i-ésimo factor, y G en el factor (i, i+1), respectivamente.

Teorema

Existe una representación, la cual llamaremos ρ , de $\mathcal{Y}_{r,n}$ en $V^{\otimes n}$ dada por $t_i \to \mathbf{T}_i$ y $g_i \to \mathbf{G}_i$. Más aún, ρ es fiel.

Sea V el R-módulo libre con base $\{v_i^t \mid 1 \le i \le n, \ 0 \le t \le r-1\}$. Luego, definimos los operadores $\mathbf{T} \in \operatorname{End}(V)$ y $\mathbf{G} \in \operatorname{End}(V^{\otimes 2})$ como sigue:

$$(v_i^t)\mathbf{T} := \xi^t v_i^t$$

y

$$(v_i^t \otimes v_j^s) \mathbf{G} := \left\{ \begin{array}{ll} v_j^s \otimes v_i^t & \text{si } t \neq s \\ q v_i^t \otimes v_j^s & \text{si } t = s, \ i = j \\ v_j^s \otimes v_i^t & \text{si } t = s, \ i > j \\ (q - q^{-1}) v_i^t \otimes v_j^s + v_j^s \otimes v_i^t & \text{if } t = s, \ i < j. \end{array} \right.$$

Extendemos estos operadores a operadores \mathbf{T}_i y \mathbf{G}_i actuando en el espacio tensorial $V^{\otimes n}$ por actuar con \mathbf{T} en el el i-ésimo factor, y \mathbf{G} en el factor (i,i+1), respectivamente.

Teoren

Existe una representación, la cual llamaremos ρ , de $\mathcal{Y}_{r,n}$ en $V^{\otimes n}$ dada por $t_i \to T_i$ y $g_i \to G_i$. Más aún, ρ es fiel.

Sea V el R-módulo libre con base $\{v_i^t \mid 1 \le i \le n, \ 0 \le t \le r-1\}$. Luego, definimos los operadores $\mathbf{T} \in \operatorname{End}(V)$ y $\mathbf{G} \in \operatorname{End}(V^{\otimes 2})$ como sigue:

$$(v_i^t)\mathbf{T} := \xi^t v_i^t$$

y

$$(v_i^t \otimes v_j^s) \mathbf{G} := \left\{ \begin{array}{ll} v_j^s \otimes v_i^t & \text{si } t \neq s \\ q v_i^t \otimes v_j^s & \text{si } t = s, \ i = j \\ v_j^s \otimes v_i^t & \text{si } t = s, \ i > j \\ (q - q^{-1}) v_i^t \otimes v_j^s + v_j^s \otimes v_i^t & \text{if } t = s, \ i < j. \end{array} \right.$$

Extendemos estos operadores a operadores \mathbf{T}_i y \mathbf{G}_i actuando en el espacio tensorial $V^{\otimes n}$ por actuar con \mathbf{T} en el el i-ésimo factor, y \mathbf{G} en el factor (i,i+1), respectivamente.

Teorema

Existe una representación, la cual llamaremos ρ , de $\mathcal{Y}_{r,n}$ en $V^{\otimes n}$ dada por $t_i \to \mathbf{T}_i$ y $g_i \to \mathbf{G}_i$. Más aún, ρ es fiel.

Teorema

El álgebra de Yokunuma-Hecke es isomorfa al álgebra (modificada) de Ariki-Koike.

Demostración

Via representación tensorial podemos ver a $\mathcal{Y}_{r,n}(q)$ y $\widetilde{\mathcal{H}_{n,r}}$ como subálgebras de $\operatorname{End}(V^{\otimes n})$ y compararlas directamente.

A pesar que nuestra demostración es relativamente sencilla, pensamos que el resultado obtenido es importante ya que la teoría para el álgebra (mofidicada) de Ariki-Koike está bastante más desarrollada que para el álgebra de Yokonuma-Hecke. Por ejemplo

- Se conoce la dualidad de Schur-Wevl
- **Se** conoce la estructura celular de $\mathcal{H}_{r,n}$ y además
- se sabe que $\mathcal{H}_{r,n}$ es una suma directa de álgebras matriciales sobre usuales álgebras de Hecke (demostración alternativa).

Teorema

El álgebra de Yokunuma-Hecke es isomorfa al álgebra (modificada) de Ariki-Koike.

Demostración

Via representación tensorial podemos ver a $\mathcal{Y}_{r,n}(q)$ y $\widetilde{\mathcal{H}_{n,r}}$ como subálgebras de $\operatorname{End}(V^{\otimes n})$ y compararlas directamente.

A pesar que nuestra demostración es relativamente sencilla, pensamos que el resultado obtenido es importante ya que la teoría para el álgebra (mofidicada) de Ariki-Koike está bastante más desarrollada que para el álgebra de Yokonuma-Hecke. Por ejemplo

- Se conoce la dualidad de Schur-Weyl,
- Se conoce la estructura celular de H_{r,n} y además
- Se sabe que $\widetilde{\mathcal{H}_{r,n}}$ es una suma directa de álgebras matriciales sobre usuales álgebras de Hecke (demostración alternativa) .

Estructura celular de $\mathcal{Y}_{r,n}$

Definición (Álgebra celular)

Sea $\mathcal R$ un anillo conmutativo con identidad. Un **álgebra celular** sobre $\mathcal R$ es un álgebra asociativa (unital) A, junto con una **configuración celular** $(\Lambda, T, *)$ tal que

■ $(\Lambda, >)$ es un poset tal que para cada $\lambda \in \Lambda$ existe un conjunto finito de índices $T(\lambda)$ y elementos $c_{++}^{\lambda} \in A$ tales que

$$\mathcal{C} = \{c_{\mathfrak{st}}^{\lambda} \mid \lambda \in \Lambda \ y \ \mathfrak{s}, \mathfrak{t} \in T(\lambda)\}$$

- es una R-base de A.
- La función R-lineal * : A → A determinada por c^λ_{st} = c^λ_{ts}, para todo λ ∈ Λ y todo s, t ∈ T(λ), es un anti-automorfismo de álgebras de A.
- Para cada $\lambda \in \Lambda$, $\mathfrak{t} \in T(\lambda)$ y $a \in A$ existe $r_{\mathfrak{v}} \in R$ tal que para todo $\mathfrak{s} \in T(\lambda)$

$$c_{\mathfrak{st}}^{\lambda} a \equiv \sum_{\mathfrak{v} \in T(\lambda)} r_{\mathfrak{v}} c_{\mathfrak{sv}}^{\lambda} \mod \tilde{A}^{\lambda}$$

donde \tilde{A}^{λ} es el \mathcal{R} -submódulo de A con base $\{c_{\mathfrak{u}\mathfrak{v}}^{\mu} \mid \mu \in \Lambda, \mu > \lambda \ y \ \mathfrak{u}, \mathfrak{v} \in T(\mu)\}.$

Definición (Álgebra celular)

Sea $\mathcal R$ un anillo conmutativo con identidad. Un **álgebra celular** sobre $\mathcal R$ es un álgebra asociativa (unital) A, junto con una **configuración celular** $(\Lambda, T, *)$ tal que

■ $(\Lambda,>)$ es un poset tal que para cada $\lambda \in \Lambda$ existe un conjunto finito de índices $T(\lambda)$ y elementos $c_{et}^{\lambda} \in A$ tales que

$$\mathcal{C} = \{c_{\mathfrak{st}}^{\lambda} \mid \lambda \in \Lambda \ y \ \mathfrak{s}, \mathfrak{t} \in T(\lambda)\}$$

es una R-base de A.

- **2** La función \mathcal{R} -lineal * : A → A determinada por $c_{\mathfrak{st}}^{\lambda}$ * = $c_{\mathfrak{ts}}^{\lambda}$, para todo $\lambda \in \Lambda$ y todo $\mathfrak{s}, \mathfrak{t} \in T(\lambda)$, es un anti-automorfismo de álgebras de A.
- Para cada $\lambda \in \Lambda$, $\mathfrak{t} \in T(\lambda)$ y $a \in A$ existe $r_{\mathfrak{v}} \in R$ tal que para todo $\mathfrak{s} \in T(\lambda)$

$$c_{\mathfrak{s}\mathfrak{t}}^{\lambda} a \equiv \sum_{\mathfrak{v} \in T(\lambda)} r_{\mathfrak{v}} c_{\mathfrak{s}\mathfrak{v}}^{\lambda} \mod \tilde{A}^{\lambda}$$

 $donde\ \tilde{A}^{\lambda}\ es\ el\ \mathcal{R}\text{-submódulo}\ de\ A\ con\ base\ \{c_{\mathfrak{uv}}^{\mu}\mid \mu\in\Lambda, \mu>\lambda\ y\ \mathfrak{u},\mathfrak{v}\in T(\mu)\}$

Definición (Álgebra celular)

Sea $\mathcal R$ un anillo conmutativo con identidad. Un **álgebra celular** sobre $\mathcal R$ es un álgebra asociativa (unital) A, junto con una **configuración celular** $(\Lambda, T, *)$ tal que

■ $(\Lambda,>)$ es un poset tal que para cada $\lambda \in \Lambda$ existe un conjunto finito de índices $T(\lambda)$ y elementos $c_{et}^{\lambda} \in A$ tales que

$$\mathcal{C} = \{c_{\mathfrak{st}}^{\lambda} \mid \lambda \in \Lambda \ y \ \mathfrak{s}, \mathfrak{t} \in T(\lambda)\}$$

es una R-base de A.

- **2** La función \mathcal{R} -lineal * : A → A determinada por $c_{\mathfrak{st}}^{\lambda}$ * = $c_{\mathfrak{ts}}^{\lambda}$, para todo $\lambda \in \Lambda$ y todo $\mathfrak{s}, \mathfrak{t} \in T(\lambda)$, es un anti-automorfismo de álgebras de A.
- **3** Para cada $\lambda \in \Lambda$, $\mathfrak{t} \in T(\lambda)$ $y \in A$ existe $r_{\mathfrak{v}} \in R$ tal que para todo $\mathfrak{s} \in T(\lambda)$

$$c_{\mathfrak{st}}^{\lambda} a \equiv \sum_{\mathfrak{v} \in T(\lambda)} r_{\mathfrak{v}} c_{\mathfrak{sv}}^{\lambda} \mod \tilde{A}^{\lambda}$$

 $donde~\tilde{A}^{\lambda}~es~el~\mathcal{R}-subm\'odulo~de~A~con~base~\{c^{\mu}_{\mathfrak{uv}}\mid \mu\in\Lambda, \mu>\lambda~y~\mathfrak{u},\mathfrak{v}\in T(\mu)\}.$

Algunas de las ventajas de tener una estructura celular son las siguientes:

- Obtener el conjunto completo de A-módulos irreducibles (Graham-Lehrer).
- Obtener un criterio de semisimplicidad por medio de unos elementos notables llamados elementos de Jucys-Murphy.

Ejemplo

El álgebra de Temperley Lieb, $TL_{n(\delta)}$, es una \mathbb{C} -álgebra generada por U_1, \dots, U_{n-1} , sujetos a las relaciones

$$U_i^2 = \delta U_i \qquad 1 \le i \le n - 1 \tag{12}$$

$$|U_j U_i = U_i \qquad |i - j| = 1 \tag{13}$$

$$I_i U_j = U_j U_i \quad para \ |i - j| \ge 1 \tag{14}$$

También se puede definir por medio de diagramas

$$U_l$$
: $\begin{bmatrix} 1 & i-1 & i & i+1 & i+2 & i \\ & & & & & \\ & & & & \end{bmatrix}$...

Algunas de las ventajas de tener una estructura celular son las siguientes:

- Obtener el conjunto completo de A-módulos irreducibles (Graham-Lehrer).
- Obtener un criterio de semisimplicidad por medio de unos elementos notables llamados elementos de Jucys-Murphy.

Ejemplo

El álgebra de Temperley Lieb, $TL_{n(\delta)}$, es una \mathbb{C} -álgebra generada por U_1, \dots, U_{n-1} , sujetos a las relaciones

$$U_i^2 = \delta U_i \qquad 1 \le i \le n - 1 \tag{12}$$

$$U_iU_jU_i=U_i \hspace{1cm} |i-j|=1 \hspace{1cm} \hspace{1cm}$$

$$U_iU_j=U_jU_i \quad para \ |i-j|\geq 1 \tag{14}$$

También se puede definir por medio de diagramas

Ejemplo

El álgebra de Temperley-Lieb $TL_3(\delta)$ tiene base celular

En este caso el poset viene dado por $\Lambda = \{\lambda \in \{0,1,2,3\} \mid 3-\lambda \in 2\mathbb{Z}\} = \{1,3\}$ y los "Tableaux", $T(\lambda)$, vienen dados del siguiente modo:

1 Para $\lambda = 1$, los "Tableaux" con una línea recta son:

2 Para $\lambda = 3$, el único "tableau" con tres líneas rectas es

$$\mathfrak{s}_0$$
:

Base celular de $\mathcal{Y}_{r,n}$

Estructura celular para $\mathcal{Y}_{r,n}(q)$

Una r-multipartición de n es un r-tupla ordenada $\lambda = (\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(r)})$ de particiones $\lambda^{(k)}$ tales que $\sum_{i=1}^{r} |\lambda^{(i)}| = n$. Denotaremos por $Par_{r,n}$ el conjunto de r-multiparticiones de n. El diagrama de una multipartición es la r-tupla de diagramas dados por sus componentes. Por ejemplo, el diagrama de $\lambda = ((3,2),(3,1),(1,1,1)) \in \mathcal{MP}_{12,3}$ es

Sea $\lambda = (\lambda^{(1)}, \lambda^{(2)}, ..., \lambda^{(r)})$ una multipartición de n. Un λ -multitableau es una r-tupla $\mathfrak{t} = (\mathfrak{t}^{(1)}, ..., \mathfrak{t}^{(r)})$, donde para cada i = 1, ..., r, $\mathfrak{t}^{(i)}$ es un $\lambda^{(i)}$ -tableau. Un λ -multitableau \mathfrak{t} es **estandar por filas** si cada una de sus componente lo es. Similarmente, diremos que \mathfrak{t} es **estandar** si cada una de sus componentes lo es. El conjunto de los λ -multitableaux estandar lo denotaremos por $\mathrm{Std}(\lambda)$.

$$\mathfrak{t} = \left(\begin{array}{c|c} 1 & 2 & 3 \\ \hline 4 & 5 \end{array}, \begin{array}{c} 6 & 7 \\ \hline 8 & 9 \end{array} \right) \hspace{1cm} \mathfrak{s} = \left(\begin{array}{c|c} 2 & 7 & 8 \\ \hline 1 & 4 \end{array}, \begin{array}{c} 5 & 6 \end{array}, \begin{array}{c} 3 \\ \hline 9 \end{array} \right)$$

Estanda

Estandar por filas

Estructura celular para $\mathcal{Y}_{r,n}(q)$

Una r-multipartición de n es un r-tupla ordenada $\lambda = (\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(r)})$ de particiones $\lambda^{(k)}$ tales que $\sum_{i=1}^r |\lambda^{(i)}| = n$. Denotaremos por $Par_{r,n}$ el conjunto de r-multiparticiones de n. El diagrama de una multipartición es la r-tupla de diagramas dados por sus componentes. Por ejemplo, el diagrama de $\lambda = ((3,2),(3,1),(1,1,1)) \in \mathcal{MP}_{12,3}$ es

Sea $\lambda = (\lambda^{(1)}, \lambda^{(2)}, \dots, \lambda^{(r)})$ una multipartición de n. Un λ -multitableau es una r-tupla $\mathfrak{t} = (\mathfrak{t}^{(1)}, \dots, \mathfrak{t}^{(r)})$, donde para cada $i = 1, \dots, r$, $\mathfrak{t}^{(i)}$ es un $\lambda^{(i)}$ -tableau. Un λ -multitableau \mathfrak{t} es **estandar por filas** si cada una de sus componente lo es. Similarmente, diremos que \mathfrak{t} es **estandar** si cada una de sus componentes lo es. El conjunto de los λ -multitableaux estandar lo denotaremos por $\mathrm{Std}(\lambda)$.

$$\mathbf{t} = \left(\begin{array}{c|c} 1 & 2 & 3 \\ \hline 4 & 5 \end{array} \right), \begin{array}{c|c} 6 & 7 \\ \hline 8 & 9 \end{array} \right)$$

Estandar

Estandar por filas

Denotaremos por \mathfrak{t}^{λ} el λ -multitableau en donde los números $1,2,\ldots,n$ aparecen en orden a lo largo de las filas de la primera componente, y luego a lo largo de las filas de la segunda componente y así sucesivamente. Por ejemplo $\mathfrak{t}^{\lambda}=\mathfrak{t}$.

Subgrupo de Young asociado

$$\mathfrak{S}_{\lambda} := \mathfrak{S}_{\lambda^{(1)}} \times \mathfrak{S}_{\lambda^{(2)}} \times \cdots \times \mathfrak{S}_{\lambda^{(r)}}$$

Para cada λ -multitableau $\mathfrak t$, denotaremos por $d(\mathfrak t)\in\mathfrak S_n$ el único elemento de largo minimal tal que $\mathfrak t=\mathfrak t^\lambda d(\mathfrak t)$.

Ejemplo (Murphy

Sea $q \in \mathcal{R}$ un elemento invertible y n un entero positivo. Denotamos por $\mathcal{H}_n(q)$ la \mathcal{R} -álgebra de Iwagori-Hecke de tipo A_{n-1} . Consideremos $\Lambda = \mathcal{P}(n)$ con el orden de dominancia, y para cada $\mu \in \Lambda$ consideremos $T(\mu) = Std(\mu)$ el conjunto de tableaux estándar y el anti-automorfismo $*: g_i \to g_i$ para todo $1 \le i \le n-1$. Luego

$$\{m_{\mathfrak{s}\mathfrak{t}}^{\lambda} = g_{d(\mathfrak{s})}^{*} x_{\mu} g_{d(\mathfrak{t})} \mid \mathfrak{s}, \mathfrak{t} \in Std(\mu), \mu \in \mathcal{P}(n)\}$$

es una base celular de $\mathcal{H}_n(q)$. Aquí $x_{\mu} := \sum_{w \in \mathfrak{S}_{\mu}} g_w$

Base celular de $\mathcal{Y}_{r,n}$

Denotaremos por \mathfrak{t}^{λ} el λ -multitableau en donde los números $1,2,\ldots,n$ aparecen en orden a lo largo de las filas de la primera componente, y luego a lo largo de las filas de la segunda componente y así sucesivamente. Por ejemplo $\mathfrak{t}^{\lambda}=\mathfrak{t}$.

$$\mathfrak{S}_{\lambda} := \mathfrak{S}_{\lambda^{(1)}} \times \mathfrak{S}_{\lambda^{(2)}} \times \cdots \times \mathfrak{S}_{\lambda^{(r)}}$$

Para cada λ -multitableau $\mathfrak t$, denotaremos por $d(\mathfrak t)\in\mathfrak S_n$ el único elemento de largo minimal tal que $\mathfrak t=\mathfrak t^\lambda d(\mathfrak t)$.

Ejemplo (Murphy)

Subgrupo de Young asociado

Sea $q \in \mathcal{R}$ un elemento invertible y n un entero positivo. Denotamos por $\mathcal{H}_n(q)$ la \mathcal{R} -álgebra de Iwagori-Hecke de tipo A_{n-1} . Consideremos $\Lambda = \mathcal{P}(n)$ con el orden de dominancia, y para cada $\mu \in \Lambda$ consideremos $T(\mu) = Std(\mu)$ el conjunto de tableaux estándar y el anti-automorfismo $*: g_i \to g_i$ para todo $1 \le i \le n-1$. Luego

$$\{m_{\mathfrak{st}}^{\lambda}=g_{d(\mathfrak{s})}^{*}x\mu g_{d(\mathfrak{t})}\mid \mathfrak{s},\mathfrak{t}\in Std(\mu),\,\mu\in\mathcal{P}(n)\}$$

es una base celular de $\mathcal{H}_n(q)$. Aquí $x_{\mu} := \sum_{w \in \mathfrak{S}_{\mu}} g_w$.

En nuestro caso, generalizamos este concepto considerando

$$\Lambda = Par_{r,n} \quad T(\lambda) = \operatorname{Std}(\lambda) \qquad \begin{array}{c} *: \quad g_i \to g_i \\ t_i \to t_i \end{array}$$

Necesitamos normalizar la base de Murphy de modo que podamos controlar los generadores t_i 's de $\mathcal{Y}_{r,n}$. Para esto definimos dos objetos importantes, para cada multipartición λ

- lacksquare es un idempotente definido como un producto de conjugados de los e_i 's.
- \mathbf{u}_{λ} es un producto de proyectores de los espacios propios de los t_i 's.

Generalizamos el simetrizador x_{μ} , para cada multipartición $\lambda=(\lambda^{(1)},\lambda^{(2)},...,\lambda^{(r)})$ como sigue

$$m_{\lambda} := x_{\lambda(1)} \, x_{\lambda(2)} \, \cdots x_{\lambda(r)}$$

Así, tenemos el siguiente teorema

El álgebra $V_{r,n}$ es un R-módulo libre con base

$$\mathcal{B}_{r,n} := \left\{ m_{\mathfrak{S}\mathfrak{t}}^{\lambda} = g_{d(\mathfrak{S})}^{*} E_{A_{\lambda}} \, u_{\lambda} \, m_{\lambda} \, g_{d(\mathfrak{t})} \mid \mathfrak{S}, \mathfrak{t} \in \mathrm{Std}(\lambda), \, \lambda \in \mathit{Par}_{r,n} \right\}$$

Más aún, (Brn, Parrn) es una base celular de Vrn

En nuestro caso, generalizamos este concepto considerando

$$\Lambda = Par_{r,n} \quad T(\lambda) = \operatorname{Std}(\lambda) \qquad \begin{array}{c} *: \quad g_i \to g_i \\ t_i \to t_i \end{array}$$

Necesitamos normalizar la base de Murphy de modo que podamos controlar los generadores t_i 's de $\mathcal{Y}_{r,n}$. Para esto definimos dos objetos importantes, para cada multipartición λ

- lacksquare es un idempotente definido como un producto de conjugados de los e_i 's.
- \mathbf{u}_{λ} es un producto de proyectores de los espacios propios de los t_i 's.

Generalizamos el simetrizador x_{μ} , para cada multipartición $\lambda=(\lambda^{(1)},\lambda^{(2)},...,\lambda^{(r)})$ como sigue

$$m_{\lambda} := x_{\lambda(1)} x_{\lambda(2)} \cdots x_{\lambda(r)}$$

Así, tenemos el siguiente teorema

Teorema

El álgebra $\mathcal{Y}_{r,n}$ es un R-módulo libre con base

$$\mathcal{B}_{r,n} := \left\{ m_{\mathfrak{s}\mathfrak{t}}^{\lambda} = g_{d(\mathfrak{s})}^{*} E_{A_{\lambda}} u_{\lambda} m_{\lambda} g_{d(\mathfrak{t})} \mid \mathfrak{s}, \mathfrak{t} \in \operatorname{Std}(\lambda), \lambda \in \operatorname{Par}_{r,n} \right\}.$$

Más aún, $(\mathcal{B}_{r,n}, Par_{r,n})$ es una base celular de $\mathcal{Y}_{r,n}$.

Una nueva presentación para $\mathcal{Y}_{r,n}(q)$

Sea

$$\mathcal{M}_n := \{ \mathfrak{s} \mid \mathfrak{s} \in \text{Std}(((1^{m_1}), (1^{m_2}), \dots, (1^{m_r}))) \text{ donde } m_i \ge 0 \text{ y } m_1 + \dots + m_r = n \}$$

Proposición

El álgebra $\mathcal{Y}_{r,n}(q)$ es isomorfa a la R-álgebra asociativa generada por los elementos $\{g_i|i=1,\ldots,n-1\}$ y $\{f_{\mathfrak{S}}\mid \mathfrak{S}\in\mathcal{M}_n\}$ sujeta a las siguientes relaciones:

$$g_i g_j = g_j g_i \qquad para |i - j| > 1 \tag{15}$$

$$g_i g_{i+1} g_i = g_{i+1} g_i g_{i+1}$$
 para todo $i = 1, ..., n-2$ (16)

$$f_{\mathfrak{S}}g_i = g_i f_{\mathfrak{S}s_i}$$
 para todo \mathfrak{S}, i (17)

$$f_{\mathfrak{S}}f_{\mathfrak{S}'} = 0$$
 para $\mathfrak{S} \neq \mathfrak{S}'$ (18)

$$g_i^2 = 1 + (q - q^{-1}) \sum_{\mathfrak{s} \in \mathcal{M}_{\mathfrak{s}}} \delta_{i,i+1}(\mathfrak{s}) f_{\mathfrak{s}} g_i \quad para \ todo \ i$$
 (19)

$$\sum_{\mathfrak{s} \in \mathcal{M}_n} f_{\mathfrak{s}} = 1 \ y \ f_{\mathfrak{s}}^2 = f_{\mathfrak{s}}$$
 para todo \mathfrak{s} (20)

donde $\delta_{i,i+1}(\mathfrak{s}) := 1$ si i y i+1 están en la misma componente de \mathfrak{s} , si no $\delta_{i,i+1}(\mathfrak{s}) := 0$. Más $a \bar{A}^{\circ} n$, definimos $f_{\mathfrak{s} s_i} := f_{\mathfrak{s}}$ si $\delta_{i,i+1}(\mathfrak{s}) = 1$.

Contenidos

- 1 Introducción
- 2 Álgebra de Yokonuma-Hecke
 - \blacksquare Representación tensorial de $\mathcal{Y}_{r,n}$
 - Base celular de $\mathcal{Y}_{r,n}$
 - Una nueva presentación para $\mathcal{Y}_{r,n}(q)$
- 3 Álgebra de "Braids and Ties"
- 4 Problemas abiertos

Álgebra de "Braids and Ties"

Estructura celular para $\mathcal{E}_n(q)$

Definición

Sea n un entero positivo. El álgebra de "braids and ties", $\mathcal{E}_n(q)$, es el $\mathbb{Z}[q,q^{-1}]$ -álgebra generada por $g_1, \ldots, g_{n-1}, e_1, \ldots, e_{n-1}$, sujetos a las siguientes relatciones:

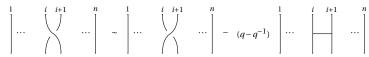
$$\begin{array}{lll} g_{i}g_{j} & = g_{j}g_{i} & para \ |i-j| > 1 \\ g_{i}g_{j}g_{i} & = g_{j}g_{i}g_{j} & para \ |i-j| = 1 \\ g_{i}e_{i} & = e_{i}g_{i} & para \ todo \ i \\ e_{i}g_{j}g_{i} & = g_{j}g_{i}e_{j} & para \ |i-j| = 1 \\ e_{i}e_{j}g_{j} & = e_{i}g_{j}e_{i} = g_{j}e_{i}e_{j} & para \ |i-j| = 1 \\ e_{i}e_{j} & = e_{j}e_{i} & para \ todo \ i,j \\ g_{i}e_{j} & = e_{j}g_{i} & para \ |i-j| > 1 \\ e_{i}^{2}e_{i}e_{j} & = e_{j}g_{i} & para \ todo \ i. \end{array}$$

De hecho, para $r \ge n$, también podemos definir $\mathcal{E}_n(q)$ como la subálgebra de $\mathcal{Y}_{r,n}$ generada por los g_i 's y los e_i 's definidos como antes.

Álgebra de "Braids and Ties"

El álgebra de "braids and ties" se puede definir de manera geométrica del siguiente modo:

De la relación cuadrática se obtiene la siguiente "skein rule"



Un ejemplo de un monoide en $\mathcal{E}_4(q)$ es

$$e_2g_1g_3^{-1}g_2^{-1}g_3e_2$$
:

En un artículo anterior, S. Ryom-Hansen construyó un base lineal para esta álgebra

$$\{E_Ag_w\mid A\in\mathcal{SP}_n,w\in\mathfrak{S}_n\}$$

En particular, dim $\mathcal{E}_n(q) = B_n n!$ donde B_n es el n\bar{A}^omero de Bell. Adem\bar{a}s estudi\bar{o} los m\bar{o}dulos simples de $\mathcal{E}_n(q)$ por medio de una representaci\bar{o}n tensorial fiel sobre el espacio $V^{\otimes n}$. M\bar{a}s a\bar{u}n, \bar{A}\bar{\o}l prob\bar{o} que \text{\text{\operatio}} st\text{o}n casificados por un conjunto de pares de multiparticiones. Esto nos sugiri\bar{o} un punto de partida para resolver uno de los problemas iniciales

Teorema

El álgebra de "braids and ties", $\mathcal{E}_n(q)_n$ es un álgebra celular con base celular

$$\{g_{d_{\lambda}(\mathfrak{s})}^* E_{A_{\Lambda}} x_{\lambda} b_{\mathfrak{s} \mathfrak{t}} g_{d_{\lambda}(\mathfrak{t})} \mid \mathfrak{s}, \mathfrak{t} \in Std(\Lambda), \Lambda \in \mathcal{L}_n\}$$

donde \mathcal{L}_n es un conjunto de pares de multiparticiones siguiente

$$\mathcal{L}_n := \{ \Lambda = (\lambda, \mu) \mid \mathcal{IMP}_n, \ \mu \in \mathcal{RMP}_n \}$$

En un artículo anterior, S. Ryom-Hansen construyó un base lineal para esta álgebra

$$\{E_Ag_w\mid A\in\mathcal{SP}_n,w\in\mathfrak{S}_n\}$$

En particular, dim $\mathcal{E}_n(q) = B_n n!$ donde B_n es el número de Bell. Además estudió los módulos simples de $\mathcal{E}_n(q)$ por medio de una representación tensorial fiel sobre el espacio $V^{\otimes n}$. Más aún, él probó que éstos están clasificados por un conjunto de pares de multiparticiones. Esto nos sugirió un punto de partida para resolver uno de los problemas iniciales

Teorema

El álgebra de "braids and ties", $\mathcal{E}_n(q)_n$ es un álgebra celular con base celular

$$\{g_{d_{\lambda}(\mathfrak{s})}^*E_{A_{\Lambda}}x_{\lambda}b_{\mathfrak{s}\mathfrak{t}}g_{d_{\lambda}(\mathfrak{t})}\mid \mathfrak{s},\mathfrak{t}\in \operatorname{Std}(\Lambda), \Lambda\in\mathcal{L}_n\}$$

donde \mathcal{L}_n es un conjunto de pares de multiparticiones siguiente

$$\mathcal{L}_n := \{ \Lambda = (\lambda, \mu) \mid \mathcal{IMP}_n, \ \mu \in \mathcal{RMP}_n \}$$

Contenidos

- 1 Introducción
- 2 Álgebra de Yokonuma-Hecke
 - \blacksquare Representación tensorial de $\mathcal{Y}_{r,n}$
 - Base celular de $\mathcal{Y}_{r,n}$
 - Una nueva presentación para $\mathcal{Y}_{r,n}(q)$
- 3 Álgebra de "Braids and Ties"
- 4 Problemas abiertos

- **I** Encontrar una dualidad de Schur-Weyl para $\mathcal{E}_n(q)$.
- Estudiar los elementos de Jucys-Murphy de $\mathcal{E}_n(q)$. Esto podría darnos un criterio de semisimplicidad para $\mathcal{E}_n(q)$
- Aicardi y Juyumaya construyeron una traza de Markov sobre $\mathcal{E}_n(q)$. Sería interesante escribir ésta por medio de los caracteres irreducibles de $\mathcal{E}_n(q)$ (análogamente a la fórmula de Frobenius para al traza de Ocneanu).
- Estudiar la invariante polinomial de links recientemente construida por Aicardi y Juyumaya, F.
- Por medio de la interpretación gráfica del álgebra $\mathcal{E}_n(q)$ se construyeron unos nuevos tipos de links llamados tied links.

- **I** Encontrar una dualidad de Schur-Weyl para $\mathcal{E}_n(q)$.
- ${f Z}$ Estudiar los elementos de Jucys-Murphy de ${\cal E}_n(q)$. Esto podría darnos un criterio de semisimplicidad para ${\cal E}_n(q)$
- Aicardi y Juyumaya construyeron una traza de Markov sobre $\mathcal{E}_n(q)$. Sería interesante escribir ésta por medio de los caracteres irreducibles de $\mathcal{E}_n(q)$ (análogamente a la fórmula de Frobenius para al traza de Ocneanu).
- **E** Estudiar la invariante polinomial de links recientemente construida por Aicardi y Juyumaya, \mathcal{F} .
- Por medio de la interpretación gráfica del álgebra $\mathcal{E}_n(q)$ se construyeron unos nuevos tipos de links llamados tied links.

- **I** Encontrar una dualidad de Schur-Weyl para $\mathcal{E}_n(q)$.
- ${f Z}$ Estudiar los elementos de Jucys-Murphy de ${\cal E}_n(q)$. Esto podría darnos un criterio de semisimplicidad para ${\cal E}_n(q)$
- Aicardi y Juyumaya construyeron una traza de Markov sobre $\mathcal{E}_n(q)$. Sería interesante escribir ésta por medio de los caracteres irreducibles de $\mathcal{E}_n(q)$ (análogamente a la fórmula de Frobenius para al traza de Ocneanu).
- **E** Estudiar la invariante polinomial de links recientemente construida por Aicardi y Juyumaya, \mathcal{F} .
- Por medio de la interpretación gráfica del álgebra $\mathcal{E}_n(q)$ se construyeron unos nuevos tipos de links llamados **tied links**.

- **I** Encontrar una dualidad de Schur-Weyl para $\mathcal{E}_n(q)$.
- ${f Z}$ Estudiar los elementos de Jucys-Murphy de ${\cal E}_n(q)$. Esto podría darnos un criterio de semisimplicidad para ${\cal E}_n(q)$
- Aicardi y Juyumaya construyeron una traza de Markov sobre $\mathcal{E}_n(q)$. Sería interesante escribir ésta por medio de los caracteres irreducibles de $\mathcal{E}_n(q)$ (análogamente a la fórmula de Frobenius para al traza de Ocneanu).
- \blacksquare Estudiar la invariante polinomial de links recientemente construida por Aicardi y Juyumaya, \mathcal{F} .
- Por medio de la interpretación gráfica del álgebra $\mathcal{E}_n(q)$ se construyeron unos nuevos tipos de links llamados **tied links**.

- **I** Encontrar una dualidad de Schur-Weyl para $\mathcal{E}_n(q)$.
- ${\Bbb Z}$ Estudiar los elementos de Jucys-Murphy de ${\cal E}_n(q)$. Esto podría darnos un criterio de semisimplicidad para ${\cal E}_n(q)$
- Aicardi y Juyumaya construyeron una traza de Markov sobre $\mathcal{E}_n(q)$. Sería interesante escribir ésta por medio de los caracteres irreducibles de $\mathcal{E}_n(q)$ (análogamente a la fórmula de Frobenius para al traza de Ocneanu).
- \blacksquare Estudiar la invariante polinomial de links recientemente construida por Aicardi y Juyumaya, \mathcal{F} .
- **5** Por medio de la interpretación gráfica del álgebra $\mathcal{E}_n(q)$ se construyeron unos nuevos tipos de links llamados **tied links**.