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CHAPTER I

Introduction

In this thesis are studied Reaction diffusion equations with a single delay h that

have the form

(1.1) ut(t, x) = ∆u(t, x) + f(u(t, x), u(t− h, x))

where x ∈ Rn, t ∈ R, h ≥ 0 is the delay. Function f satisfies the monostablity

condition: If g(x) := f(x, x), then

(i) g(0) = 0, g(κ) = 0 for some κ > 0,

(ii) g(x) > 0 for x ∈ (0, κ),

(iii) g′(0) > 0, g′(κ) < 0

Also, some differentiability conditions are imposed to f , precisely f ∈ C1,α, α ∈

(0, 1], that is, the partial derivatives fi, i = 1, 2 satisfies the α-Hölder condition

|fi(x1, y1)− fi(x2, y2)| ≤ C‖(x1 − x2, y1 − y2)‖α.

This type of equations are used as models in population dynamics and commonly

in its applications, quantity u is the size of population in some time and place, then

it is considered a positive quantity.
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Definition 1. A solution u(t, x) of (1.1) is called travelling wave solution if

u(t, x) = φ(x · ν + ct), where φ : R → R satisfies φ(−∞) = 0, φ(+∞) = κ. The

constant c ∈ R+ is called propagation speed of the wave. The function φ is called the

profile of the wave and if a travelling wave u has a monotone profile, u is a monotone

travelling wavefront solution.

The study of travelling wave solution for reaction diffusion equations was deve-

loped first at the work of Kolmogorov et al.[37] and in Fischer [23], but is a extensively

studied topic in many partial differential equations ( see for example [25]).

In the present thesis is studied the existence and in some cases the uniqueness of

monotone travelling waves solutions for equations as (1.1) but with delay, this is a

great additional complication in the theory.

Differential equations with delay are also a extensively studied topic. They are

more realistic models than differential equations without delay, many examples of

application can be founded in [15] or [17], where delay symbolizing lifetime of member

in a specie or, the time spending some substance for mixed or, the time of response

of some mechanism faced with some stimulus, etc. Delay differential equations can

model phenomena as oscillations better than without delayed equations, one inte-

resting example of this can be found in ([17], pp. 51) where Nicholson’s equation

dN

dt
= ry(t− τ)e−N(t−τ)/K −mN(t)

was used as model for a blowflies specie whose population show an oscillatory

behavior.

However, mathematical theory of delayed differential equations is more complicated

than theory for without delay equations, some difference can be illustrated with a
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simple first order equations

(1.2) x′(t) = ax(t− τ),

where a ∈ R and τ ≥ 0. If τ = π/2, a 6= 0, equation (1.2) have a solution of the

form x(t) = c1 cos(at)+c2 sin(at). That is impossible for a linear first order equations

without delay.

Another important difference is that if you want to write an initial value problem

associated to equation 1.2, then you will need a space of initial conditions C([−τ, 0],R),

that is, the initial conditions space has infinity dimension, for this reason, tools of

ODE as phase space analysis do not work in a ODE with delay.

Study the problem of existence and uniqueness of monotone travelling waves solu-

tions u(t, x) = φ(x · ν + ct) for equation (1.1) is equivalent to study the problem

of existence and uniqueness(up to translation) of heteroclinic solutions φ(s), with

φ(−∞) = 0, φ(+∞) = κ for the second order ordinary differential equation with

delay

(1.3) x′′(t)− cx′(t) + f(x(t), x(t− ch)) = 0.

There are essentially two approach to solve this problem, the super and sub solution

method, proposed in [61] and Lyapunov-Schmidt Reduction proposed in [20].

In the second chapter of this thesis is used the super and subsolutions for studing

the KPP-Fischer equation with delay

(1.4) ut(t, x) = ∆u(t, x) + u(t, x)
(
1− u(t− h, x)

)
,

but with a different operator that in [61], (see equations 2.5 and 2.6 bellow). Is

noteworthy that after the work [61] there are many works using super and subsolu-

tion method but, all with similar integral operator (3.23). In our approach, one of
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the keys is to use a different integral operator. Also, the study of the asymptotic

behavior of a monotone heteroclinic of (1.3) in ±∞ gives the key for constructing

sub and super solutions gluing properly eigenfunctions of autonomous linearizing

equations around the equilibria.

Also, this work gives a explicit method for approximate a monotone travelling wave

solution using a computer, because construction of super and subsolution are give

completely in terms of real roots of eigenvalues of linearizing equation. This is an

important aspect if we observe that equation (1.4) is a model in biomathematics (see,

for example [47]).

In the third chapter, is studied the most general case (1.1). This generalization

includes, in addition to KPP-Fischer equation, many important and extensively stu-

died equations, such that the Mackey-Glass equation and the diffusive Nicholson’s

blowflies equation (See section 2 of third chapter).

In this case we use the Lyapunov-Schmidt reduction method. Is known that, in the

case h = 0, equation (1.1) has monotone travelling waves solution for all c ≥ c∗

and also are knowledge its asymptotic formulae in ±∞ (see [55]), then the idea is

to extend the existence of waves to a set DN of parameters (h, c) ∈ R+ × R+ (delay

and speed, see fig.3.2). For this, you need studying the linearizing equation around a

heteroclinic solution, this equation is an asymptotically autonomous equation that,

over an appropriated weighted space is a Fredholm operator, surjective and with

one-dimensional Kernel. This is one of the difficult steps to conclude our result,

where is used theory of adjoint operators and exponential dichotomies for functional

differential equations developed by Hale and Lin in [32] and the theory of discrete

Lyapunov functions developed by J. Mallet-Paret and G. Sell in [45].
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The monotonicity of the waves is an important key of our program because it allows

to enclose the set of parameters where monotone waves exist by take limit (see proof

of Lemma 26).

The main result of third chapter (theorem III.1) gives a criterion for the existence

of monotone wavefront in some important cases as sub tangential nonlinearity (see

lemma 19), in particular, the problem of existence of monotone travelling wavefronts

for Nicholson’s equation is completely answered. Is remarkable that before this work,

the existence of monotone fronts for Nicholson’s equations was known only for the

case p/δ ∈ (1, e] (see [53]).

Theorem III.1 gives another proof of existence of monotone travelling wavefronts for

the KPP- Fischer equation studied in second chapter.

The second chapter was published at the year 2011 [26], and the third chapter

was recently submitted and can be found in www.arxiv.org.[27].



CHAPTER II

Monotone traveling wavefronts of the KPP-Fischer delayed
equation

2.1 Introduction and main results

It is well known that the traveling waves theory was initiated in 1937 by Kol-

mogorov, Petrovskii, Piskunov [37] and Fisher [23] who studied the wavefront solu-

tions of the diffusive logistic equation

(2.1) ut(t, x) = ∆u(t, x) + u(t, x)(1− u(t, x)), u ≥ 0, x ∈ Rm.

We recall that the classical solution u(x, t) = φ(ν ·x+ct), ‖ν‖ = 1, is a wavefront (or

a traveling front) for (2.1), if the profile function φ is positive and satisfies φ(−∞) =

0, φ(+∞) = 1.

The existence of the wavefronts in (2.1) is equivalent to the presence of positive

heteroclinic connections in an associated second order non-linear differential equa-

tion. The phase plane analysis is the natural geometric way to study these hetero-

clinics. The method is conclusive enough to demonstrate that (a) for every c ≥ 2,

the KPP-Fisher equation has exactly one traveling front u(x, t) = φ(ν · x + ct); (b)

Eq. (2.1) does not have any traveling front propagating at the velocity c < 2; (c)

the profile φ is necessarily strictly increasing function.

The stability of traveling fronts in (2.1) represents another important aspect of the

6
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topic: however, we do not discuss it here. Further reading and relevant information

can be found in [9, 39, 50, 62].

Eq. (2.1) can be viewed as a natural extension of the ordinary logistic equation

u′(t) = u(t)(1−u(t)). An important improvement of this growth model was proposed

by Hutchinson [35] in 1948 who incorporated the maturation delay h > 0 in the

following way:

(2.2) u′(t) = u(t)(1− u(t− h)), u ≥ 0.

This model is now commonly known as the Hutchinson’ s equation. Since then, the

delayed KPP-Fisher equation or the diffusive Hutchinson’s equation

(2.3) ut(t, x) = ∆u(t, x) + u(t, x)(1− u(t− h, x)), u ≥ 0, x ∈ Rm,

is considered as a natural prototype of delayed reaction-diffusion equations. It has

attracted the attention of many authors, see [4, 5, 20, 24, 28, 30, 41, 58, 61, 63]. In

particular, the existence of traveling fronts connecting the trivial and positive steady

states in (2.3) (and its non-local generalizations) was studied in [4, 5, 12, 20, 29, 49,

58, 61]. Observe that the biological meaning of u is the size of an adult population,

therefore only non-negative solutions of (2.3) are of interest. It is worth to mention

that there is another delayed version of Eq. (2.1) derived by Kobayashi [36] from a

branching process:

ut(t, x) = ∆u(t, x) + u(t− h, x)(1− u(t, x)), u ≥ 0, x ∈ Rm.

However, since the right-hand side of this equation is monotone increasing with

respect to the delayed term, the theory of this equation is fairly different (and seems

to be simpler) from the theory of (2.3), see [52, 61, 64].

This paper deals with the problem of existence and uniqueness of monotone wave-

fronts for Eq. (2.3). The phase plane analysis does not work now because of the
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infinite dimension of phase spaces associated to delay equations. Recently, the exis-

tence problem was considered by using two different approaches. The first method,

which was proposed in [61], uses the positivity and monotonicity properties of the

integral operator

(2.4) (Aφ)(t) =
1

ε′

{∫ t

−∞
er1(t−s)(Hφ)(s)ds+

∫ +∞

t

er2(t−s)(Hφ)(s)ds

}
,

where (Hφ)(s) = φ(s)(β+1−φ(s−h)) for some appropriate β > 1, and ε′ = ε(r2−r1)

with r1 < 0 < r2 satisfying εz2 − z − β = 0, and ε−1/2 = c > 0 is the front velocity.

A direct verification shows that the profiles φ ∈ C(R,R+) of traveling waves are

completely determined by the integral equation Aφ = φ. Wu and Zou have found a

subtle combination of the usual and the Smith and Thieme nonstandard orderings

on an appropriate profile set Γ∗ ⊂ C(R, (0, 1)) which allowed them (under specific

quasimonotonicity conditions) to indicate a pair of upper and lower solutions φ±

such that φ− ≤ Aj+1φ+ ≤ Ajφ+, j = 0, 1, . . . Then the required traveling front

profile is given by φ = limAjφ+. More precisely, in [61, Theorem 5.1.5], Wu and Zou

established the following

Proposition 1. For any c > 2, there exists h∗(c) > 0 such that if h ≤ h∗(c), then

Eq. (2.3) has a monotone traveling front with wave speed c.

The above result was complemented in [58, Remark 5.15] and [49], where it was

shown that Proposition 1 remains valid if c = 2. It should be observed that Wang

et al. [58] have also used the method of upper and lower solutions, however their

lower solution is different from that in [61]. Recently, Ou and Wu [48] showed that

Proposition 1 can be proved by means of a perturbation argument (considering h > 0

as a small parameter).

The second method was proposed in [20]. It essentially relies on the fact that, in a
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’good’ Banach space, the Frechet derivative of limε→0A along a heteroclinic solution

ψ of the limit delay differential equation (2.2) is a surjective Fredholm operator. In

consequence, the Lyapunov-Schmidt reduction was used to prove the existence of a

smooth family of wave solutions in some neighborhood of ψ. The following result

was proved in [20, Corollary 6.6.]:

Proposition 2. There exists c∗ > 0 such that if 0 < h < 1/e then for any c > c∗,

Eq. (2.3) has a wave solution u(x, t) = φ(ν · x + ct), |ν| = 1, satisfying φ(−∞) =

0, φ(+∞) = 1.

We remark that the positivity of this wave was not proved in [20] and the value

of c∗ > 0 was not given explicitly. Nevertheless, as it was shown in [21] for the case

of the Mackey-Glass type equations, the method of [20] may be refined to establish

the existence of positive wavefronts as well. Moreover, it follows from [21] that

Proposition 2 is still valid for h ∈ (0, 3/2). The recent work [3] suggests that the

approach of [20] can be also used to prove the uniqueness (up to shifts) of the positive

traveling solution of (2.3) for sufficiently fast speeds.

In this paper, motivated by ideas in [14, 61], we give a criterion for the existence

of positive monotone wavefronts in (2.3) and prove their uniqueness (modulo trans-

lation). In order to do this, instead of using operator (3.23) as it was done in all

previous works, we work with different integral operators, namely:

(2.5) (Aϕ)(t) =
1

ε(µ− λ)

∫ +∞

t

(eλ(t−s) − eµ(t−s))ϕ(s)ϕ(s− h)ds,

where ε ∈ (0, 0.25) and 0 < λ < µ are the roots of εz2 − z + 1 = 0, and with

(2.6) (Bϕ)(t) = 4

∫ +∞

t

(s− t)e2(t−s)ϕ(s)ϕ(s− h)ds

which can be considered as the limit of A when ε→ 0.25. Remarkably, all monotone

wavefronts (in particular, the wavefronts propagating with the minimal speed c = 2)
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can be found via a monotone iterative algorithm which uses A,B and converges

uniformly on R.

Before stating our main results, let us introduce the critical delay h1 = 0.560771160 . . .

This value coincides with the positive root of the equation

2h2 exp(1 +
√

1 + 4h2 − 2h) = 1 +
√

1 + 4h2

and plays a key role in the following result (which is proved in Section 2):

Lemma 1. Let ε ∈ (0, 0.25], h > 0. Then the characteristic function ψ(z, ε) :=

εz2−z−exp(−zh) has exactly two (counting multiplicity) negative zeros λ1 ≤ λ2 < 0

if and only if one of the following conditions holds

1. 0 < h ≤ 1/e,

2. ε ≥ ε∗(h) and 1/e < h ≤ h1.

Here the continuous ε∗(h) is defined in parametric form by

ε∗(h(t)) = th(t), h(t) = (2t+
√

4t2 + 1) exp(−1− 2t

1 +
√

4t2 + 1
), t ∈ [0, 0.445 . . . ].

Let us state now the main results of this paper.

Theorem II.1. Eq. (2.3) has a positive monotone wavefront u = ϕ(ν · x + ct),

|ν| = 1, connecting 0 with 1 if and only if one of the following conditions holds

1. 0 ≤ h ≤ 1/e = 0.367879441... and 2 ≤ c < c∗(h) := +∞;

2. 1/e < h ≤ h1 = 0.560771160 . . . and 2 ≤ c ≤ c∗(h) := 1/
√
ε∗(h).

Furthermore, set φ(s) := ϕ(cs). Then for some appropriate φ− (given below explic-

itly), we have that φ = limj→+∞Ajφ− (if c > 2), and φ = limj→+∞ Bjφ− (if c = 2),

where the convergence is monotone and uniform on R. For each fixed c 6= c∗(h), φ(t)
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is the only possible monotone profile (modulo translation) and φ, φ− have the same

asymptotic representation 1− eλ2t(1 + o(1)) at +∞.

Corollary 1. If h > h1 = 0.560771160 . . . then the delayed KPP-Fisher equation

does not have any positive monotone traveling wavefront.

Next, let us define the continuous function ε#(h) parametrically by

(2.7) ε#(h(t)) =
t+ 2 +

√
2t+ 4

t2
, h(t) = − ln(2 +

√
2t+ 4)

t
, t ∈ (−2,−1.806 . . . ]

Set h0 := 0.5336619208 . . . (see also Lema 2 for its complete definition) and

c#(h) :=


+∞, when h ∈ (0, 0.5 ln 2],

1/
√
ε#(h), when h ∈ (0.5 ln 2, h0],

2, when h > h0.

Figure 2.1: Schematic presentation of the critical speeds and delays.

Theorem II.2. Let u = ϕ(ν · x + ct), |ν| = 1, be a positive monotone traveling

front of Eq. (2.3). Set φ(s) := ϕ(cs). Then, for some appropriate t0, positive Kj

and every small positive σ, we have at t = −∞
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φ(t+ t0) =


−K2te

λt +O(e(2λ−σ)t), when c = 2,

eλt −K1e
µt +O(e(2λ−σ)t), when 2 < c < 1.5

√
2,

eλt +O(e(2λ−σ)t), when c ≥ 1.5
√

2 = 2.121 . . .

Similarly, at t = +∞

φ(t+ t0) =



1− eλ2t +O(e(2λ2+σ)t), when h ≤ h0, c ∈ [2, c#(h)] ∩ R,

1− eλ2t +K3e
λ1t+ when h ∈ (0.5 ln 2, h1]

+O(e(λ1−σ)t), and c ∈ (c#(h), c∗(h)),

1−K4te
λ2t +O(e(λ2−σ)t), when c = c∗(h) and h ∈ (1/e, h1].

Theorem II.2 suggests the way of approximating the traveling front profile: e.g.,

for c 6= 2, c∗(h), we can take functions a−(t) := c1e
−λt and a+(t) := 1 − eλ2t and

glue them together at some point τ . The point τ and c1 > 0 have to be chosen to

assure maximal smoothness of the approximation at τ . As we will see in Section 3,

this idea allows to construct reasonable lower approximations to the exact traveling

wave. See also Figure 2 below.

Remark 1. As it was showed by Ablowitz and Zeppetella [1], equation (2.1) has the

explicit exact wavefront solution u = ϕ?(ν ·x+ct), |ν| = 1, with c = 5/
√

6 = 2.041 . . .

and the (scaled) profile

φ?(s) =

(
1

2
+

1

2
tanh(

5s

12
+ s0)

)2

, φ?(s) := ϕ?(cs).

If we select s0 = 0.5 ln 2, then

φ?(s) = 1− 2e−5s/6−2s0 +O(e−5s/4) = 1− e−5s/6 +O(e−5s/4), s→ +∞,

so that φ? = limj→+∞Ajφ− in view of Theorem II.1 and the uniqueness (up to

translations) of the traveling front for the non-delayed KPP-Fisher equation. Figure
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2 (on the left) shows five approximations Ajφ−, j = 0, 1, 2, 3, 4, and the exact solution

φ?, the graphs are ordered as φ− < Aφ− < A2φ− < A3φ− < φ?. On the right, the

four first approximations Bjφ−, j = 0, 1, 2, 3, of φ are plotted when c = 2, h = 0.56.

It should be noted that the limit function φ and the initial approximation φ− have

the same first two terms (1− exp(λ2t)) of their asymptotic expansions at +∞. See

Theorem II.1 and Sections 3,4. However, as the analysis of the Ablowitz-Zeppetella

solution shows, these φ and φ− may have different first terms of their expansions

at −∞. This partially explains a better agreement between the exact solution and

their approximations for t ≥ τ = 0.487 . . . on the left picture (the value of τ is given

in Section 3).

Figure 2.2: On the left: increasing sequence of approximated waves Ajφ−, j = 0, 1, 2, 3, 4, and the
Ablowitz-Zeppetella exact solution φ? (ε = 0.24 and h = 0). On the right: approxima-
tions Bjφ−, j = 0, 1, 2, 3 (ε = 0.25 and h = 0.56).

The structure of the remainder of this paper is as follows. In Section 2, the

characteristic function of the variational equation at the positive steady state is

analyzed. In the third [the fourth] section, we present a lower [an upper] solution.

Section 2.5 contains some comments on the smoothness of upper and lower solutions.

Theorems II.1 and II.2 are proved in Sections 2.6 and 2.7, respectively.

Remark 2. After this article had been submitted for publication, the problem of

existence and nonexistence of monotone traveling fronts to Eq. (2.3) has been re-

cently considered by Kwong and Ou in [38], where a different approach based on

a shooting technique was developed. By presenting a constructive approximation

algorithm, indicating asymptotic formulas and proving the uniqueness of monotone

fronts, our work complements the interesting investigation in [38]. Next, the exis-

tence of fast positive traveling fronts to Eq. (2.3) in the case h ∈ [0, 3/2] has been
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recently established in [22] by Faria and one of the authors (cf. the paragraph after

Proposition 2).

2.2 Characteristic equation at the positive steady state

In this section, we study the zeros of ψ(z, ε) := εz2 − z − exp(−zh), ε, h > 0.

It is straightforward to see that ψ always has a unique positive simple zero. Since

ψ′′′(z, ε) is positive, ψ can have at most three (counting multiplicities) real zeros,

one of them positive and the other two (when they exist) negative. Lemma 1 in the

introduction provides a criterion for the existence of two negative zeros λ1 ≤ λ2 < 0.

We start by proving this result:

Proof Lemma 1. Consider the equation −z = exp(−zh). An easy analysis shows

that (i) this equation has exactly two real simple solutions z1 < z2 < 0, z2 > −e, if

h ∈ (0, 1/e), (ii) it has one double real root z1 = z2 = −e if h = 1/e, and (iii) it does

not have any real root if h > 1/e. As a consequence,

(2.8) εz2 − z = exp(−zh)

has two negative simple solutions if ε > 0 and h ∈ (0, 1/e].

A similar argument shows that for every h > 1/e there exists ε∗(h) > 0 such

that Eq. (2.8) (a) has two negative simple roots if ε > ε∗(h), (b) has one negative

double root if ε = ε∗(h), (c) does not have any solution if ε < ε∗(h). In particular,

ε = ε∗(h), z = λ1(h) = λ2(h), solve the system

εz2 − z = exp(−zh), 2εz − 1 = −h exp(−zh),

which yields the parametric representation for ε∗(h) given in the introduction.

Finally, a direct graphical analysis of (2.8) shows that ε∗(h) is increasing with

respect to h. Hence, since ε∗(h) ≤ 0.25, we conclude that h ≤ (ε∗)−1(0.25) =: h1 =
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0.560771 . . .

Lemma 2. Let λ1 ≤ λ2 < 0 be two negative zeros of ψ(z, ε) and ε ∈ (0, 0.25] be fixed.

Then λ1 ≤ 2λ2 if and only if one of the following conditions holds

1. 0 < h ≤ 0.5 ln 2 = 0.347 . . . ;

2. ε ≥ ε#(h) and 0.5 ln 2 < h ≤ h0 := 0.5336619208 . . . .

Proof. This lemma can be proved analogously to the previous one, we briefly outline

the main arguments. First, for each fixed positive ε# we may find h(ε#) > 0 such

that λ1 < 2λ2 if h ∈ (0, h(ε#)) and λ1 = 2λ2 if h = h(ε#). In this way,

ε#λ2
2 − λ2 = exp(−λ2h(ε#)), 4ε#λ2

2 − 2λ2 = exp(−2λ2h(ε#)),

which yields representation (2.7). Now, we complete the proof by noting that h(ε)

is continuous and strictly increasing on (0,+∞) and h(0+) = 0.5 ln 2, h0 = h(0.25).

Lemma 3. Let λ1 ≤ λ2 < 0 be two negative zeros of ψ(z, ε) and ε ∈ (0, 0.25] be fixed.

Then <λj < λ1 for every complex root of ψ(z, ε) = 0.

Proof. Set α := (1 + 2ε −
√

1 + 4ε2)/(2ε), a := −e−αh/(
√

1 + 4ε2 − 2ε), k :=

ε/(
√

1 + 4ε2 − 2ε). Then α, k > 0, a < 0, and

ψ(z + α) = (
√

1 + 4ε2 − 2ε)(kz2 − z − 1 + ae−zh).

It is easy to see that p(z) := kz2 − z − 1 + ae−zh also has two negative and one

positive root. Since the translation z → z + α of the complex plain does not change

the mutual position of zeros of ψ, the statement of Lemma 3 follows now from [57,

Remarks 19,20].
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2.3 A lower solution when λ1 < λ2

In this section, we assume either condition (1) or condition (2) of Theorem II.1

holds. In addition, let c ∈ [2, c∗(h)) so that λ1 < λ2 (where λ1 := −∞ if h = 0) and

λ ≤ µ. Set

τ =
1

λ2

ln
λ

λ− λ2

> 0, φ−(t) =


−λ2
λ−λ2 e

λ(t−τ), if t ≤ τ,

1− eλ2t if t ≥ τ.

It is easy to see that φ− ∈ C1(R) ∩ C2(R \ {τ}) with φ′−(t) > 0, t ∈ R, and

(2.9) εφ′′−(t)− φ′−(t) + φ−(t)(1− φ−(t− h)) < 0, t ∈ R \ (τ, τ + h].

Lemma 4. Inequality (2.9) holds for all t ∈ R.

Proof. The case h = 0 is obvious, so let h > 0. It suffices to consider t ∈ (τ, τ + h].

If we take t ∈ (τ, τ + h], then

εφ′′−(t)− φ′−(t) + φ−(t)(1− φ−(t− h)) = −ελ2
2e
λ2t + λ2e

λ2t+

(1− eλ2t)(1 +
λ2

λ− λ2

eλ(t−τ−h)) = −eλ2(t−h) + (1− eλ2t)(1 +
λ2

λ− λ2

eλ(t−τ−h)) =

1− eλ2(t−h) +
λ2

λ− λ2

eλ(t−τ−h) − eλ2t − eλ2t λ2

λ− λ2

eλ(t−τ−h) =

1 +
λ2

λ− λ2

eλs − λ

λ− λ2

eλ2s − λ

λ− λ2

eλ2(s+h) − λλ2

(λ− λ2)2
eλ2(s+h)eλs =: ρ(s)

where s = t− τ − h ∈ (−h, 0]. The direct differentiation shows that

ρ′(s) =
−λ2λ

λ− λ2

[
−eλs + eλ2s + eλ2(s+h)(1 +

λ+ λ2

λ− λ2

eλs)

]
> 0,

since eλs ≤ 1, eλ2s ≥ 1, and (1 +
λ+ λ2

λ− λ2

eλs) > 1, if λ+ λ2 ≥ 0,

(1 +
λ+ λ2

λ− λ2

eλs) ≥ 1 +
λ+ λ2

λ− λ2

=
2λ

λ− λ2

> 0, if λ+ λ2 < 0.

Finally, we have that ρ(s) < 0 for all s ∈ [−h, 0] since ρ′(s) > 0 and

ρ(0) = −λ2(λ− λ2)−2eλ2h < 0.
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Remark 3 (A lower solution when λ1 = λ2). We can not use φ− as a lower solution

when c = c∗(h), 1/e < h ≤ h1. Indeed, by Theorem II.2, in this case φ− converges

to the positive steady state faster than the heteroclinic solutions. In Section 2.5, we

will present an adequate lower solution for this situation. However, it will not be

C1-smooth.

2.4 An upper solution when λ1 < λ2

Suppose that λ1 < λ2 and set φ2(t) := 1− eλ2t + ert for some r ∈ (λ1, λ2). Recall

that λ1 := −∞ if h = 0. Obviously, ψ(r, ε) > 0 and φ2(t) ∈ (0, 1) for t > 0. Next,

it is immediate to check that φ2 : R → R has a unique critical point (absolute

minimum) t0 = t0(r) > 0:

t0(r) =
ln(−r)− ln(−λ2)

λ2 − r
, λ2e

λ2t0 = rert0 .

Observe that if h ∈ (0, 1/e), then we can assume that t0(r) ≥ h since

lim
r→λ2−

t0(r) = −1/λ2 > 1/e > h,

where the last inequalities were established in the proof of Lemma 1. It is clear that

the function

φ+(t) =

 φ2(t), if t ≥ t0(r),

φ2(t0(r)), if t ≤ t0(r)

is C1-continuous and increasing on R. Moreover, φ+(t) ∈ C2(R \ {t0(r)}).

Lemma 5. For all r < λ2 sufficiently close to λ2, φ+ satisfies the inequality

εφ′′(t)− φ′(t) + φ(t)(1− φ(t− h)) ≥ 0, t ∈ R.

Proof. Step I. First we prove that, for all t ≥ t0, the following inequality holds:

(Nφ2)(t) := εφ′′2(t)− φ′2(t) + φ2(t)(1− φ2(t− h)) ≥ 0.
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In particular, this implies that (Nφ+)(t) ≥ 0 if t ≥ t0 + h. For t = t0 + s, we have

that

(Nφ2)(t) = ψ(r, ε)ert − ψ(λ2, ε)e
λ2t + (−eλ2t + ert)(eλ2(t−h) − er(t−h)) =

ψ(r, ε)ert + (−eλ2t + ert)(eλ2(t−h) − er(t−h)) =

ert0
[
ψ(r, ε)ers + (− r

λ2

eλ2s + ers)ert0(
r

λ2

eλ2(s−h) − er(s−h))

]
=

er(t0+s)

[
ψ(r, ε) + (− r

λ2

e(λ2−0.5r)s + e0.5rs)ert0(
r

λ2

e−λ2he(λ2−0.5r)s − e−rhe0.5rs)

]
=

ert
[
ψ(r, ε) + A1(s)ert0A2(s)

]
.

It is easy to see that Aj(+∞) = 0 and that Aj has a unique critical point sj, with

lim
r→λ2−

s1(r) = −1/λ2, lim
r→λ2−

s2(r) = h− 1/λ2.

Therefore, for some small δ > 0 and for all r close to λ2, the function A1(s)ert0A2(s) is

strictly increasing to 0 on the interval [h−1/λ2+δ,+∞) and it is strictly decreasing on

[0,−1/λ2−δ]. This means that if (Nφ2)(t) ≥ 0 for all t ∈ [t0−1/λ2−δ, t0+h−1/λ2+δ]

then (Nφ2)(t) ≥ 0 for t ≥ t0. In order to prove the former, consider the expression

e−rt0

r − λ2

(εφ′′2(t)− φ′2(t) + φ2(t)(1− φ2(t− h))) =

ψ(r, ε)ers + (− r
λ2
eλ2s + ers)ert0( r

λ2
eλ2(s−h) − er(s−h))

r − λ2

:= Γε(r, s).

Since Γε(r, s) is analytical on some open neighborhood Ω ⊂ R2 of the compact

segment {λ2} × [−1/λ2 − δ, h− 1/λ2 + δ] ⊂ R2, we find that, for every fixed ε > 0,

lim
r→λ2−

Γε(r, s) = ψ′(λ2, ε)e
λ2s < 0

uniformly on [−1/λ2 − δ, h− 1/λ2 + δ]. As a consequence, we obtain that

εφ′′2(t)− φ′2(t) + φ2(t)(1− φ2(t− h)) > 0, t ∈ [t0 − 1/λ2 − δ, t0 + h− 1/λ2 + δ].
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Step II. Now, we are ready to prove that (Nφ+)(t) ≥ 0, t ∈ [t0, t0 + h]. Indeed, since

φ2(t0) ≤ φ2(t− h) for t ∈ [t0, t0 + h], we have that

(Nφ+)(t) = εφ′′2(t)− φ′2(t) + φ2(t)(1− φ2(t0)) ≥

φ′′2(t)− φ′2(t) + φ2(t)(1− φ2(t− h)) ≥ 0, t ∈ [t0, t0 + h].

Finally, since the inequality (Nφ+)(t) > 0, t ≤ t0, is obvious, the proof of the lemma

is completed.

Remark 4 (An upper solution when λ1 = λ2). We can not use φ+ as an upper

solution when c = c∗(h), 1/e < h ≤ h1. Moreover, in this case it is not difficult to

show that φ+ satisfies inequality (2.9) for all r < λ2 sufficiently close to λ2 and for

large positive t.

2.5 Some comments on upper and lower solutions

2.5.1 Non-smooth solutions

The problem of smoothness of the lower (upper) solutions is an interesting and

important aspect of the topic, see [8, 42]. As we have seen in the previous sections,

C1−smoothness condition can be rather restrictive even when a simple nonlinearity

(the birth function) is considered. The above mentioned works [42] show that con-

tinuous and piece-wise C1−continuous lower (upper) solutions φ± still can be used

if some sign conditions are fulfilled at the points of discontinuity of φ′±. Moreover,

as we prove it below even discontinuous functions φ± can be also used. We start

with a simple result of the theory of impulsive systems [51] which can be viewed as

a version of the Perron theorem for piece-wise continuous solutions, cf. [8].

Lemma 6. Let ψ : R → R be a bounded classical solution of the second order
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impulsive equation

ψ′′ + aψ′ + bψ = f(t), ∆ψ|tj = αj, ∆ψ′|tj = βj,

where {tj} is a finite increasing sequence, f : R → R is bounded and continuous

at every t 6= tj and the operator ∆ is defined by ∆w|tj := w(tj+)−w(tj−). Assume

that z2 + az + b = 0 has two positive roots 0 < λ ≤ µ. Then

if λ < µ we have that ψ(t) =
1

µ− λ

∫ +∞

t

(
eλ(t−s) − eµ(t−s)) f(s)ds(2.10)

+
1

µ− λ
∑
t<tj

[(
λeµ(t−tj) − µeλ(t−tj)

)
αj +

(
eλ(t−tj) − eµ(t−tj)

)
βj
]
, t 6= tj;

if λ = µ = −0.5a we have that ψ(t) =

∫ +∞

t

(s− t)e−0.5a(t−s)f(s)ds+∑
t<tj

e−0.5a(t−tj) [(tj − t)(βj + 0.5aαj)− αj] , t 6= tj.

Proof. See [51, Theorem 87].

Next, the corollary below shows that our lower solution is an upper solution in

the sense of Wu and Zou [61]:

Corollary 2. Assume that ψ : R → R is bounded and such that the derivatives

ψ′, ψ′′ : R \ {tj} → R exist and are bounded. Suppose also that ψ is a classical

solution of the impulsive inequality

ψ′′ + aψ′ + bψ ≤ f(t), ∆ψ|tj = αj, ∆ψ′|tj = βj.

If αj ≥ 0, βj ≤ 0, then

ψ(t) ≤ 1

µ− λ

∫ +∞

t

(
eλ(t−s) − eµ(t−s)) f(s)ds, when λ < µ,

ψ(t) ≤
∫ +∞

t

(s− t)e−0.5a(t−s)f(s)ds, when λ = µ = −0.5a.

Proof. Suppose that λ < µ, the case λ = µ is similar. Clearly, q(t) := f(t)− (ψ′′(t)+

aψ′(t) + bψ(t)) ≥ 0 and λeµ(t−tj) < µeλ(t−tj), eλ(t−tj) > eµ(t−tj) for t < tj. Thus the

desired inequality follows from (2.10).
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2.5.2 A lower solution when λ1 = λ2, h ∈ (1/e, h1]

In Section 2.3, a lower C1− solution was presented for the case when λ1 < λ2.

However, to apply our iterative procedure in the critical case λ1 = λ2, we also need to

construct a lower solution for the corresponding range of parameters. It is worth to

mention that our approach does not require any upper solution once a lower solution

is found and the existence of the heteroclinic is proved, see Corollary 4. Here, we

provide a continuous and piece-wise analytic lower solution φ−(t) if λ1 = λ2. Our

solution has a unique singular point τ ′ where ∆φ−|τ ′ = 0, ∆φ′−|τ ′ > 0. This shows

that, in general, the sign conditions of Corollary 2 need not to be satisfied.

Take some positive A > (e−λ2h−1)/h and let τ ′ be the positive root of the equation

At+1 = e−λ2t. It is easy to see that τ ′ > h. Consider the piece-wise smooth function

φ− : R→ [0, 1) defined by

(2.11) φ−(t) =

 0, if t ≤ τ ′,

1− (At+ 1)eλ2t, if t ≥ τ ′.

Proposition 3. The inequality (Kφ−)(t) > φ−(t) holds for all t ∈ R.

Proof. Below, we are assuming that h 6= h1 so that λ < µ and K = A; however, a

similar argument works also in the case h = h1 (when K = B). It suffices to prove

that (Aφ−)(t) > φ−(t) for t ≥ τ ′. Let C2− smooth function ψ be defined by

ψ(t) =


1− (At+ 1)eλ2t, if t ≥ τ ′ − h,

B(t), if 0 ≤ t ≤ τ ′ − h,

0, if t ≤ 0,

for some appropriate continuous decreasing B(t). Set

ζ(t) := εψ′′(t)− ψ′(t) + ψ(t)(1− ψ(t− h)).
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It is easy to check that ζ ∈ C(R,R) is bounded on R and ζ(t) < 0 for all t > τ ′. But

then, for all t > τ ′, we have that

φ−(t) = ψ(t) = (Aψ)(t) +
1

ε(µ− λ)

∫ +∞

t

(
eλ(t−s) − eµ(t−s)) ζ(s)ds < (Aψ)(t) ≤

=
1

ε(µ− λ)

∫ +∞

t

(eλ(t−s) − eµ(t−s))φ−(s)φ−(s− h)ds = (Aφ−)(t).

2.5.3 Ordering the upper and lower solutions

Finally, we show that the condition of the correct ordering φ− ≤ φ+ is not at

all restrictive provided that solutions φ± are monotone and satisfy some natural

asymptotic relations.

Lemma 7. Assume that functions φ± : R→ [0, 1), j = 1, 2, are increasing and, for

some fixed k ∈ {0, 1}, the following holds

lim
t→−∞

φ±(t)e−λt = α±, lim
t→+∞

(1− φ±(t))t−ke−λ2t = β±,k,

where β±,k > 0, and α− ∈ [0,+∞), α+ ∈ (0,+∞]. Then there exists a real number

σ such that φ−(t) < φ+(t+ σ) for all t ∈ R.

Proof. It is clear that φ−(−∞) = 0 and φ±(+∞) = 1. Let σ0 be sufficiently large

to satisfy β+,ke
λ2σ0 < β−,k, α−e

−λσ0 < α+ . Then there exist t1, t2 such that t1 < t2

and φ−(t− σ0) < φ+(t), t ∈ I := (−∞, t1] ∪ [t2,+∞). Now, set σ = σ0 + (t2 − t1).

Since both functions are increasing, we have

φ−(t− σ) ≤ φ−(t− σ0) < φ+(t), t ∈ I,

φ−(t− σ) < φ+(t− (t2 − t1)) ≤ φ+(t), t ∈ [t1, t2].
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2.6 Proof of Theorem II.1

6.1. Necessity. Let u(t, x) = ζ(ct + ν · x) be a positive bounded monotone

solution of the delayed KPP-Fisher equation. Then ϕ(t) = ζ(ct) satisfies

εϕ′′(t)− ϕ′(t) + ϕ(t)(1− ϕ(t− h)) = 0, t ∈ R,(2.12)

εϕ′(t) = εϕ′(0)− ϕ(0) + ϕ(t) +

∫ t

0

ϕ(s)(1− ϕ(s− h))ds.

The latter relation implies that ϕ(±∞) ∈ {0, 1} since otherwise ϕ′(±∞) =∞. Hence

ϕ : R → (0, 1). Let φ ∈ C2(R, (0, 1)) be an arbitrary solution of (2.12). Suppose

for a moment that φ′(t0) = 0. Then necessarily φ′′(t0) < 0 so that t0 is the unique

critical point (absolute maximum) of φ. But then φ′(s) < 0 for s > t0, so that

φ′′(s) < 0, s ≥ t0, which yields the contradiction φ(+∞) = −∞. In consequence,

either φ′(s) > 0 or φ′(s) < 0 for all s ∈ R. But as we have seen, φ′(s) < 0 implies

φ(+∞) = −∞, a contradiction. Hence, any solution φ ∈ C2(R, (0, 1)) of (2.12)

satisfies φ′(t) > 0, φ(−∞) = 0, φ(+∞) = 1.

Lemma 8. If φ ∈ C2(R, (0, 1)) satisfies (2.12), then ε ∈ (0, 0.25].

Proof. Suppose for a moment that ε > 0.25. Then the characteristic equation ελ2 −

λ + 1 = 0 associated with the trivial steady state of (2.12) has two simple complex

conjugate roots ω± = (2ε)−1(1± i
√

4ε− 1).

Since φ ∈ C2(R, (0, 1)) is a solution of (2.12), it holds that φ′(t) > 0, t ∈ R,

φ(−∞) = 0. Set z(t) = (φ(t), φ′(t))T , it is easy to check that z(t) satisfies the

following asymptotically autonomous linear differential equation

z′(t) = (A+R(t))z(t), t ∈ R, A =

 0 1

−1/ε 1/ε

 , R(t) =

 0 0

φ(t− h)/ε 0

 .

Since R(−∞) = 0,
∫ 0

−∞ |R
′(t)|dt = φ(−h) and the eigenvalues ω± of A are complex

conjugate, we can apply the Levinson theorem [16, Theorem 1.8.3] to obtain the



24

following asymptotic formulas at t = −∞:

φ(t) = (a+ o(1))et/(2ε) cos(t
√

4ε− 1(1 + o(1)) + b+ o(1)),

φ′(t) = (c+ o(1))et/(2ε) sin(t
√

4ε− 1(1 + o(1)) + d+ o(1)),

where a2 + c2 6= 0. But this means that either φ(t) or φ′(t) is oscillating around zero,

a contradiction.

Lemma 9. If h > h1 or h ∈ (1/e, h1] and c > c∗(h) then Eq. (2.12) does not have

any solution φ ∈ C2(R, (0, 1)).

Proof. On the contrary, let us assume that Eq. (2.12) has a solution φ ∈ C2(R, (0, 1)).

Then Lemma 8 implies that ε ∈ (0, 0.25] and therefore the assumptions of this lemma

imply that ψ(z, ε) does not have negative zeros. Following the approach in [54], we

will show that this will force φ(t) to oscillate about the positive equilibrium. For the

convenience of the reader, the proof is divided in several steps.

Claim I: y(t) := 1 − φ(t) > 0 has at least exponential decay as t → +∞. First,

observe that

(2.13) εy′′(t)− y′(t) = φ(t)y(t− h), t ∈ R.

Therefore, with γ := φ(t0), which is close to 1, and g(t) := φ(t)y(t− h)− φ(t0)y(t),
we obtain that

εy′′(t)− y′(t)− γy(t)− g(t) = 0, t ∈ R.

Note that g(t) > 0 for all sufficiently large t. Since y(t), g(t) are bounded on R, it

holds that

y(t) = − 1

ε(m− l)

( ∫ t

−∞
el(t−s)g(s)ds+

∫ +∞

t

em(t−s)g(s)ds

)
,

where l < 0 and 0 < m are roots of εz2− z−γ = 0. The latter representation of y(t)

implies that there exists T0 such that
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(2.14) y′(t)− ly(t) = −1

ε

∫ +∞

t

em(t−s)g(s)ds < 0, t ≥ T0.

Hence, (y(t) exp(−lt))′ < 0, t ≥ T0, and therefore

(2.15) y(t) ≤ y(s)el(t−s), t ≥ s ≥ T0, g(t) = O(elt), t→ +∞.

It is easy to see that these estimates are valid for every negative l > (2ε)−1(1 −√
1 + 4ε). Finally, (3.25), (3.26) imply that y′(t) = O(elt), t→ +∞.

Claim II: y(t) := 1− φ(t) > 0 is not superexponentially small as t→ +∞.

We already have proved that y(t) is strictly decreasing and positive on R. Since the

right hand side of Eq. (3.24) is positive and integrable on R+, and since y(t) is a

bounded solution of (3.24) satisfying y(+∞) = 0, we find that

(2.16) y(t) =

∫ +∞

t

(1− e(t−s)/ε)φ(s)y(s− h)ds.

As a consequence, there exists T1 such that

y(t) ≥ 0.5(1− e−0.5h/ε)

∫ t

t−0.5h

y(s)ds := ξ

∫ t

t−0.5h

y(s)ds, t ≥ T1 − h.

Now, since y(t) > 0 for all t, we can find positive C, ρ such that y(s) > Ce−ρs for

all s ∈ [T1 − h, T1]. We can assume that ρ is large enough to satisfy the inequality

ξ(e0.5ρh − 1) > ρ. Then we claim that y(s) > Ce−ρs for all s ≥ T1 − h. Conversely,

suppose that t′ > T1 is the leftmost point where y(t′) = Ce−ρt
′
. Then we get a

contradiction:

y(t′) ≥ ξ

∫ t′

t′−0.5h

y(s)ds > Cξ

∫ t′

t′−0.5h

e−ρsds = Ce−ρt
′
ξ
e0.5ρh − 1

ρ
> Ce−ρt

′
.

Claim III: y(t) > 0 can not hold when ψ(z, ε) does not have any zero in (−∞, 0).

Observe that y(t) = 1− φ(t) satisfies

εy′′(t)− y′(t)− (1− y(t))y(t− h) = 0, t ∈ R,

where in virtue of Claim I, it holds that (y(t), y′(t)) = O(lt) at t = +∞. Then [44,

Proposition 7.2] implies that there exists γ < l such that y(t) = v(t) + O(exp(γt)),
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t → +∞, where v is a non empty (due to Claim II) finite sum of eigensolutions of

the limiting equation

εy′′(t)− y′(t)− y(t− h) = 0, t ∈ R,

associated to the eigenvalues λj ∈ F = {γ < <λj ≤ l}. Now, since the set F does

not contain any real eigenvalue by our assumption, we conclude that y(t) should be

oscillating on R+, a contradiction.

6.2. Sufficiency. Suppose that ε ∈ (0, 0.25] and let 0 < λ ≤ µ be the roots of

the equation εz2 − z + 1 = 0. In Lemmas 10-13 below, K stands either for A or B

(defined by (2.5), (2.6)).

Lemma 10. If φ, ψ ∈ C(R, (0, 1)) and φ(t) ≤ ψ(t) for all t ∈ R, then Kφ,Kψ ∈

C(R, (0, 1)) and (Kφ)(t) ≤ (Kψ)(t), t ∈ R. Moreover, if φ is increasing then Kφ is

also increasing.

Proof. The proof is straightforward.

Lemma 11. Let ε ∈ (0, 0.25]. If φ+ ∈ C1(R, (0, 1)) satisfies the inequality

εφ′′(t)− φ′(t) + φ(t)(1− φ(t− h)) ≥ 0

for all t ∈ R′ := R\{T1, . . . , Tm} and φ′′+(t), φ′+(t) are bounded on R′, then (Kφ+)(t) ≤

φ+(t) for all t ∈ R.

Proof. If ω(Ti) := 0 and

ω(t) := εφ′′+(t)− φ′+(t) + φ+(t)(1− φ+(t− h)), t ∈ R′ = R \ {T1, . . . , Tm}

then ω(t) ≥ 0 for all t ∈ R′, ω(t) is bounded on R′ and

εφ′′+(t)− φ′+(t) + φ+(t) = ω1(t), t ∈ R′,
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where ω1(t) := ω(t) + φ+(t)φ+(t − h) is bounded on R′. Let now ε ∈ (0, 0.25). By

Lemma 6, we obtain that

φ+(t) =
1

ε(µ− λ)

∫ +∞

t

(
eλ(t−s) − eµ(t−s))ω1(s)ds =

(Aφ+)(t) +
1

ε(µ− λ)

∫ +∞

t

(
eλ(t−s) − eµ(t−s))ω(s)ds ≥ (Aφ+)(t).

The case ε = 0.25 (which corresponds to K = B) is completely analogous to the

previous one.

The proof of the next lemma is similar to that of Lemma 11:

Lemma 12. Let ε ∈ (0, 0.25]. If φ− ∈ C1(R, (0, 1)) satisfies the inequality

εφ′′(t)− φ′(t) + φ(t)(1− φ(t− h)) ≤ 0

for all t ∈ R \ {T1, . . . , Tm} and φ′′−(t), φ′−(t) are bounded on R \ {T1, . . . , Tm}, then

(Kφ−)(t) ≥ φ−(t) for all t ∈ R.

Set φ±j+1 := (Kφ±j ), j ≥ 0, φ±0 := φ±, and let the increasing functions φ− ≤ φ+

be as in Lemmas 11, 12. Then

φ− ≤ φ−1 ≤ · · · ≤ Φ− ≤ Φ+ ≤ . . . φ−j · · · ≤ . . . φ+
1 ≤ φ+,

where Φ±(t) = limj→∞ φ
±
j (t) pointwise and φ±j are increasing (by Lemma 10).

Lemma 13. Φ± are wavefronts and Φ±(t) = limj→∞ φ
±
j (t) uniformly on R.

Proof. Applying the Lebesgue’s dominated convergence theorem to φ−j+1 := Kφ−j , we

obtain that Φ−(t) = (KΦ−)(t). Differentiating this equation twice with respect to t,

we deduce that Φ− : R→ (0, 1) is a C2-solution of (2.12) (and thus Φ′−(t) > 0). As

a consequence of the Dini’s theorem, we have that Φ−(t) = limj→∞ φ
−
j (t) uniformly

on compact sets. Since Φ−, φ
−
j are asymptotically constant and increasing, this

convergence is uniform on R. The proof for Φ+ is similar.
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Corollary 3. Eq. (2.3) has a monotone wavefront u(x, t) = ζ(x · ν + ct), |ν| = 1,

connecting 0 with 1 if one of the following conditions holds

1. 0 ≤ h ≤ 1/e and 2 ≤ c;

2. 1/e < h < h1 and 2 ≤ c < c∗(h).

Proof. It is an immediate consequence of Lemmas 4, 5, 7, 11-13.

If c = c∗(h), the reasoning of the last proof does not apply because of the lack of

explicit upper solutions. Below, we follow an idea from [54, Section 6]:

Lemma 14. Eq. (2.3) has a positive monotone wavefront u(x, t) = ζ(x · ν + ct),

|ν| = 1, connecting 0 with 1 if 1/e < h ≤ h1 and c = c∗(h).

Proof. Case I. Fix some h ∈ (1/e, h1) and ε = ε∗(h). Then there exists a decreasing

sequence εj ↓ ε∗(h) such that Eq. (2.12) has at least one monotone positive hete-

roclinic solution φj(t) normalized by φj(0) = 0.5. It is clear that φj(t) = (Aφj)(t).

Moreover, each yj(t) := 1− φj(t) > 0 solves (2.16) so that

|φ′j(t)| = |
1

ε

∫ +∞

t

e(t−s)/εφ(s)(1− φj(s− h))ds| ≤ 1, t ∈ R.

Thus, by the Ascoli-Arzelà theorem combined with the diagonal method, {φj} has a

subsequence {φjk} converging (uniformly on compact subsets of R) to some continu-

ous non-decreasing non-negative function φ∗, φ∗(0) = 0.5. Applying the Lebesgue’s

dominated convergence theorem to φjk(t) = (Aφjk)(t), we find that φ∗ is also a fixed

point of A. Hence, φ∗ : R → [0, 1] is a monotone solution of Eq. (2.12) considered

with ε = ε∗(h). Since φ∗(0) = 0.5, φ∗ : R→ (0, 1) is actually a monotone wavefront.

Case II. Finally, let ε = 0.25 and h = h1. This case can be handled exactly in

the same way as Case I if we keep ε = 0.25 fixed, replace A with B, and take some

increasing sequence hj ↑ h1 instead of εj ↓ ε∗(h).



29

Corollary 4. Assume that c = c∗(h), 1/e < h ≤ h1, and let φ− be as in (2.11). If

A is sufficiently large, then

φ− ≤ φ−1 ≤ · · · ≤ φ−j · · · ≤ Φ = KΦ,

where Φ is a wavefront and Φ(t) = limj→∞ φ
−
j (t) uniformly on R.

Proof. If c = c∗(h) we will take the heteroclinic solution Φ− whose existence was

established in Lemma 14 as an upper solution. Due to (2.8), we can assume that

β+,1 := lim
t→+∞

(1− Φ−(t))t−1e−λ2t > 0.

Next, let φ− be defined by (2.11). Since α− := limt→−∞ φ−(t)e−λt = 0 and

β−,1 := lim
t→+∞

(1− φ−(t− 1

A
))t−1e−λ2t = Ae−λ2/A > β+,1,

for sufficiently large A, Lemma 7 implies that φ−(t) < Φ−(t+ σ), t ∈ R, for some σ.

Finally, it suffices to take φ+(t) := Φ−(t+σ) and repeat the proof of Lemma 13.

6.3. Uniqueness. The uniqueness of wavefronts is an important and interesting

topic. Among the most influential contributions to it, we would like to mention the

seminal papers [14] and [11], e.g. see [12, 49, 59]. In particular, our method of proof

follows a nice idea due to Diekmann and Kaper, see [14, Theorem 6.4]. Suppose that

c 6= c∗(h) and let φ1, φ2 be two different (modulo translation) profiles of wavefronts

propagating at the same speed c. Due to Theorem II.2, we may assume that φ1, φ2

have the same asymptotic representation φj(t) = 1−eλ2t(1+o(1)) at +∞. Moreover,

φj = Kφj, where K = A if c > 2 and K = B if c = 2. Set ω(t) := |φ2(t)−φ1(t)|e−λ2t.

Then ω(±∞) = 0, ω(t) ≥ 0, t ∈ R, and ω(τ) = maxs∈R ω(s) := |ω|0 > 0 for some

τ . From the identity φ2 − φ1 = Kφ2 −Kφ1, we deduce that

ω(τ) <
e−λ2τ

ε(µ− λ)

∫ +∞

τ

(eλ(τ−s) − eµ(τ−s))(ω(s)eλ2s + ω(s− h)eλ2(s−h))ds <
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|ω|0e−λ2τ

ε(µ− λ)

∫ +∞

τ

(eλ(τ−s) − eµ(τ−s))(eλ2s + eλ2(s−h))ds = |ω|0 = ω(τ), if c > 2;

ω(τ) < 4e−λ2τ
∫ +∞

τ

(s− τ)eλ(τ−s)(ω(s)eλ2s + ω(s− h)eλ2(s−h))ds <

4|ω|0e−λ2τ
∫ +∞

τ

(s− τ)eλ(τ−s)(eλ2s + eλ2(s−h))ds = |ω|0 = ω(τ), if c = 2,

which is impossible. Hence, |ω|0 = 0 and the proof is complete.

2.7 Proof of Theorem II.2

First, using the bilateral Laplace transform (Ly)(z) :=
∫
R e
−szy(s)ds (see e.g.

[60]), we extend [44, Proposition 7.1] (see also [3, Lemma 4.1] and [54, Lemma 22])

for the case J = R.

Lemma 15. Set χ(z) := z2 + αz + β + pe−zh and let y ∈ C2(R,R) satisfy

(2.17) y′′(t) + αy′(t) + βy(t) + py(t− h) = f(t), t ∈ R,

where α, β, p, h ∈ R and

(2.18) y(t) =

 O(e−Bt), as t→ +∞,

O(ebt), as t→ −∞;

f(t) =

 O(e−Ct), as t→ +∞,

O(ect), as t→ −∞,

for some non-negative b < c,B < C, b + B > 0. Then, for each sufficiently small

σ > 0, it holds that

y(t) =

 w+(t) + e−(C−σ)to(1), as t→ +∞,

w−(t) + e(c−σ)to(1), as t→ −∞,

where

w±(t) = ±
∑
λj∈F±

Resz=λj

[
ezt

χ(z)

∫
R
e−zsf(s)ds

]
is a finite sum of eigensolutions of equation (2.17) associated to the eigenvalues

λj ∈ F+ = {−C + σ < <λi ≤ −B} and λj ∈ F− = {b ≤ <λi < c− σ}.
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Proof. We will divide our proof into several parts.

Step I. We claim that there exist non-negative B′, b′ such that B′ ≤ B, b′ ≤ b,

B′ + b′ > 0 and

(2.19) y′(t), y′′(t) =

 O(te−B
′t), as t→ +∞,

O(teb
′t), as t→ −∞.

We will distinguish two cases:

Case A. Suppose that α = 0. Then clearly y′′(t) = O(e−Bt) at t = −∞, is

bounded on R and therefore y′(t) is uniformly continuous on R. Since B+b > 0 then

either y(+∞) = 0, lim sups→−∞ |y(s)| <∞ or y(−∞) = 0, lim sups→+∞ |y(s)| <∞.

Suppose, for example that B > 0 (hence y(+∞) = 0), the other case being similar.

Then, applying the Barbalat lemma, see e.g. [61], we find that y′(+∞) = 0. This

implies that y′(t) = −
∫ +∞
t

y′′(s)ds = O(e−Bt) at t = +∞. Thus we may set B′ = B.

Now, y′(t) = y′(0) +
∫ t

0
y′′(s)ds = O(t) at t = −∞ so that we can choose b′ = 0.

Case B. Let now α 6= 0. For example, suppose that α > 0 (the case α < 0 is

similar). Then, for some ξ,

y′(t) = ξe−αt +

∫ t

−∞
e−α(t−s){f(s)− βy(s)− py(s− h)}ds.

In fact, since the second term of the above formula is bounded on R and we can

not have y′(−∞) = ±∞ (due to the boundedness of y(t)), we obtain that ξ = 0.

But then y′(t) = O(ebt), t→ −∞ and y′(t) = O(te−min{α,B}t), t→ +∞. Note that

b′ + B′ = min{α + b, B + b} > 0. Finally, (2.17) assures that (2.19) is also valid for

y′′(t).

Step II. Applying the bilateral Laplace transform L to (2.17), we obtain that

χ(z)ỹ(z) = f̃(z), where ỹ = Ly, f̃ = Lf and −B′ < <z < b′. Moreover, from the

growth restrictions (2.18), we conclude that ỹ is analytic in −B < <z < b while f̃ is
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analytic in −C < <z < c. As a consequence, H(z) = f̃(z)/χ(z) is analytic in −B <

<z < b and meromorphic in −C < <z < c. Observe that H(z) = O(z−2), z → ∞,

for each fixed strip Π(s1, s2) = {s1 ≤ <z ≤ s2}, −C < s1 < s2 < c. Now, let σ > 0

be such that the vertical strips c − 2σ < <z < c and −C < <z < −C + 2σ do

not contain any zero of χ(z). By the inversion formula [60, Theorem 5a], for each

δ ∈ (−B, b), we obtain that

y(t) =
1

2πi

∫ δ+i∞

δ−i∞
eztỹ(z)dz =

1

2πi

∫ δ+i∞

δ−i∞
eztH(z)dz = w±(t) + u±(t), t ∈ R,

where w±(t) = ±
∑
λj∈F±

Resz=λj
eztf̃(z)

χ(z)
, u±(t) =

1

2πi

∫ ∓(c−σ)+i∞

∓(c−σ)−i∞
eztH(z)dz.

The above sum is finite, since χ(z) has a finite set of the zeros in F±. Now, for

a(s) = H(∓(c− σ) + is), we obtain that

u±(t) =
e∓(c−σ)t

2π

{∫
R
eista(s)ds

}
, t ∈ R.

Next, since a ∈ L1(R), we have, by the Riemann-Lebesgue lemma, that

lim
t→∞

∫
R
eista1(s)ds = 0.

Thus we get u±(t) = e∓(c−σ)to(1) at t =∞, and the proof is completed.

Now we can prove Theorem II.2:

Theorem II.2. Case I: asymptotics at t = +∞. It follows from (3.26) that y(t) =

1− φ(t) satisfies y(t) = O(elt), t→ +∞, for every negative l > (2ε)−1(1−
√

1 + 4ε).

Moreover, f(t) := −y(t)y(t− h) = O(e2lt), t→ +∞, y(t) = O(1), t→ −∞ and

εy′′(t)− y′(t)− y(t− h) = −y(t)y(t− h), t ∈ R.

Therefore Lemma 15 implies that, for every small σ > 0,

y(t) =
∑

2l+σ<<λj≤l

Resz=λj
eztf̃(z)

χ(z)
+ e(2l+σ)to(1), t→ +∞.
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Now, observe that (2ε)−1(1−
√

1 + 4ε) > λ2 so that either λ2 ∈ (2l+σ, l) or λ2 ≤ 2l.

In the latter case, we obtain y(t) = e(2l+σ)to(1), t→ +∞, which allows to repeat the

above procedure till the inclusion λ2 ∈ (2jl + σ, 2j−1l) is reached for some integer j.

In this way, assuming that λ1 < λ2, for each small σ > 0, we find that

(2.20) y(t) = ηeλ2t +O(e(λ2−σ)t), where η :=

∫
R e
−λ2sy(s)y(s− h)ds

−χ′(λ2)
> 0.

Now, if c = c∗(h) (i.e. λ1 = λ2), we obtain analogously that

y(t+ t0) = ξteλ2t +O(e(λ2−σ)t), t→ +∞,

for some appropriate t0 and ξ > 0.

Suppose now that h ∈ (0, h0], c ≤ c#(h). Then Lemmas 2, 3 imply that <λj <

λ1 ≤ 2λ2. This means that formula (2.20) can be improved as follows:

y(t) = ηeλ2t +O(e(2λ2+σ)t), t→ +∞.

Finally, if h ∈ (0.5 ln 2, h0] and c ∈ (c#(h), c∗(h)), it holds that 2λ2 < λ1 < λ2. Then

y(t) =
∑

2λ2+σ<<λj≤λ2

Resz=λj
eztf̃(z)

χ(z)
+ e(2λ2+σ)to(1) =

ηeλ2t + θeλ1t + e(λ1−σ)to(1), where θ :=

∫
R e
−λ1sy(s)y(s− h)ds

−χ′(λ1)
< 0.

Case II: asymptotics at t = −∞. This case is much easier to analyze since the char-

acteristic polynomial εz2 − z + 1 of the variational equation

(2.21) εy′′(t)− y′(t) + y(t) = 0, ε ∈ (0, 0.25],

along the trivial equilibrium of (2.12) has only two real zeros 0 < λ ≤ µ. It is easy

to check that 2λ ≤ µ if and only if c ≥ 1.5
√

2 = 2.121 . . . .

Since φ(−∞) = 0 and equation (2.21) is exponentially unstable on R−, we con-

clude that the perturbed equation

εy′′(t)− y′(t) + y(t)(1− φ(t− h)) = 0
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is also exponentially unstable on R− (e.g. see [13]). As a consequence, φ(t) =

O(emt), t→ −∞, for some m > 0. Now we can proceed as in Case I, since

εφ′′(t)− φ′(t) + φ(t) = f1(t),

with f1(t) := φ(t)φ(t− h) = O(e2mt). The details are left to the reader.



CHAPTER III

Global continuation of monotone wavefronts

3.1 Introduction and main result

The aim of this paper is to obtain efficient criteria of existence of monotone

travelling waves u = φ(ν · x + ct), φ(−∞) = 0, φ(+∞) = κ > 0, for the non-quasi-

monotone functional reaction-diffusion equations

(3.1) ut(t, x) = ∆u(t, x) + f(u(t, x), u(t− h, x)), u ≥ 0, x ∈ Rm,

in that case when the function g(x) := f(x, x) is of non-degenerate monostable type:

g(0) = g(κ) = 0, g′(0) > 0, g′(κ) < 0, and g(x) > 0 for x ∈ (0, κ). Here ν ∈ Rm is a

fixed unit vector, c > 0 is the propagation speed and h ≥ 0 is the delay. Henceforth

we will assume that f is C1,γ-smooth function, γ ∈ (0, 1].

There is a long list of studies that consider the wavefront existence for equation

(3.1) either with or without delays, let us mention here only several of them: [5, 20,

25, 26, 33, 38, 40, 43, 55, 56, 61, 64]. The problem is quite well understood when

h = 0. In particular, there exists cN∗ > 0 (called the minimal speed of propagation)

such that, for every c ≥ cN∗ , equation (3.1) has exactly one wavefront u = φ(ν ·x+ct),

see [25, Theorems 8.3(ii) and 8.7] or [40, 55]. In addition, (3.1) does not have any front

propagating at the velocity c < cN∗ . There are several variational principles describing

cN∗ [6, 25]. If g(x) ≤ g′(0)x, x ≥ 0, then cN∗ = 2
√
g′(0). In general, however, simple

35
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analytical formulas for cN∗ are not available. The profile φ is necessarily strictly

increasing [25, Theorem 2.39] and the following asymptotic formulae are valid [55]

for c > cN∗ and appropriate sj = sj(c, φ), σ > 0 :

(φ, φ′)(t+ s0, c) = eλ(c)t(1, λ(c)) +O(e(λ(c)+σ)t), t→ −∞,

(φ, φ′)(t+ s1, c) = (κ, 0)− eλ2(c)t(1, λ2(c)) +O(e(λ2(c)−σ)t), t→ +∞.(3.2)

Here λ(c) [respectively, λ2(c)] is the closest to 0 positive [respectively, negative] zero

of the characteristic polynomial z2 − cz + g′(0) [respectively, z2 − cz + g′(κ)].

However, when h > 0, there are numerous gaps in our knowledge about the wave-

fronts of equation (3.1). As for now, neither of the questions concerning the existence,

uniqueness, geometric shape of fronts has been completely answered even for such

quite studied models as the Nicholson’s blowflies diffusive equation [2, 43, 46, 56, 64]

and the KPP-Fisher delayed equation [5, 7, 10, 19, 20, 26, 38]. An additional compli-

cation appearing in the delayed case is the possible non-monotonicity of wavefronts

[5, 7, 56]. But even the existence of monotone fronts is usually proved only under

the quasi-monotonicity assumption on f(u, v). In particular, it is an open problem

whether the minimal speed of propagation cN∗ > 0 for (3.1) can be well defined in

the situation when f(u, v) is not quasi-monotone and is not dominated by its linear

part at (0, 0) (cf. [55] and Lemma 19 below). In fact, even in the case of quasi-

monotone nonlinearities, cN∗ > 0 was defined in full generality only very recently,

in the fundamental contribution [40] by X. Liang and X.-Q. Zhao. Another exam-

ple: due to the relatively ‘bad’ monotonicity properties of f(u, v) = u(1 − v), an

efficient criterion of existence of monotone wavefronts to the delayed KPP-Fisher

equation was obtained just a few years ago [19, 26, 38] (in Section 3.2, we present

a significant extension of this result). For the Nicholson’s blowflies equation where
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f(u, v) = −u + pve−v, p > e, the similar question was not yet answered: in Section

3.2, we present a complete solution to the existence problem when p ∈ (e, e2] and we

describe partially this solution when p > e2.

Now, there are very few approaches which can be used to address the wavefront

existence for equation (3.1). It should be noted that the profile φ of travelling front

u(t, x) = φ(ν · x + ct), φ(−∞) = 0, φ(+∞) = κ > 0, defines a heteroclinic solution

of the delay differential equation

(3.3) φ′′(t)− cφ′(t) + f(φ(t), φ(t− ch)) = 0, t ∈ R.

Therefore the phase plane analysis, which is usually invoked in the non-delayed case,

does not work when h > 0 because of the infinite dimension of phase spaces associated

to equation (3.3). As a consequence, several alternative ideas were proposed, see e.g.

[7, 20, 38, 61]. Between them, the upper-lower solution method [10, 26, 43, 61] and a

perturbation approach based on the Lyapunov-Schmidt procedure [20, ?, 32] are the

most used by the researchers. The latter method relies essentially on the fact that

delay differential equation (3.3) simplifies in the limit cases c = +∞ and h = 0. For

instance, the limit form (as c→ +∞) of (3.3) is φ′(t) = f(φ(t), φ(t−h)). Assume that

this equation linearized along its heteroclinic solution ψ defines a surjective Fredholm

operator in an appropriate Banach space. In consequence, the Lyapunov-Schmidt

reduction can be used to prove the existence of a smooth family of fast (i.e. c > c∗ for

some large c∗) wave solutions in some neighborhood of ψ. We remark that the value

of c∗ > 0 is at least very difficult to compute or estimate. Therefore, the existence

results obtained by this technique so far have local nature (e.g., the existence is proved

for velocities in some neighborhood of c = +∞). This constitutes a serious drawback

for the applications because of the special importance that the minimal fronts have for

the description of propagation phenomena. Nevertheless, as we show in this paper,
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the described approach still can be extended to prove the existence of the global

families of wavefronts for several important classes of equations. The key property

of wavefronts which is needed for the mentioned extension is their monotonicity. It

seems that our methodology does not apply to non-monotone travelling fronts.

Before stating the main theorem of this work, we need to discuss several properties

of the spectra of the following linearizations of (3.3) along the equilibria 0, κ :

(3.4) v′′(t)− cv′(t) + αjv(t) + βjv(t− ch) = 0, j ∈ {0, κ}.

Here α0 := f1(0, 0), β0 := f2(0, 0), ακ := f1(κ, κ), βκ := f2(κ, κ) and fj(x1, x2) :=

fxj(x1, x2). Recall that the monostable function g(x) := f(x, x) satisfies

g′(0) = f1(0, 0) + f2(0, 0) = α0 + β0 > 0, g′(κ) = f1(κ, κ) + f2(κ, κ) = ακ + βκ < 0.

Additionally, in view of applications in population dynamics (see Section 3.2), we

will assume that β0 = f2(0, 0) ≥ 0.

Lemma 16. Given ακ+βκ < 0, βκ < 0, there exists cLκ = cLκ(h) ∈ (0,+∞] such that

the characteristic equation

(3.5) χκ(z) := z2 − cz + ακ + βκe
−chz = 0, c > 0,

has three real roots λ1 ≤ λ2 < 0 < λ3 if and only if c ≤ cLκ. If cLκ is finite and c = cLκ,

then equation (3.5) has a double root λ1 = λ2 < 0, while for c > cLκ there does not

exist any negative root to (3.5). Moreover, if λj ∈ C is a complex root of (3.5) for

c ∈ (0, cLκ] then <λj < λ2.

Furthermore, cLκ(0) = +∞ and cLκ(h) is strictly decreasing in its domain. In fact,

cLκ(h) =
θ(ακ, βκ) + o(1)

h
, h→ +∞, where θ(ακ, βκ) :=

√
2ωκ
βκ

eωκ/2,

and ωκ is the unique negative root of

(3.6) −2ακ = βκe
−ωκ(2 + ωκ).
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Lemma 17. Given α0 + β0 > 0, β0 ≥ 0, there exists cL0 = cL0 (h) > 0 such that the

characteristic equation

(3.7) χ0(z) := z2 − cz + α0 + β0e
−chz = 0, c > 0,

has exactly two simple real roots λ = λ(c), µ = µ(c) if and only if c > cL0 . These roots

are positive so that we can suppose that 0 < λ < µ. Next, if c > cL0 and β0 > 0, then

all complex roots {λj}j≥1 of (3.7) are simple and can be ordered in such a way that

(3.8) · · · ≤ <λ3(c) ≤ <λ4(c) ≤ <λ2(c) = <λ1(c) < λ < µ.

If c = cL0 , then the above equation has a double positive root λ(cL0 ) = µ(cL0 ), while for

c < cL0 there does not exist any real root to (3.7). Furthermore, each complex root

z0 = x0 + iy0 with <z0 = x0 ≤ λ(c) must have its imaginary part |=z0| > π/ch.

Finally, cL0 = cL0 (h) > 0 is a decreasing function, with cL0 (+∞) = 0 if α0 ≤ 0 and

cL0 (+∞) = 2
√
α0 if α0 > 0. In fact, for α0 ≤ 0, we have

cL0 (h) =
θ1(α0, β0) + o(1)

h
, h→ +∞, where θ1(α0, β0) :=

√
2ω0

β0

eω0/2,

and ω0 is the unique positive root of

−2α0 = β0e
−ω0(2 + ω0).

Lemma 18. Assume that all conditions of Lemmas 16 and 17 are satisfied. Then

equation cLκ(h) = cL0 (h) has exactly one non-negative solution h0 if θ(ακ, βκ) <

θ1(α0, β0) and does not have any non-negative solution otherwise.

Corollary 5. Set DL = {(h, c) : h ≥ 0, cL0 (h) ≤ c ≤ cLκ(h)} ∩ R2 ⊂ R2
+. Then DL is

a connected closed domain containing {0} × [cL0 (0),+∞).

Figure 2 below presents two possible forms of DL, in the second case θ1(α0, β0) <

θ(ακ, βκ).
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Next, let φ be a strictly monotone wavefront of (3.3). The characteristic exponents

Λ± of φ are defined as Λ±(φ) := limt→±∞(1/t) ln |φ(±∞)− φ(t)|.

Definition 2. Let DN stand for the maximal connected open (in topology of R2
+)

component of the set

{(h, c) ∈ DL : Λ−(φ) = λ(c),Λ+(φ) = λ2(c) for each monotone wavefront φ}

which has a non-empty intersection (cf. Lemma 24) with the vertical line h = 0.

In general, description of DN is a very difficult task, related to the determination

of the minimal speed of propagation [55]. But when the nonlinearity f is dominated

by its linearizations at the equilibria 0 and κ, this task can be easily accomplished:

Lemma 19. DN coincides with DL for each f(x, y) ∈ C1,γ satisfying

f(x, y) ≤ α0x+ β0y, f(x, y) ≤ ακ(x− κ) + βk(y − κ), (x, y) ∈ [0, κ]2.

In other cases, we can still indicate explicitly a substantial subset of DN, see

Section 2.

In the sequel, we will consider the following sign/monotonicity assumptions:

(M) Each profile φ : R→ (0, κ) of travelling front to (3.3) is a monotone function.

(MG) α0 +β0 > 0, α0 < 0, β0 > 0, ακ < 0, βκ < 0, and for each strictly increasing

ζ ∈ C2(R), ζ(−∞) = 0, ζ(+∞) = κ, it holds that f1(ζ(t), ζ(t−ch)) ≤ 0, t ∈ R,

while f2(ζ(t), ζ(t− ch)) has a unique zero on R.

(KPP) β0 = 0, α0 > 0, ακ = 0, βκ < 0, and for each strictly increasing C2-function

ζ = ζ(t), ζ(−∞) = 0, ζ(+∞) = κ, it holds that α0 ≥ f1(ζ(t), ζ(t − ch)) ≥ 0,

t ∈ R, while f2(ζ(t), ζ(t− ch)) ≤ 0 on R.
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Now we are in position to state the main result of this work:

Theorem III.1. Assume that either hypotheses (M)&(MG) or (M)&(KPP) are

satisfied. Then there is a global family F = {φ(·, h, c), (h, c) ∈ DN} of monotone

travelling fronts to (3.1). Moreover, if u = φ(ν · x + ct) is an eventually monotone

front to (3.1), then (h, c) ∈ DL.

Remark 1. a) In consequence, if DN = DL then Theorem III.1 provides a criterion

of existence of monotone wavefronts. Moreover, what is quite important for appli-

cations, this criterion can be formulated explicitly (in terms of coefficients of the

characteristic equations (3.7), (3.5), see Section 2). b) Theorem 1.4 in [55] suggests

that DN might be the maximal domain of the monotone fronts existence even when

DN 6= DL. In particular, this would imply that cN∗ (h′) = inf{c : (h′, c) ∈ DN} and

that Theorem III.1 yields an existence criterion even when DN 6= DL. In any case, as

we have already mentioned, the explicit determination of cN∗ (and, in consequence,

of DN) is a very difficult problem even for non-delayed equations.

c) As we will show, the family of all monotone wavefronts has the following property

of local continuity: if (h′, c′) ∈ DN then there exists an open neighborhood U ⊂ R2
+

of (h′, c′) and a local family of monotone fronts φU such that φU(·, h, c) depends

continuously on (h, c) ∈ U in the metric of weighted uniform convergence on R.

Finally, a few words about the organization of the paper. Theorem III.1 is proved

in Sections 3 and 4, while in the next section it is applied to two important families

of delayed diffusion equations. Appendix to this paper contains the proofs of all four

lemmas announced in the introduction.
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3.2 Applications

3.2.1 The KPP type delayed equations

Recently, a criterion of existence of monotone fronts for the KPP-Fisher equation

(3.9) ut(t, x) = ∆u(t, x) + u(t, x)(1− u(t− h, x))

was established in [38] by means of the shooting techniques and in [26] by using a

constructive monotone iteration algorithm. In this section, we apply Theorem III.1

to a broad family of equations (3.1) which contains (3.9) as a particular case. It is

worth to mention that the monotone wavefronts of the KPP-Fisher delayed equation

(3.9) have an additional nice property: they are absolutely unique [18, 26, 33]. Thus

the family F = {φ(·, h, c), (h, c) ∈ DL} of monotone wavefronts to (3.9) is actually

globally continuous.

We will say that monostable nonlinearity f(x, y) in (3.1) is of the KPP type, if

f ∈ C1,γ for some γ ∈ (0, 1], α0 > 0, β0 = 0, ακ = 0, βκ < 0, f(0, y) ≡ 0,

and, for all x, y ∈ (0, κ), 0 < f1(x, y) ≤ α0, f2(x, y) ≤ 0, 0 < f(x, y) ≤ βk(y − κ).

It is then easy to see that the set DL has the form given on Fig. 1, cf. [26].

Figure 3.1: Domain DL for the KPP type delayed equation

In fact, c = cκ(h) can be found from the equation

2 +
√
c4h2 + 4 = −βκc2h2 exp

(
1 +

2

c2h+
√
c4h2 + 4

)
.

This allows to calculate easily h0 (defined in Lemma 18) and the asymptote h =

−1/(eβκ).

Theorem III.2. Let f be of the KPP type. Then there is a monotone front u =

φ(ν · x+ ct), |ν| = 1, c > 0, to (3.9) if and only if (h, c) ∈ DL.
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Proof. Since, by Lemma 19, DN = DL, we have only to check that the hypotheses

(M) and (KPP) are satisfied. First, (KPP) clearly holds due to the above definition

of the KPP type nonlinearity. Next, suppose for a moment that φ′(t0) = 0 at some

t0 ∈ R. Since φ(t0), φ(t0 − ch) ∈ (0, κ), we have φ′′(t0) = −f(φ(t0), φ(t0 − ch)) < 0

and therefore t0 is the only critical point of φ (strict local maximum), in contradiction

with the boundary conditions at ±∞. Thus we have φ′(t) > 0 for all t.

3.2.2 The Mackey-Glass type delayed diffusion equations

Consider the following monostable equation

(3.10) ut(t, x) = ∆u(t, x)− δu(t, x) + g(u(t− h, x)),

where C1,γ−continuous g : R+ → R+, g(0) = 0, g(κ) = δκ, g′(0) > δ > 0, has a

unique critical point (a global maximum) on (0, κ). Clearly, α0 = ακ = −δ, β0 =

g′(0) > δ and βκ = g′(κ) < 0.

Theorem III.3. Let g satisfy the above conditions. Then there exists a family

of monotone wavefronts u := φ(x · ν + ct, h, c), |ν| = 1, c > 0, parametrized by

(h, c) ∈ DN.

Proof. Observe that the monotonicity assumption (M) is satisfied in view of [56,

Theorem 1.1]. In order to check (MG), suppose that ζ ∈ C2(R, (0, κ)) is a strictly

increasing function such that ζ(−∞) = 0, ζ(+∞) = κ. Then f1(ζ(t), ζ(t − ch)) =

−δ < 0, t ∈ R, while f2(ζ(t), ζ(t− ch)) = g′(ζ(t− ch)) clearly has a unique zero on

R.

3.2.3 The diffusive Nicholson’s equation

Equation (3.10) with g(x) = pxe−x is called the diffusive Nicholson’s equation. It

is monostable when p/δ > 1, with steady state solutions u1 := 0 and u2 := ln(p/δ).
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If, in addition, p/δ ≤ e, then g(x) is monotone on [u1, u2] and therefore there exists

a unique monotone travelling front for each fixed c ≥ cL0 , cf. [2, 55, 64]. In fact,

this front can be found as a limit of a converging monotone functional sequence [64].

The uniqueness can be deduced either by using the Diekmann-Kaper theory [2] or by

applying the sliding method of Berestycki and Nirenberg [55]. Now, if e < p/δ ≤ e2,

then travelling fronts exist for every fixed h ≥ 0 and c ≥ cL0 [43, 57]. However, they

are not monotone for large c and h [57]. Finally, if p/δ > e2 then the wavefronts exist

only for h from some bounded set (depending on p, δ) [57, 56]. If p/δ > e2 and h is

large, then the Nicholson’s equation possesses positive and bounded semi-wavefront

solutions, i.e. solutions u = φ(ν · x + ct), φ(−∞) = 0, lim inft→+∞ φ(t) > 0. It

was also proved in [56] that, for p/δ ∈ (e2, 16.99..), these solutions have monotone

leading edge and that they are either eventually monotone or slowly oscillating at

+∞, cf. Corollary 6 below. It is an open problem whether there can exist an even-

tually monotone and non-monotone front for some p/δ > e2. Hence, excepting the

above mentioned result from [64], nothing was known about the existence of mono-

tone fronts for the Nicholson’s equation. Our first assertion here gives the complete

solution to the considered problem for p/δ ≤ e2:

Theorem III.4. Assume that g(x) = pxe−x and p/δ ∈ (e, e2]. Then equation (3.10)

has a unique (up to a translation) travelling front for each c ≥ cL0 , h ≥ 0. This front

is monotone if and only if (h, c) ∈ DL. The domain DL has two main geometric

forms presented on Fig. 2, where ν0 := 2.808 . . . and δhae
δha = (e ln(p/eδ))−1.

Figure 3.2: ν0 < p/δ ν0 ≥ p/δ

Proof. The front existence for c ≥ cL0 was proved in [43, 57]. The uniqueness state-
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ment follows from [2]. If p/δ ∈ (e, e2] then min[u1,u2] g
′(x) = g′(u2) and therefore

Lemma 19 assures that DN = DL. Hence, in order to prove our criterion for the

existence of monotone fronts, it suffices to invoke Theorem III.3.

Next, α0 = −δ, β0 = p, ακ = −δ and βκ = δ ln(eδ/p). As a consequence, functions

c = cL0 (h) and c = cLκ(h) are determined, respectively, by the equations

c2 + 4δ

2 +
√
c4h2 + 4c2h2δ + 4

= ep exp

(
−
√
c4h2 + 4c2h2δ + 4 + c2h

2

)
, h ≥ 0;

(3.11)
2 +
√
c4h2 + 4c2h2δ + 4

ec2h2|βκ|
= exp

(√
c4h2 + 4c2h2δ + 4− c2h

2

)
, h > ha,

where ha is such that e|βκ|ha exp(δha) = 1. A simple analysis shows that cLκ(h) = +∞

if and only if h ∈ [0, ha]. Next, θ1(α0, β0) =
√

2w0

p
ew0/2 where w0 is the positive root

of 2δ/p = e−w(2 + w) (see Lemma 17). Similarly, from Lemma 16 we infer that

θ(ακ, βκ) =
√

2|w0|
δ ln(p/eδ)

ew0/2, where w0 is the negative root of −2/ ln(p/eδ) = e−w(2 +

w). By Lemma 18, the value of ν0 = p/δ is determined by the condition θ(ακ, βκ) =

θ1(α0, β0). It is easy to show that ν0 = p
δ
(t0) = t−1

0 (−1 +
√

1 + 2t0)e−1+
√

1+2t0 with

t0 being the positive root of

t−1
0 (−1 +

√
1 + 2t0) exp

(
−2 +

√
1 + 2t0

)
= exp

(
t−1
0 (1 +

√
1 + 2t0)e−1−

√
1+2t0

)
.

Finally, we find ν0 = 2.808 · · · ∈ (e, e2).

Corollary 6. Suppose that p/δ ∈ (2.718 . . . , 2.808 . . . ], then each minimal wavefront

is monotone (independently on h). If p/δ ∈ (2.808 . . . , 16.99904 . . . ] and h > h0,

then every minimal wavefront is slowly oscillating at +∞.

Proof. If p/δ ≤ 2.80 . . . , then the domain DN = DL is unbounded from the right (see

Fig. 2) and the first statement follows. If p/δ ∈ (2.80 . . . , 16.99 . . . ] then the positive

feedback assumption of [56, Theorem 3] is satisfied and therefore each wavefront is
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either eventually monotone or slowly oscillating. However, if h > h0, then none front

solution can be eventually monotone due to Theorem III.1.

Let now p/δ > e2. Then β−κ := infx∈(0,u2)(g(x) − g(u2))/(x − u2) < 0 and

g(x) ≤ β−κ (x − u2) + g(u2), x ∈ [0, u2]. We also will need function c := c−κ (h)

which is implicitly (and analogously to cκ) defined by equation (3.11) where βκ, ha

are replaced with β−κ and h−a (such that e|β−κ |h−a exp(δh−a ) = 1), respectively. In

particular, c−κ (h) := +∞ for h ∈ [0, h−a ]. It is easy to see that 0 < h−a ≤ ha and that

c−κ (h) ≤ cκ(h), h ∈ [0, h−0 ]. Here h−0 satisfies c−κ (h−0 ) = cL0 (h−0 ).

Theorem III.5. Suppose that p/δ > e2 and c ∈ [cL0 (h), c−κ (h)], h ≤ h−0 . Then the

Nicholson’s equation has a unique (up to a translation) monotone wavefront.

Proof. This result follows from Theorem III.3 if we observe that Int D−L := {(h, c) :

c ∈ (cL0 (h), c−κ (h)), h ∈ [0, h−0 ]} ⊂ DN (this inclusion is justified in Appendix, Remark

2). The front uniqueness is due to the relation g′(0) = maxs≥0 |g′(s)|, e.g. see [2].

3.3 Associated Fredholm operator

Let φ be a monotone solution of equation (3.3) connecting equilibria 0 and κ. The

spectra of the linearization of (3.3) at 0, κ were analyzed in Lemmas 17, 16. In this

section, we study the linear variational equation along the solution φ

v′′(t)− cv′(t) + f1(φ(t), φ(t− ch))v(t) + f2(φ(t), φ(t− ch))v(t− ch) = 0.

With the notation a(t) := f1(φ(t), φ(t−ch)), b(t) := f2(φ(t), φ(t−ch)), this equation

can be written as the system

(3.12) v′(t) = w(t), w′(t) = −a(t)v(t) + cw(t)− b(t)v(t− ch),

or shortly as Fc(v, w) = 0, where

Fc(v, w)(t) = (v′(t)− w(t), w′(t) + a(t)v(t)− cw(t) + b(t)v(t− ch)).
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For small δ > 0 and fixed c, we define the following Banach spaces:

Cδ = {ψ ∈ C(R,R2) : |ψ|δ := sup
s≤0

e−(λ(c)−δ)s|ψ(s)|+ sup
s≥0

e−(λ2(c)+δ)s|ψ(s)| <∞},

C1
δ = {ψ ∈ Cδ : ψ, ψ′ ∈ Cδ, |ψ|1,δ := |ψ|δ + |ψ′|δ < +∞}.

We will consider Fc as a linear operator defined on C1
δ and taking its values in Cδ.

The main result of this section follows:

Theorem III.6. Let either (MG) or (KPP) hold with ζ(t) = φ(t). If (h, c) ∈

Int DL then Fc : C1
δ → Cδ is a surjective Fredholm operator, with dimKer Fc = 1.

We will prove this theorem by using Hale and Lin analysis [32, Lemmas 4.5-4.6]

of the linear functional differential equations

(3.13) y′(t) = L(t)yt, yt(s) := y(t+ s), L(t) : C([−ch, 0],Rn)→ Rn,

where linear bounded operators L(t) depend continuously on t ∈ R in the operator

norm and are uniformly bounded on R. Let Y (t, s) denote the evolution (solution)

operator for (3.13). Then the equation is said [32] to have a shifted exponential

dichotomy on a half-line J with the exponents α < β and projection Pu(s), s ∈ J, if

|Y (t, s)(I − Pu(s))| ≤ Keα(t−s), |Y (t, s)Pu(s)| ≤ Keβ(t−s), t ≥ s ∈ J.

Take some ν ∈ (α, β) and consider the change of variables y(t) = x(t)eνt which

transforms (3.13) into x′(t) = M(t)xt with M(t)φ(·) = L(t)(eν·φ(·))− νφ(0) and the

evolution operator X(t, s) = e−ν(t−s)e−ν·Y (t, s)eν·. It is clear that the transformed

equation has a usual exponential dichotomy with the exponents α− ν < 0 < β − ν,

and projection e−ν·Pu(s)e
ν·, s ∈ J, if and only if the original equation (3.13) has a

shifted exponential dichotomy with the exponents α < β and projection Pu(s), s ∈ J .
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For convenience of the reader, in Proposition 1 below we summarize the content

of the mentioned lemmas from [32] for the special case of system (3.12) whose formal

adjoint equation [31] is given by

(3.14) y′1(t) = a(t)y2(t) + b(t+ ch)y2(t+ ch), y′2(t) = −y1(t)− cy2(t).

Particular solutions y = (y1, y2) of (3.14) which are defined on R and satisfy

(3.15) |y(t)| ≤ Ke−β2t, t ≥ 0, |y(t)| ≤ Ke−α1t, t ≤ 0,

for some K,α1, β2 (specified below) will be of special importance:

Proposition 1. Suppose that continuous functions a, b : R → R are bounded and,

for some τ > 0, system (3.12) has shifted dichotomies in (−∞,−τ ] and [τ,+∞) with

exponents α1 = λ(c) − δ < β1, α2 < λ2(c) + δ < β2 and projections P−u (t), P+
u (t),

respectively. Then Fc : C1
δ → Cδ is Fredholm of index i(Fc) = dimRP−u (−τ) −

dimRP+
u (τ), and with the range

R(Fc) = {h ∈ Cδ :

∫
R
y(s)h(s)ds = 0 for all solutions y(t) of (3.14) satisfying (3.15)}.

Now, since system (3.12) is asymptotically autonomous and the eigenvalues λ(c), λ2(c)

of the limit systems for (3.12) at ±∞ are real and isolated, the roughness property

of the exponential dichotomy (cf. [32, Lemma 4.3]) implies the following. For

sufficiently large τ > 0, system (3.12) has shifted dichotomies in (−∞, τ ] and [τ,+∞)

with exponents, respectively,

α1 = λ(c)− δ > 0, β1 = λ(c)− δ/2, α2 := λ2(c) + δ/2 < 0, β2 := δ,

and dimRP−u (−τ) = 2, dimRP+
u (τ) = 1, so that i(F) = 1.

Let (h, c) ∈ Int DL, then, for each wavefront φ, we have (φ, φ′) ∈ C1
δ (cf. Remark

3) and Fc(φ, φ
′)(t) = 0. As a consequence, dim Ker(Fc) ≥ 1. Theorem III.6 claims
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that actually dim KerFc = 1 because of codimRFc = 0. In order to prove that

R(Fc) = Cδ it suffices to show that none nontrivial solution of (3.14) can satisfy

(3.15). We establish this fact in the next lemmas.

At this stage, it is worth rewriting (3.14) and (3.15) in a more familiar way. First,

we observe that (3.14) reduces to the second order equation

y′′(t) = −cy′(t)− a(t)y(t)− b(t+ ch)y(t+ ch).

Next, after the change of variables v(t) = y(−t), t ∈ R, we obtain that

v′′(t)− cv′(t) + a(−t)v(t) + b(−t+ ch)v(t− ch) = 0,

while inequalities (3.15) take the form

(3.16) |v(t)|+ |v′(t)| ≤ Keδt, t ≤ 0, |v(t)|+ |v′(t)| ≤ Ke(λ(c)−δ)t, t ≥ 0.

Set A(t) := a(−t), B(t) := b(−t+ ch). It is clear that A,B are continuous with

A(−∞) = ακ, B(−∞) = βκ, A(+∞) = α0, B(+∞) = β0.

Lemma 20. Let (h, c) ∈ IntDL. Then there exists a unique (modulo a constant

factor) nontrivial solution v(t) of equation

(3.17) v′′(t)− cv′(t) + A(t)v(t) +B(t)v(t− ch) = 0,

such that v(t), v′(t) → 0 as t → −∞. Moreover, we can suppose that v(t) > 0,

v′(t) > 0 for all sufficiently large negative t while limt→−∞ v
′(t)/v(t) = λ3.

Proof. Setting C2 := C([−ch, 0],R2), we can present (3.17) as the system

(3.18) v′(t) = w(t), w′(t) = cw(t)− A(t)v(t)−B(t)v(t− ch).

Since (h, c) ∈ IntDL, the limit system of (3.18) at −∞ is exponentially dichotomic

with some projection P . In fact, it possesses one-dimensional unstable invariant sub-

manifold of C2 generated by the element (v, w)(s) = (eλ3s, λ3e
λ3s), s ∈ [−ch, 0]. Thus
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P (v, w) = (v, w). Using the roughness property [32, Lemma 4.3] of the exponential

dichotomy, we obtain that the perturbed system (3.18) is also dichotomic on some

interval (−∞,−τ ] ⊂ R− with the projection P (t) such that P (t) → P, t → −∞.

Set (vt, wt) = P (t)(v, w), then P (t)(vt, wt) = (vt, wt) and

|(v, w)− (vt, wt)|C2 = |(P (t)− P )(v, w)|C2 → 0, t→ −∞.

As a consequence, vt(s) > 0, wt(s) > 0, s ∈ [−ch, 0], for all sufficiently large negative

t ≤ −τ1 ≤ −τ . Next, it is clear that every bounded on R− solution (v(t), v′(t)) of

(3.18) can be written as

(v(t+ s), v′(t+ s)) = λ(t)(vt(s), wt(s)), t ≤ −τ1, s ∈ [−ch, 0],

for some continuous scalar function λ : (−∞,−τ1]→ R. It is easy to see from (3.18)

that λ(t0) = 0 for some t0 ≤ −τ1 if and only if λ(t) = 0, t ≤ −τ1. Therefore compo-

nents of each bounded solution (v(t), v′(t)) of (3.18) keep their sign on (−∞,−τ1]. Fi-

nally, we have that limt→−∞ v
′(t)/v(t) = limt→−∞wt(0)/vt(0) = w(0)/v(0) = λ3.

Lemma 21. Assume that either hypothesis (MG) or (KPP) is satisfied. Let (h, c) ∈

IntDL and A(t) = α0 + O(e−γt), B(t) = β0 + O(e−γt), t → +∞, for some γ > 0.

Then only the trivial solution v(t) ≡ 0 of equation (3.17) can satisfy inequalities

(3.16).

Proof. Assume, on the contrary, that there is a nontrivial v(t) satisfying (3.16),

(3.17). By Lemma 20, we can suppose that v(t), v′(t) > 0 on some maximal open

interval (−∞, σ) and v′(σ) = 0 (whenever σ is finite).

In the first part of the proof, we will assume additionally that hypothesis (MG) is

satisfied. Then the open set Zv := {t ∈ R : v(t) 6= 0} is dense in R. Indeed, otherwise

v(t) ≡ 0 on some non-degenerate interval [r1, r2] so that, in virtue of equation (3.17),
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v(t) ≡ 0 for t ∈ [r1 − chj, r2 − chj], j ∈ N. This, however, contradicts to the

inequality v(t) > 0, t ≤ σ. Now, if v(t) is not a small solution (the latter means

that limt→+∞ v(t)est = 0 for every s ∈ R), we obtain from [44, Proposition 7.2] and

Lemma 17 that

(3.19) v(t) = Cexjt(cos(yjt+ ϕj) + o(1)), t→ +∞,

for some C > 0, ϕj ∈ R, and complex λj := xj + iyj, |yj| > π/ch, xj < λ(c),

satisfying (3.7). Therefore v(t) oscillates on R+ and σ is finite. Let t∗ denote the

unique zero of B(t) on R. Since v′′(σ) ≤ 0, v′(σ) = 0, v(σ) > 0, v(σ − ch) > 0, we

obtain that σ ≥ t∗ because of

0 = v′′(σ)− cv′(σ) + A(σ)v(σ) +B(σ)v(σ − ch) ≤ B(σ)v(σ − ch).

Hence B(t) > 0, A(t) ≤ 0 on (σ,+∞) and therefore the nonlinearity

(N0, N1) := (w(t), cw(t)− A(t)v(t)−B(t)v(t− ch))

satisfies the following feedback inequalities (with δ∗ = −1, see [45]) for t ≥ σ:

(3.20)


N0(t, 0, w) = w ≥ 0 if and only if w ≥ 0,

N1(t, v, 0, vt) = −A(t)v −B(t)vt ≥ 0 if v ≥ 0 and δ∗vt ≥ 0,

N1(t, v, 0, vt) = −A(t)v −B(t)vt ≤ 0 if v ≤ 0 and δ∗vt ≤ 0.

In the next stage of the proof, we make use of the discrete Lyapunov functional

V −(φ) introduced by J. Mallet-Paret and G. Sell in [45]. For the convenience of the

reader, below we adopt to our situation the definition of V − and a key result from

[45] describing the monotonicity properties of V −(vt), t ≥ σ. Let us introduce a new

notation: K = [−h, 0] ∪ {1}.

Definition 3. For any v ∈ C(K) \ {0} we define the number of sign changes by

sc(v) = sup{k ≥ 1 : there are t0 < · · · < tk, tj ∈ K, such that v(ti−1)v(ti) < 0 for i ≥ 1}.
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We set sc(v) = 0 if v(s) ≥ 0 or v(s) ≤ 0 for s ∈ K. If ϕ ∈ C1[−ch, 0] is not

identically zero, we write (ϕ̄)(s) = ϕ(s) if s ∈ [−ch, 0], and (ϕ̄)(1) = ϕ′(0). Then the

Lyapunov functional V − : C1[−ch, 0]\{0} → {1, 3, 5, . . . } is defined by the relations:

V −(φ) = sc(φ̄) if sc(φ̄) is odd or infinite; V −(φ) = sc(φ̄) + 1 if sc(φ̄) is even.

Proposition 2. (By [45, Theorem 2.1]). Assume that the feedback inequalities (3.20)

hold for t ≥ σ. Let v : [σ − ch,+∞) → R be a nontrivial C1-solution of equation

(3.17), and set vt(s) := v(t+s), s ∈ [−ch, 0]. Then the discrete Lyapunov functional

V −(vt) is a nonincreasing function of t ≥ σ as long as vt is not the zero function.

Since V −(vσ) = 1, Proposition 2 assures that V −(vt) = 1 for t ≥ σ. On the other

hand, in view of |yj| > π/ch and representation (3.19), we find that V −(vt) ≥ 3 for

all large positive t. This contradiction shows that v(t) must be a small solution. We

will analyze the following two alternative cases:

i) v(t) ≥ 0 for all t from some maximal subinterval [t̂,∞) ⊆ [σ,∞). Since

−A(t) = |A(t)| ≤ b0 := max
t≥σ
|A(t)|, −B(t) ≤ b1 = 0, t ≥ σ,

we can apply [?, Lemma 3.1.1], under Assumption 3.1.2 with γ = −1, to conclude

that v ≡ 0 on some interval [t#,∞) ⊂ R \ Zv, a contradiction.

ii) v(t) is oscillating on [σ,∞). Since we know that V −(vt) = 1 for t ≥ σ, the

number of sign changes of vt on [t−ch, t] is less than 1. This implies the existence of an

infinite sequence {tj}j≥0, tj+1−tj ≥ ch, such that v(tj) = 0 and v(t) > 0 [respectively,

v(t) < 0] almost everywhere on each (t2j, t2j+1) [respectively, (t2j+1, t2j+2)]. Next, the

property V −(vt) = 1, t ≥ σ, yields additionally that v′(t) ≥ 0 a.e. on (t2j, t2j + ch).

In consequence,

v′′(t) = cv′(t) + |A(t)|v(t) +B(t)|v(t− ch)| ≥ 0 a.e. on [t2j, t2j + ch].
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Therefore v′(t), v(t) > 0 for all t ∈ (t2j, t2j+ch]. This shows that, in fact, t2j+1−t2j >

ch and there is a rightmost sj ∈ (t2j+ch, t2j+1) such that v(sj) = maxu∈[t2j ,t2j+1] v(u).

Since v(+∞) = 0, without restricting the generality, in the sequel we can assume

that t2j, sj are choosen in such a way that 0 < v(sj) ≥ |v(t)|, t ≥ t2j (otherwise, it

suffices to consider −v(t)).

Hence, maxu≥sj−ch |v(u)| ≤ v(sj), and for every fixed T ≥ 0 and t ∈ [sj−ch, sj+T ],

it holds

|v′(t)| ≤ v′(t2j + ch) + max
u∈[qj ,sj+T ]

|v′(u)| ≤ |
∫ sj

t2j+ch

ec(t2j+ch−s)(A(s)v(s) +B(s)v(s− ch))ds|+

max
t∈[qj ,sj+T ]

|
∫ sj

t

ec(t−s)(A(s)v(s) +B(s)v(s− ch))ds| < 4
|α0|+ β0

c
ecTv(sj),

where qj := max{sj − ch, t2j + ch}. Therefore, if we set wj(t) := v(t+ sj − ch)/v(sj),

we have that |wj(t)| ≤ 1, t ≥ 0, wj(ch) = 1, w′j(ch) = 0, and, for every fixed T > 0,

|w′j(s)| ≤ 4
|α0|+ β0

c
ecT , s ∈ [0, T ].

As a consequence, after an application of the Arzela-Ascoli theorem, we obtain that

wj has a subsequence (we will use the same notation wj for it) such that w′j(ch) =

0, limwj(t) = w∗(t), t ∈ R+, where the convergence is uniform on compact subsets

of R+. It is clear that continuous w∗ is bounded: 1 = maxt≥0w∗(t) = w∗(ch). Note

that wj(t) satisfies

w′′(t)− cw′(t) + Aj(t)w(t) +Bj(t)w(t− ch) = 0, t ∈ R,

where Aj(t) := A(t+ sj − ch)→ α0, Bj(t) := B(t+ sj − ch)→ β0 uniformly on R+.

Thus

w′j(t) = w′j(ch) + c(wj(t)− wj(ch))−
∫ t

ch

(Aj(s)wj(s) +Bj(s)wj(s− ch))ds
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converges (uniformly on compact subsets of [ch,+∞)) to w′∗(t) and

w′∗(t) = c(w∗(t)− w∗(ch))−
∫ t

ch

(α0w∗(s) + β0w∗(s− ch))ds, t ≥ ch.

Thus w∗(t) is a bounded solution of the linear delay differential equation (3.4, j =

0) considered for t ≥ ch, with non-negative initial value w∗(s), s ∈ [0, ch], and

w′∗(ch) = 0, w∗(ch) = 1. In view of (3.4, j = 0), this implies that w∗(t) 6≡ 0 on every

subinterval [p,+∞), p ≥ ch. By [31, Theorem 3.1, p. 76] the latter assures that

w∗(t) is not a small solution of (3.4, j = 0). Moreover, since (3.4, j = 0) satisfies

the feedback assumptions similar to (3.20) and V −(w∗ch) = 1, Proposition 2 implies

V −(w∗t) = 1 for t ≥ ch. However, invoking again representation (3.19), we find that

V −(w∗t) ≥ 3 for all large positive t, a contradiction.

Assume now condition (KPP). By Lemma 20, without restricting the generality,

we can suppose that 0 ∈ (−∞, σ) and v′(0)/v(0) ≈ λ3. Let (−∞, σ∗) denote the

maximal open interval where v(t) > 0 (it is clear that σ∗ ≥ σ). Observe that

v′′(t)− cv′(t) + α0v(t) = D(t), where D(t) := (α0 − A(t))v(t)−B(t)v(t− ch) ≥ 0,

t < σ∗. Integrating the latter equation, we find that

v(t) = C1e
λt + C2e

µt +
1

µ− λ

∫ t

0

(
eµ(t−s) − eλ(t−s))D(s)ds,

where C1 := v(0)
µ− v′(0)/v(0)

µ− λ
< 0, C2 := v(0)

v′(0)/v(0)− λ
µ− λ

> 0,

and 0 < λ < µ satisfy z2−cz+α0 = 0. We note here that a direct comparation of the

latter equation with z2 − cz + βκe
−zch = 0 shows that λ < µ < λ3. This also implies

that c(t) := C1e
λt + C2e

µt > 0 for t > 0. Indeed, c(t) is positive for sufficiently large

t and if C1e
λT + C2e

µT = 0 for the rightmost T , then

e(µ−λ)T =
v′(0)− µv(0)

v′(0)− λv(0)
≈ λ3 − µ
λ3 − λ

< 1 so that T < 0.
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All the above imply that σ∗ = +∞ and v(t) > 0.5C2e
µt for sufficiently large t,

contradicting to the second inequality of (3.16).

3.4 Global continuation of wavefronts

This section contains the proof of Theorem III.1. It is divided into three parts.

3.4.1 Lyapunov-Schmidt reduction.

Take a fixed (h0, c0) ∈ Int DL and suppose that there exists a monotone wavefront

u = φ(ν ·x+ ct), |ν| = 1, for equation (3.1) considered with h = h0, and propagating

at the velocity c = c0. Then φ satisfies (3.3) or, equivalently, (v, w) = (φ(t), φ′(t)) is

a solution of

(3.21) v′(t) = w(t), w′(t) = cw(t)− f(v(t), v(t− r)).

with c = c0, r = c0h0 =: r0. In what follows, the spaces Cδ, C
1
δ will be also considered

with the fixed parameters c = c0, h = h0. The change of variables z1 + φ(t) =

v, z2 + φ′(t) = w transforms (3.21) into

Fc0(z) = G(h, c, z),

where we use the notation z(t) = (z1(t), z2(t)), zjr(t) = zj(t− r),

G(h, c, z) = (0, (c−c0)φ′+(c−c0)z2 +f(φ, φr0)−f(z1 +φ, z1r+φr)+a(·)z1 +b(·)z1r0).

By Theorem III.6, there exists a subspace W ⊂ C1
δ , codim(W ) = 1, such that

C1
δ = ker(Fc0)

⊕
W . Clearly, the restriction

L := Fc0

∣∣∣
W

: W → Cδ

is continuous one-to-one operator, hence L−1 exists and is bounded.

Set Wρ := W ∩ {z ∈ C1
δ : |z|1,δ < ρ}. We have the following
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Lemma 22. There exist ρ1, ρ2, K > 0 such that

(i) |G(h, c, z)−G(h, c, w)|δ ≤ K|z −w|δ for all z, w ∈ Uρ1(0) = {z : |z|δ < ρ1} and

(h, c) ∈ Uρ2(h0, c0) = {(h, c) : |h− h0|+ |c− c0| < ρ2}.

(ii) L−1G(h, c, ·) : Wρ1 → Wρ1 is well defined and is a contraction uniformly in

(h, c) ∈ Uρ2(h0, c0).

Proof. (i) Set R(s) := (φ + sw1 + (1 − s)z1, φr + sw1r + (1 − s)z1r), where z =

(z1, z2), w = (w1, w2) ∈ Cδ. Then there exists s0 ∈ (0, 1) such that

|G(h, c, z)(t)−G(h, c, w)(t)| ≤ |c− c0||z2 − w2|+ |f1(R(s0))− a(t)||w1 − z1|+

|f2(R(s0))− b(t)||w1r − z1r| = |c− c0||z2 − w2|+

|f1(R(s0))− f1(φ, φr0)||w1 − z1|+ |f2(R(s0))− f2(φ, φr0)||w1r − z1r|.

Now, since fj(x, y), j = 1, 2, are continuous functions of real variables and φ(t) is

bounded on R, for each given σ > 0 there exists ρ0 > 0 such that supt∈R,s∈[0,1] |R(s)(t)−

(φ, φr0)(t)| ≤ ρ0 implies that |fj(R(s))− fj(φ, φr0)| < σ. Since

|R(s)(t)−(φ, φr0)(t)| ≤ |φ(t−r)−φ(t−r0)|+|w1(t)|+|z1(t)|+|w1(t−r)|+|z1(t−r)| ≤

sup
s∈R

φ′(s)|r − r0|+ 2 sup
s∈R
|w1(s)|+ 2 sup

s∈R
|z1(s)| ≤ |φ′|δ|r − r0|+ 4ρ1 < ρ0

for sufficiently small ρ1, ρ2, we find that

|G(h, c, z)(t)−G(h, c, w)(t)| ≤ σ(|w(t)− z(t)|+ |w1(t− r)− z1(t− r)|).

Therefore, for all z, w ∈ Uρ1(0) and (h, c) ∈ Uρ2(h0, c0), it holds that

|G(h, c, z)−G(h, c, w)|δ ≤ σ(|w − z|δ + |w1(· − r)− z1(· − r)|δ) ≤ 2σΘ|w − z|δ.

Here we use the continuity of the usual translation operator Tr : Cδ → Cδ, r =

ch > 0, defined by Trz(s) = z(s− r): ‖Tr‖ ≤ exp(−rλ2(c0)) ≤ exp(−(h0 + ρ2)(c0 +

ρ2)λ2(c0)) =: Θ.
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(ii) Take σ < (2Θ‖L−1‖)−1 and observe that limr→0 |Trφ− φ|δ = 0:

|Trφ− φ|δ ≤ sup
s≤0

e−(λ−δ)s|φ(s)− φ(s− r)|+ sup
s≥0

e−(λ2+δ)s|φ(s)− φ(s− r)| ≤

r

(
sup
s≤0

e−(λ−δ)sφ′(θ(s)) + sup
s≥0

e−(λ2+δ)sφ′(ω(s))

)
= O(r).

Next, if z ∈ Wρ1 and (h, c) ∈ Uρ2(h0, c0), then

|G(h, c, z)|δ = |G(h, c, z)−G(h, c, 0)|δ + |G(h, c, 0)|δ < 2σΘρ1 + |c− c0||φ′|δ+

|f(φ, φr0)− f(φ, φr)|δ < 2σΘρ1 + |c− c0||φ′|δ + max
[0,κ]×[0,κ]

|f2(x, y)||φr0 − φr|δ <
ρ1

‖L−1‖
,

once ρ1, ρ2, σ are sufficiently small. Therefore, for the same c, h, z, we have

|L−1G(h, c, z)|δ,1 ≤ ‖L−1‖|G(h, c, z)|δ < ρ1,

so that L−1G(h, c, ·) : Wρ1 → Wρ1 is well defined. Finally, for h, c, z as above,

|L−1G(h, c, z)−L−1G(h, c, w)|δ,1 ≤ ‖L−1‖|G(h, c, z)−G(h, c, w)|δ ≤ 2σΘ‖L−1‖|z−w|δ

which completes the proof of the lemma.

Corollary 7. Assume that either hypothesis (MG) or (KPP) holds. If φ(h0, c0)(t)

is a monotone wavefront of (3.3) for some (h0, c0) ∈ Int DL then there exist ρ > 0

and continuous map φ : R2
+∩Uρ(h0, c0)→ C1

δ such that each φ(h, c)(t) is a travelling

front of equation (3.3) considered with (h, c) ∈ R2
+ ∩ Uρ(h0, c0).

Proof. Indeed, since L−1G(h, c, ·) : Wρ1 → Wρ1 is a uniform contraction, there exist a

unique solution z = z(h, c) of the equation L−1G(h, c, z) = z. Moreover, the function

z : Uρ2(h0, c0) → Wρ1 depends continuously on (h, c) (e.g. see [34, Section 1.2.6])

and z(h0, c0) = 0. As a consequence, Fc0(z(h, c)) = G(h, c, z(h, c)) and therefore

φ(h, c)(t) := φ(t) + z1(h, c)(t) is a travelling front of equation (3.3) considered with

(h, c) ∈ R2
+ ∩ Uρ(h0, c0).



58

3.4.2 Asymptotic analysis of φ(t, h, c) := φ(h, c)(t).

Fix (h0, c0) ∈ DN and suppose that there exists a monotone wavefront for equation

(3.3) considered with h = h0 and propagating with the velocity c = c0. As we have

proved, this implies the existence of an open neighborhood O ⊂ R2
+ of (h0, c0) and

a continuous family φ : O → C1
δ of wavefronts to (3.1). It should be observed that,

at the present moment, we do not have any information either about the positivity

or about the monotonicity properties of φ(h, c). In the next lemma, we analyze

the main term of asymptotic expansions of each particular wavefront φ(h, c) at the

infinity. Recall that f ∈ C1,γ for some γ ∈ (0, 1]. Since δ can be taken arbitrarily

small, there is no loss of generality in assuming that γ, δ satisfy (γ + 1)(λ(c0)− δ) >

λ(c) + 2σ > λ(c0)− δ for some σ > 0 and all (h, c) ∈ O.

Lemma 23. Let (h0, c0) ∈ DN. Then there exist an open neighborhood O′ ⊂ O and

continuous functions K1, K2 : O′ → (0,+∞) such that, for some σ > 0,M > 0,

independent of c, h, and for all (h, c) ∈ O′, it holds that

(φ(t, h, c), φ′(t, h, c)) =

 K1(h, c)eλ(c)t(1, λ(c)) +R1(t, h, c), t ≤ 0,

(κ, 0)−K2(h, c)eλ2(c)t(1, λ2(c)) +R2(t, h, c), t ≥ 0,

where |R1(t, h, c)| ≤Me(λ(c)+σ)t, t ≤ 0, |R2(t, h, c)| ≤Me(λ2(c)−σ)t, t ≥ 0.

Proof. First, we will analyze the asymptotic behavior at −∞. By Corollary 7, there

exist a positive number M1 > 0 and an open neighborhood O1 ⊂ O such that, for

all t ≤ 0, (h, c) ∈ O1,

|φ(t, h, c)| = |z(t, h, c) + φ(t)| ≤ (|z(h, c, ·)|δ + |φ|δ)e(λ(c0)−δ)t ≤M1e
(λ(c0)−δ)t.

Since

(3.22) φ′′(t, h, c)− cφ′(t, h, c) + α0φ(t, h, c) + β0φ(t− ch, h, c) = F (t, h, c),
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where F (t, h, c) := α0φ(t, h, c) +β0φ(t− ch, h, c)−f(φ(t, h, c), φ(t− ch, h, c)) satisfies

|F (t, h, c)| ≤ |α0−f1(θ(t)φ(t), θ(t)φ(t−ch)||y(t)|+|β0−f2(θ(t)φ(t), θ(t)φ(t−ch))||φ(t−ch)|

≤ C1(|θ(t)φ(t)|+ |θ(t)φ(t− ch)|)γ(|φ(t)|+ |φ(t− ch)|) ≤ C2e
(γ+1)(λ(c0)−δ)t,

with Cj independent of (h, c) ∈ O1 and θ(t) ∈ (0, 1) appearing due to an application

of the mean value theorem. Thus |F (t, h, c)| ≤ C2e
(λ(c)+2σ)t, t ≤ 0, so that, by [26,

Lemma 28], φ(t, h, c) = w−(t) + u−(t), where

w−(t) = −Resz=λ(c)

(
ezt

χ0(z)

∫
R
e−zsF (s, h, c)ds

)
= −eλ(c)t F̃ (λ(c), h, c)

χ′0(λ(c))
,

u−(t) =
e(λ(c)+σ)t

2π

∫
R
eist

F̃ (λ(c) + σ + is, h, c)

χ0(λ(c) + σ + is, h, c)
ds, F̃ (z, h, c) :=

∫
R
e−zsF (s, h, c)ds,

whenever δ, σ are sufficiently small positive numbers. Set

K1(h, c) := −
∫
R e
−λ(c)sF (s, h, c)ds

χ′0(λ(c))
.

Since continuous F (t, h, c) is uniformly bounded on R×O1 and, in addition, e−λ(c)s|F (s, h, c)| ≤

C2e
2σs, s ≤ 0, we conclude that K1(h, c) is also continuous on O1. We note that

χ′0(λ(c)) < 0 for all (h, c) ∈ O1 ⊂ Int DL. Next, there exists an open subset O2 ⊂ O1

such that, for (h, c) ∈ O2,

|u−(t, h, c)| ≤ e(λ(c)+σ)t

2π

∫
R

1

|χ0(λ(c) + σ + is, h, c)|

∫
R
e−t(λ(c)+σ)|F (t, h, c)|dtds ≤ e(λ(c)+σ)tC3,

where C3 is independent of (h, c). Indeed, as we have seen, the function
∫
R e
−t(λ(c)+σ)|F (t, h, c)|dt

is uniformly bounded on O1 and, on the other hand, for some open subset O2 ⊂ O1

and positive C4, C5, it holds that C4 +C5s
2 ≤ |χ0(λ(c)+σ+ is, h, c)|, s ∈ R, (h, c) ∈

O2.

In consequence, K1(h0, c0) 6= 0, since otherwise Λ−(φ) ≥ λ(c0) + σ > λ(c0) (recall

that (h0, c0) ∈ DN and see Definition 2). Moreover, the positivity of φ implies that
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K1(h0, c0) > 0. Since K1(h, c) is continuous, there exists an open set O3 ⊂ O2 where

K1(h, c) is positive.

Next, after integrating equation (3.22) on (−∞, t), we obtain

φ′(t, h, c) = cφ(t, h, c) +

∫ t

−∞
(F (s, h, c)− α0φ(s, h, c)− β0φ(s− ch, h, c)) ds =

K1(h, c)λ(c)eλ(c)t + cu−(t) +

∫ t

−∞
(F (s, h, c)− α0u−(s)− β0u−(s− ch)) ds,

that proves the asymptotic formula of Lemma 23 at −∞.

After applying the change of variables y(t, h, c) = κ − φ(t, h, c), the study of the

asymptotic behavior of wavefronts at +∞ becomes fully analogous to the first case

and is left to the reader.

3.4.3 The final part of the proof of Theorem III.1.

The proof of our main result is an easy consequence of the following three propo-

sitions.

Lemma 24. Assume that either hypotheses (M)&(MG) or (M)&(KPP) are satis-

fied and (h0, c0) ∈ DN. Then in Corollary 7, we can choose ρ > 0 such that φ(h, c)(t)

is a positive monotone wavefront of (3.3) for each (h, c) ∈ R2
+ ∩ Uρ(h0, c0). Hence,

the non-empty set

D′N := {(h, c) ∈ DN : there is at least one monotone wavefront for (3.3)}

is open in topology of DN.

Proof. First, we observe that {0} × (cN∗ ,+∞) ⊂ D′N 6= ∅ because of the existence

results and asymptotic formulae (3.2) presented in the second paragraph of the in-

troduction. Next, by Lemma 23, there exist ρ′ > 0 and T > 0 independent of h, c,

such that φ′(h, c)(t), φ(h, c)(t) > 0 for all |t| ≥ T, (h, c) ∈ Uρ′(h0, c0) ∩ R2
+. On the
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other hand, due to the continuity of application φ : R2
+ ∩ Uρ′(h0, c0) → C1

δ , we find

that, for an appropriate ε > 0 and some 0 < ρ < ρ′, it holds that

0 < φ(h0, c0)(t)− ε < φ(h, c)(t) < ε+ φ(h0, c0)(t) < κ, |t| ≤ T, (h, c) ∈ Uρ(h0, c0).

In consequence, φ(h, c)(t) ∈ (0, κ) for all t ∈ R, (h, c) ∈ R2
+∩Uρ(h0, c0). In addition,

by assumption (M), each profile φ(h, c)(·) : R→ (0, κ) is a monotone function.

Finally, it is clear that Λ−(φ(h, c)) = λ(c),Λ+(φ(h, c)) = λ2(c) for each (h, c) ∈

Uρ(h0, c0). This means that R2
+ ∩ Uρ(h0, c0) ⊂ D′N. Since (h0, c0) was an arbitrary

point from D′N, we conclude that D′N is open in DN.

Lemma 25. For each (h0, c0) ∈ D′N, equation (3.3) has at least one positive mono-

tone front. Therefore D′N is closed in topology of DN so that D′N = DN.

Proof. Suppose that a sequence of points (hn, cn) ∈ D′N converges to (h0, c0). If we

denote by φn(t) some associated sequence of monotone wavefronts normalized by

φn(0) = κ/2, a direct verification shows that

(3.23) φn(t) =
1

z2 − z1

{∫ t

−∞
ez1(t−s)(Hφn)(s)ds+

∫ +∞

t

ez2(t−s)(Hφn)(s)ds

}
,

where (Hφ)(s) = φ(s) + f(φ(t), φ(t − ch)) and z1 < 0 < z2 satisfy z2 − cz − 1 = 0.

It follows from (3.23) that 0 ≤ φ′n(t) ≤ κ + max[0,κ]2 |f(x, y)|. Thus {φn(t)} has a

subsequence (by abusing the notation, we will call it again {φn(t)}) converging in

the compact open topology of C(R,R). Let φ0 = limφn, passing to the limit (as

n→ +∞) in (3.23), we find that φ0(t) also satisfies (3.23). Therefore φ0(t), φ0(0) =

κ/2, φ0(t) ≤ κ, 0 ≤ φ′0(t) ≤ κ+ max[0,κ]2 |f(x, y)|, is a monotone positive solution of

(3.3). Since φ0(±∞) are finite and φ′′0(t) is bounded, we obtain that φ′0(±∞) = 0.

In consequence, taking into account that φ0 is a bounded solution of equation (3.3),

we find that f(φ0(±∞), φ0(±∞)) = 0. In this way, φ0(−∞) = 0, φ0(+∞) = κ.
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Since βκ < 0, it follows from (3.3) that actually 0 < φ0(t) < κ, t ∈ R. Finally,

since D′N is simultaneously closed and open in connected space DN, we obtain that

D′N = DN.

Lemma 26. If (h̄, c̄) ∈ R2
+ \ DL, then equation (3.3) does not have any positive

eventually monotone front.

Proof. Take some (h̄, c̄) ∈ R2
+ \ DL. Then either c̄ < cL0 (h̄) or c̄ > cLκ(h̄). In the first

case, the non-existence of positive fronts is a well known fact (cf. [54, Theorem 1]).

Consequently, it suffices to consider the case c̄ > cLκ(h̄). Then Lemma 16 implies

that χκ(z) does not have negative zeros. Arguing by contradiction, suppose that,

nevertheless, equation (3.3) has some positive eventually monotone front φ(t) for

h = h̄, c = c̄. Then ψ(t) := ±(κ− φ(t)) is strictly positive on some interval [T,+∞)

and satisfies

ψ′′(t)− c̄ψ′(t)± f(κ± ψ(t), κ± ψ(t− c̄h̄)) = 0, ψ(+∞) = 0,

where the sign ”−” [respectively, ”+”] corresponds to the case φ(t) < κ, t > T [to

the case φ(t) > κ, t > T , respectively]. Following the approach in [26], we will show

that the inequality c̄ > cLκ(h̄) will force ψ(t) to oscillate about the zero. For the

convenience of the reader, the proof is divided in several steps.

Claim I: ψ(t) has at least exponential decay as t→ +∞.

First, observe that

(3.24) ψ′′(t)− c̄ψ′(t) = Γψ(t)− g(t), t ∈ R,

where, with some z(t) := (κ ± θ(t)ψ(t), κ ± θ(t)ψ(t − c̄h̄)), θ(t) ∈ (0, 1), Γ > 0, we

set

g(t) := Γψ(t)± f(κ± ψ(t), κ± ψ(t− c̄h̄)) = (Γ + f1(z(t)))ψ(t) + f2(z(t))ψ(t− c̄h̄).
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Since f1(z(+∞)) + f2(z(+∞)) = ακ + βκ < 0, f2(z(+∞)) = βκ < 0, and ψ(t)

is decreasing, we find that, for all sufficiently large t and some positive 0 < Γ <

−βκ − ακ, it holds that

g(t) ≤ (Γ + f1(z(t)) + f2(z(t)))ψ(t) < 0.

Since ψ(t), g(t) are bounded on R, we obtain that

ψ(t) =
1

m− l

( ∫ t

−∞
el(t−s)g(s)ds+

∫ +∞

t

em(t−s)g(s)ds

)
,

where l < 0 and 0 < m are roots of z2 − c̄z − Γ = 0. The latter representation of

ψ(t) implies that there exists T0 such that

(3.25) ψ′(t)− lψ(t) =

∫ +∞

t

em(t−s)g(s)ds < 0, t ≥ T0.

Hence, (ψ(t) exp(−lt))′ < 0, t ≥ T0, and therefore

(3.26) ψ(t) ≤ ψ(s)el(t−s), t ≥ s ≥ T0, g(t) = O(elt), t→ +∞.

Finally, (3.25), (3.26) imply that ψ′(t) = O(elt), t→ +∞.

Claim II: ψ(t) > 0 is not superexponentially small as t→ +∞.

Recall that ψ(t) is decreasing and positive on R. Since the right hand side of Eq.

(3.24) is positive and integrable on [T0,+∞), and since ψ(t) is a bounded solution

of (3.24) satisfying ψ(+∞) = 0, we find that

ψ(t) = −
∫ +∞

t

(1− ec̄(t−s))(f1(z(s))ψ(s) + f2(z(s))ψ(s− c̄h̄))ds.

As a consequence, there exists T1 such that

ψ(t) ≥ 0.5|βκ|(1− e−0.5h̄c̄)

∫ t

t−0.5h̄c̄

ψ(s)ds := ξ

∫ t

t−0.5h̄c̄

ψ(s)ds, t ≥ T1 − c̄h̄.

Now, since ψ(t) > 0 for all t, we can find positive C, ρ such that ψ(s) > Ce−ρs for

all s ∈ [T1 − c̄h̄, T1]. We can assume that ρ is large enough to satisfy the inequality
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ξ(e0.5ρh̄c̄− 1) > ρ. Then we claim that ψ(s) > Ce−ρs for all s ≥ T1− c̄h̄. Conversely,

suppose that t′ > T1 is the leftmost point where ψ(t′) = Ce−ρt
′
. Then we get a

contradiction:

ψ(t′) ≥ ξ

∫ t′

t′−0.5h̄c̄

ψ(s)ds > Cξ

∫ t′

t′−0.5h̄c̄

e−ρsds = Ce−ρt
′
ξ
e0.5ρc̄h̄ − 1

ρ
> Ce−ρt

′
.

Claim III: ψ(t) > 0 can not hold when χκ(z) does not have any zero in (−∞, 0).

Observe that ψ(t) satisfies

ψ′′(t)− c̄ψ′(t) + f1(z(t))ψ(t) + f2(z(t))ψ(t− c̄h̄) = 0, t ∈ R,

where in virtue of Claim I, it holds that (ψ(t), ψ′(t)) = O(elt). Next, f ∈ C1,γ

assures that f1(z(t)) = αk + O(ψγ(t)), f2(z(t)) = βk + O(ψγ(t)) at t = +∞. Then

[44, Proposition 7.2] implies that there exists q < l such that ψ(t) = v(t) + O(eqt),

t → +∞, where v is a non empty (due to Claim II) finite sum of eigensolutions of

the limiting equation

y′′(t)− c̄y′(t) + αky(t) + βκy(t− c̄h̄) = 0, t ∈ R,

associated to the eigenvalues λj ∈ F = {q < <λj ≤ l}. Now, since the set F does

not contain any real eigenvalue by our assumption, we conclude that ψ(t) should be

oscillating on R+, a contradiction.

3.5 Appendix

3.5.1 Proof of Lemma 16

With λ := cz, ε = c−2, equation (3.5) takes the form

(3.27) F (λ) := ελ2 − λ+ ακ + βκe
−hλ = 0, ε > 0.

Since F ′′′(x) > 0, x ∈ R, equation (3.27) has at most three real roots. Since F (0) <

0, F (±∞) = ±∞, this equation has an even number (either 0 or 2) of negative roots
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(counting the multiplicity) and at least one positive root. A straightforward analysis

of (3.27) shows that

(a) If this equation has a negative root for some ε0 ≥ 0, it also has two negative

roots for each ε > ε0. We will denote the greatest negative root as λ2. If ε0 = 0, we

obtain cLκ(h) = +∞.

(b) If equation (3.27) does not have any negative root for ε = 0 (this happens

when h is sufficiently large), there exists a unique ε0 > 0 such that (3.27) possesses

two negative roots (counting the multiplicity) for ε ≥ ε0 and does not have a negative

root for ε < ε0. Thus cLκ(h) = ε
−1/2
0 is finite for sufficiently large h and ε0 = ε0(h) can

be determined from the system

(3.28) ελ2 − λ+ ακ = −βκe−hλ, 2ελ− 1 = hβκe
−hλ.

In particular, the double negative root λ = λ(h) of (3.27) satisfies

(3.29) −2
ακ
βκ

+
ω

βκh
= e−ω(2 + ω), ω := hλ(h),

while cLκ(h) is strictly decreasing on some maximal open interval (h0,+∞), h0 > 0,

because of ε′0(h) = βκe
−λh/λ > 0. Observe that ακ/|βκ| < 1 and the right-hand side of

(3.29) has a unique inflection point at ω = 0. This implies that ω(h)→ ωκ, h→ +∞,

where ωκ < 0 satisfies (3.6).

It is clear that cLκ(h) = +∞ for h ∈ [0, h0]. From the second equation of (3.28),

we also easily obtain that limh→+∞ hc
L
κ(h) =

√
2ωκ
βκ
eωκ/2, so that cLκ(+∞) = 0.

(c) It is immediate to see that, for each fixed c = 1/
√
ε ∈ (0, cLκ], there exists x1 > 0

(independent on h) such that <λj < x1 for every λj satisfying (3.27). Furthermore,

for every fixed x2 ∈ R there is an increasing continuous function y = y(h) > 0, h ≥

0, such that all roots λj of (3.27) with <λj ≥ x2 are contained in the rectangle

R(x2, h) := [x2, x1]× [−y(h), y(h)] ⊂ C. Next, observe that because of ακ + βκ < 0
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equation (3.27) with h = 0 has only two roots λ2 < 0 < λ1. By the Rouche’s

theorem, this implies that, for all small positive h, equation (3.27) does not have

roots λj = λj(h), <λj ≥ λ2, others than λ2(h), λ1(h). Now, suppose for a moment

that for some positive h0 there exists complex λj(h0) ∈ R(λ2(h0), h0). Let h0 be

the minimal value with such a property, then the Rouche’s theorem assures that

<λj(h0) = λ2(h0). Moreover, =λj(h0) 6= 0 since otherwise λ2(h0) would have the

multiplicity 3. Thus equation (3.27) with h = h0 has at least three roots of the form

λ(y) := λ2(h) + iy with y ∈ {−θ, 0, θ} for some positive θ. Since c ∈ (0, cLκ], the

function F (x) has exactly two critical points, one of them belongs to [λ3(h), λ2(h)]

and the second one is in (λ2(h), λ1(h)). In consequence,

F ′(λ2(h)) = 2ελ2(h)− 1 + h|βκ|e−hλ2(h) ≤ 0.

However, this contradicts to the following relations: F (λ(θ)) = 0 = =F (λ(θ)) =

θ

(
2ελ2(h)− 1 + h|βκ|e−hλ2(h) sin(hθ)

hθ

)
< θ

(
2ελ2(h)− 1 + h|βκ|e−hλ2(h)

)
≤ 0. �

3.5.2 Proof of Lemma 17

The existence of the critical speed cL0 (h) which has properties mentioned in the

lemma is a well known fact, and its proof is omitted. Clearly, it suffices to consider

the case β0 > 0. Next, if c > cL0 (h) then 0 < Q0 := cq0− q2
0 − α0 < β0e

−chq0 for some

q0 = q0(c) ∈ (0, λ), c − 2q0 > 0. The change of variables ω := (z − q0)(c− 2q0)/Q0

transforms (3.7) into

(3.30) εω2 − ω − 1 + γe−ωh
′
= 0,

where

ε :=
Q0

(c− 2q0)2
> 0, γ := β0e

−chq0/Q0 > 1, h′ :=
chQ0

c− 2q0

> 0.
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Now, since inequalities (3.8) for equation (3.30) were established in [57, Lemma 2.3],

we obtain that inequalities (3.8) hold also for equation (3.7) once c > cL0 (h).

Next, let z0 = x0 + iy0 with <z0 = x0 < λ be a complex root of (3.7). Then

0 > (2x0 − c)|y0| = β0e
−chx0 sin(ch|y0|) and therefore ch|y0| > π.

Finally, the derivation of asymptotic representation and the proof of monotonicity

of cL0 (h) repeat the arguments used in Subsection 3.5.1 (b) above and are omitted.

�

3.5.3 Proof of Lemma 18

Suppose that the graphs of the functions c = cL0 (h) and c = cLκ(h) intersects at

some h = h1. Since λ2(h1) < 0 < λ(h1), after differentiating the first equation of

(3.28) with respect to h, we obtain

d

dh
cLκ(h)|h=h1 = −c

L
κ(h1)

h1

+
(cLκ(h))3

2h1λ2(h1)
< −c

L
0 (h1)

h1

+
(cL0 (h))3

2h1λ(h1)
=

d

dh
cL0 (h)|h=h1 .

This means that the above mentioned graphs have a unique transversal intersection

on R+. As a consequence, if θ(ακ, βκ) = θ1(α0, β0) then cL0 (h) < cLκ(h) for all h ≥ 0.

�

3.5.4 Proof of Lemma 19

It suffices to prove the inclusion Int DL ⊂ DN where Int DL denotes the interior of

DL. So let us fix some (h, c) ∈ Int DL. By the definition of DN, it holds automatically

(h, c) ∈ DN if there does not exist any monotone heteroclinic solution to equation

(3.3) for the choosen pair (h, c). Therefore we can assume that (3.3) has a positive

monotone front φ : R→ (0, κ). Set y(t) := κ−φ(t) and u(t) = (κ− sy(t), κ− sy(t−

ch)), s ∈ [0, 1]. Then y(t) satisfies the linear equation

(3.31) x′′(t)− cx′(t) + (ακ +N(t))x(t) + (βκ +M(t))x(t− ch) = 0,
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where N(t) :=

∫ 1

0

f1(u(t))ds− ακ, M(t) :=

∫ 1

0

f2(u(t))ds− βκ,

so that N(+∞) = M(+∞) = 0. Since the linear equation with constant coefficients

(3.32) x′′(t)− cx′(t) + ακx(t) + βκx(t− ch) = 0

is hyperbolic (i.e. it does not have eigenvalues on the imaginary axis) and N(+∞) =

M(+∞) = 0, equation (3.31) possesses the property of exponential dichotomy on

some infinite interval [τ,+∞) (e.g. see [32, Lemma 4.3]). In particular, y(+∞) =

y′(+∞) = 0 yield y(t), y′(t) = O(e−ρt), t → +∞, for some ρ > 0. Therefore, in

view of C1,γ-smoothness of f , we have that M(t), N(t) = O(e−ργt) at t = +∞.

Hence, invoking [44, Proposition 7.2] and Lemma 16, we obtain that y(t) = aeλ2t +

o(e(λ2−δ)t), t → +∞, for some a and δ > 0. Note that a ≥ 0 since we have φ(t) ∈

(0, κ) for all t ∈ R. In fact, a can be found explicitly (e.g., see [26, Lemma 28]):

(3.33) a = Resz=λ2
−1

χκ(z)

∫
R
e−zsS(s)ds =

−1

χ′κ(λ2)

∫
R
e−λ2sS(s)ds > 0,

since

S(t) := N(t)y(t)+M(t)y(t−ch) = ακ(φ(t)−κ)+βκ(φ(t−ch)−κ)−f(φ(t), φ(t−ch)) ≥ 0,

is not identically zero. Indeed, if S(t) ≡ 0 then bounded and strictly decreasing

y(t) must satisfy (3.32). However, this is impossible due to the hyperbolicity of this

equation. Thus Λ+(φ(t)) = λ2. The proof of the relation Λ−(φ(t)) = λ is completely

similar and is left to the reader. �

Remark 2. The above argument needs a minor modification to imply the inclusion

Int D−L := {(h, c) : c ∈ (cL0 (h), c−κ (h)), h ∈ [0, h−0 ]} ⊂ DN stated in the proof of

Theorem III.5. It suffices to show that a in (3.33) is positive for each (h, c) ∈ Int D−L .

Assuming, on the contrary, that a = 0, and again invoking [44, Proposition 7.2] and
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Lemma 16, we find that y(t) = beλ1t + o(e(λ1−δ)t), t → +∞, for some b ≥ 0, δ > 0.

Then y(t) satisfies the equation

x′′(t)− cx′(t) + ακx(t) + β−κ x(t− ch) = Q(t),

where Q(t) := ακy(t) + β−κ y(t − ch) − f(φ(t), φ(t − ch)) ≥ 0. Furthermore, Q(t) =

−N(t)y(t) + (β−κ − βκ − M(t))y(t − ch) = O(eλ1t), t → +∞, and we claim that

Q(t) is not identically zero. Indeed, by the proof of Lemma 16, we have that for

c ∈ (cL0 (h), c−κ (h)) the characteristic function χ−κ (z) := z2 − cz + ακ + β−κ e
−chz has

exactly three real zeros λ−1 < λ−2 < 0 < λ−3 and does not have any zero on iR.

Moreover, it is easy to see that λ1 ≤ λ−1 < λ−2 ≤ λ2 < 0. Therefore, if Q(t) ≡ 0

then bounded and strictly decreasing y(t) must satisfy a hyperbolic equation with

constant coefficient, a contradiction. Since y(t) = O(eλ
−
2 t), t → +∞, we also have

that y(t) = ceλ
−
2 t + o(e(λ−2 −δ1)t), t→ +∞, for some c ≥ 0, δ1 > 0, where actually

c = Resz=λ−2
−1

χ−κ (z)

∫
R
e−zsQ(s)ds =

−1

(χ−κ )′(λ−2 )

∫
R
e−λ2sQ(s)ds > 0.

This contradicts to the assumption y(t) = O(eλ1t), t→ +∞, and shows that a > 0.

Remark 3. The proof of Lemma 19 shows that, for each (h, c) ∈ Int DL, it holds that

y(t) = O(eλ2t), t → +∞, even if the sub-tangency conditions of the lemma are not

assumed. Similarly, φ(t) = O(eλt), t→ −∞. In order to establish the same growth

estimates for the derivatives y′(t), φ′(t), we can proceed as follows. For example, let

us consider y′(t) at +∞. After integrating (3.31) on (t,+∞), we obtain

y′(t) = cy(t) +

∫ +∞

t

(ακ +N(s))y(s) + (βκ +M(s))y(s− ch)ds = O(eλ2t), t→ +∞.
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