The double affine Hecke algebra and generalizations of Macdonald
polynomials

Manuel Concha Moraga

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Mathematics

Institute of Mathematics
University of Talca

January 2018



Contents

Inroduction|

|Chapter 1. Compositions and partitions|

2. Compositions|

|Chapter 2. The non-symmetric Macdonald polynomials and the double atfine Hecke algebra

[L._Double affine Hecke algebral
2. Non-symmetric Macdonald polynomials|

3. Properties|

4. Symetrization operators|

|Chapter 3. Symmetric functions|
L. The ring of symmetric functions|

[2. Bases of the ring of symmetric functions|

3. Symmetric Macdonald polynomials|
[ Orthogonality]|

5. mimetries

6. Operator and Pieri rules|
7 Combi LT T

I8. Double atfine Hecke algebra relations for Symmetric case)

|[Chapter 4. The m-Symmetric Macdonald polynomials|
[T, The ring of m-symmetric functions|
[2. _m-Partitions|
3. Bases of the space of m-symmetric functions|
4. m-Symmetric Macdonald polynomials|
[5. _Inclusion, evaluation and symmetry]|

6. ( 5rth0gonalitz|
7. Appendix

|Chapter 5. Symmetric functions in superspace and bisymmetric functions|

1. Ring of symmetric functions ins superspace|
|2. Superpartitions|

[3.__Bases of the space of symmetric functions in superspace|

. isymmetric Macdonald polynomia
[5. Orthogonality]|

|Chapter 6. Selt-duality and Pieri rules for the bisymmetric Macdonald polynomials|

1. Evaluations and symmetry|

2. Double atine Hecke algebra relations|
3. The action of e, (Yy+1,-.., ¥Yn) on bisymmetric functions|
o led

5. Pieri rules and vertical strips|

NeJ

13
13
14
15
16

17
17
18
20
22
25
26
28
31

35
35
35
37
38
39
44
51

61
61
62
64
65
67

71
71
76
79
87
91



6. The e,(x1,...,2,)case| 94

bliograp 105



Acknowledgements

Hay muchas personas a quienes estoy profundamente agradecido por acompaniarme y apoyarme
durante todo el proceso de mi doctorado.

En primer lugar, quiero agradecer al profesor Luc Lapointe por su apoyo, paciencia y por guiarme
en la investigacion matemdtica. A pesar de las dificultades que se presentaron durante este periodo,
siempre me mantuvo motivado y optimista respecto al trabajo que realizabamos. Sus conversaciones
y consejos fueron invaluables.

A mi pareja, Katherine Ormeno, le agradezco por ser una gran companera y amiga, Siempre
paciente y carinosa. Ha compartido conmigo el camino de la investigacion y el gusto por hacer
matemdticas, apoydndome y queriéndome durante todo este proceso. Ademds, agradezco la posibili-
dad que hemos tenido de enfrentar nuevos desafios y acompanarnos en las dificultades y logros que
estos conllevan.

Quiero agradecer al Instituto y a todos los profesores de los que he aprendido diversas dreas
de la matemdtica. Particularmente, quiero destacar a los profesores Stephen Griffeth y Jan Felipe
van Diejen, ya que he tomado muchos cursos con ellos y siempre han tenido la disposicion de
ensenarme teorias que estan muy ligadas a mi drea de investigacion principal. También quiero
agradecer al profesor Alvaro Liendo, quien siempre nos apoyd en las actividades extracurriculares
que realizamos en el Instituto, y al profesor Oleg Chalykh, quien me recibic en Inglaterra durante
una pasantia.

A mi familia, les agradezco profundamente. A mis tios, abuelos, sobrinos y primos, les debo
mucho. Especialmente quiero agradecer a mi mamd, quien dedicd su vida a criarnos a mis hermanos
Yy & mi; a mi papd, que a pesar de no estar con nosotros hoy, siempre me aconsejo y motivé a sequir
estudiando matemdticas; a mis siete hermanos, con quienes he compartido toda mi vida y que me
han apoyado en todas mis etapas académicas; y a mi tia Mary, una persona que impacté mucho en
mi vida y que recientemente dejo de acompanarnos.

No hay suficiente espacio para agradecer a todos mis amigos. He tenido la fortuna de conocer a
muchas grandes personas a lo largo de mi vida, quienes en diferentes momentos han sido esenciales
para mi. Particularmente, quiero agradecer a mis amigos con quienes he mantenido una fuerte
amistad desde la Licenciatura.

Por dltimo, me gustaria agradecer a todos los alumnos del Instituto, tanto a los que estdn
actualmente y con quienes comparto el dia a dia, como a aquellos que alguna vez fueron alumnos y
con quienes tuve la fortuna de compartir. Ellos estuvieron en mis primeros anos en Talca y formé
una amistad muy cercana y duradera. Ademds, agradezco a todas las personas que hoy conforman
el Instituto y con quienes he establecido bonitas amistades, todos ellos hacen de este lugar un gran
centro de investigacion y una gran familia.






Introduction

This thesis focuses on generalizations of Macdonald polynomials in the superspace and m-
symmetric settings. In particular, our goal will be to present the results in a unified manner starting
from Macdonald polynomial theory. It is thus natural to first ask ourselves, what are Macdonald
polynomials?

To understand this question, we first need to discuss symmetric functions. Symmetric functions
naturally appear in many areas of mathematics, such as representation theory, where Schur functions
arise as characters of the polynomial representations of Gi,, [13], and algebraic geometry, where they
are in correspondence with the Schubert classes of the Grassmannians [31]. They also appear in
physics, where the Jack symmetric functions are eigenfunctions of the Calogero-Sutherland model
Hamiltonian [19],[28],[27]. All these families of symmetric functions have beautiful properties that
make them fascinating combinatorial objects to study.

In 1987, Tan Macdonald defined a family of polynomials [20], now called Macdonald polynomials,
that contains the aforementioned families as special cases. Despite the complexity of these new
symmetric functions, Macdonald, using simple yet ingenious techniques, showed that they still
satisfy a wealth of combinatorial properties.

Before we proceed, we need to briefly discuss these properties which can be divided into two
major groups:

Constructive properties:

(1) Triangularity: Macdonald polynomials are triangular when expanded into the monomials,
the most natural basis of symmetric functions.

(2) Orthogonality: Macdonald polynomials are orthogonal with respect to a natural scalar
product.

(3) Eigenfunctions: Macdonald polynomials are eigenfunctions of a family of commuting g-
difference operators.

Combinatorial properties:

(1) Norm: Macdonald polynomials are orthogonal, but not orthonormal, with respect to the
natural scalar product. There is a combinatorial way to calculate their norm squared.

(2) Principal evaluation: for a certain evaluation, there is an elegant combinatorial formula.

(3) Duality: There is a fundamental symmetry satisfied by the evaluation of a Macdonald
polynomial.

(4) Pieri rules: there is a combinatorial way to see the multiplication of a Macdonald polyno-
mial by generators of the ring of symmetric function.

Among these properties, it is important to highlight the Pieri rules, as they do not only provide
a beautiful and simple combinatorial formula for multiplication, but also have numerous applica-
tions. For instance, they yield a straightforward and combinatorial way to calculate Macdonald
polynomials. It is also possible to derive the principal evaluation and the norm formulas using the
Pieri rules.



In 1995, Ivan Cherednik defined a non-symmetric version of Macdonald polynomials as eigen-
functions of certain operators in the double affine Hecke algebra [10]. In this larger and more
algebraic context, he was able to prove certain conjectures of Macdonald. Moreover, the properties
of the symmetric Macdonald polynomials were recovered naturally using the double affine Hecke
algebra [23]. Although the proofs are sometimes more technical, the methods are applicable to
the generalizations of Macdonald polynomials that we will consider in this thesis. As such, non-
symmetric Macdonald polynomials and the double affine Hecke algebra will be our starting point.

The connection between symmetric functions and physics also motivated the introduction of
Macdonald polynomials in superspace [8]. These polynomials depend on two families of variables,
one commuting and the other anticommuting. Impressively, these polynomials still exhibit fasci-
nating constructive and combinatorial properties. In [8], constructive properties were demonstrated
while in [I5] the norm and the evaluation were obtained. At the start of this thesis, there were con-
jectures for the self-duality [30], for the explicit form of the coefficients of the Macdonald operator
[29], and most challenging, for the Pieri rules [14].

Our work first focused on proving these three missing properties by establishing a connection
between the supersymmetric Macdonald polynomials and the bisymmetric Macdonald polynomi-
als, which allowed to use non-symmetric Macdonald theory in a more systematic way. Generally
speaking, the Pieri rules can be derived using the self-duality and the explicit coefficients of the
Macdonald operator. We thus concentrated on proving these two properties in the bisymmetric
case. Although the self-duality was approachable with this method, obtaining an explicit form for
the operator turned out to be quite complex and technical.

However, the operator e, (Y7,...,Yy) presented in [29] can be written as a sum of products of
the simpler bisymmetric operators e, (Y7,...,Yy) and e,(Y41,. .., Yn) in the following way

er(Yi, . YN) = eri(Vis o Yo)ei (Yo, o, Y). (0.1)
=0

We were able to obtain the explicit formula for the coefficients of those simpler operators, which
then lead to two sets of Pieri rules (corresponding to the multiplication by e.(x1,...,x,,) and
er(Tmt1,--.,2n)). This solved the Pieri rule problem in the bisymmetric setting.

Although this allows to obtain, in principle, the entire operator e, (Y1,...,Yy), extracting the
desired coefficients from turns out to be combinatorially quite difficult. Even though the Pieri
rule problem still remains unresolved in superspace, we are confident that this provides the best
approach to solve it.

In order to find the explicit expansion of the two families of bisymmetric operators, we used
reproducing kernels depending on certain regions in Z2?. We needed in fact to determine how
exactly the action of the Hecke operators on these reproducing kernels modified the regions in Z?2
(this technique was later used to solve a similar problem in another context [I1]). Although this
approach led us to a closed form expression for the Pieri coefficients, this expression happened not to
be the simplest one to compute. For this reason, we are currently seeking a better formula (involving
familiar combinatorial concepts such as leg and arm-lengths) for the Pieri rules presented in [14].

In recent years, motivated by a combinatorial open problem related to Macdonald positivity, a
new class of Macdonald polynomials, the m-symmetric Macdonald polynomials, were introduced in
[18]. These polynomials are non-symmetric in the first m variables and symmetric in the remaining
ones. The m-symmetric Macdonald polynomials actually interpolate between the symmetric and
nonsymmetric world since when m = 0 the m-symmetric Macdonald polynomials are the usual
symmetric Macdonald polynomials while when m is equal to the total number of variables, the m-
symmetric Macdonald polynomials become the nonsymmetric Macdonald polynomials. Surprisingly,
the m-symmetric Macdonald polynomials still possess many of the combinatorial and constructive
properties that we mentioned earlier, for instance, triangularity and eigenoperator [18]. In the
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second part of our work, using the tools found in the bisymmetric case, we proved the orthogonality,
principal evaluation, norm, and symmetry for m symmetric Macdonald polynomials [12].

As mentioned earlier, we aim to present our results concerning m-symmetric Macdonald poly-
nomials and Macdonald polynomials in superspace in a unified manner using the double affine Hecke
algebra. For this purpose, we have utilized several references, most of which are from L. Lapointe
and I. Macdonald.

Here is the structure of the document:

First chapter: In this chapter, we define combinatorial objects that will serve as indices for
our polynomial families. Although these objects appear in different contexts, we will adopt the
viewpoints found in [20] and [18].

Second chapter: Here, we present the relevant definitions and results about the double affine
Hecke algebra and the non-symmetric Macdonald polynomials. This will serve as the starting point
in building the subsequent chapters. These results are drawn from [23] and [22].

Third chapter: We focus on defining the symmetric Macdonald polynomials using the non-
symmetric Macdonald polynomials and demonstrating the aforementioned properties. This chapter
will guide us in proving these properties for a wider class of functions. The techniques used in this
chapter are mostly from [20], [23], and [22], and the combinatorial aspects are taken from [25].

Fourth chapter: The first part of this chapter, which introduces the m-symmetric functions
and the m-symmetric Macdonald polynomials, is taken from [18]. The second part presents our
preprint [12] in which we studied and demonstrated the aforementioned properties.

Fifth chapter: Here, we introduce the symmetric functions in superspace and the Macdonald
polynomials in superspace. As mentioned earlier, we consider instead in this thesis bisymmetric
Macdonald polynomials (which for our purposes are equivalent to the Macdonald polynomials in
superspace). The final part of this chapter is thus devoted to translating into the bisymmetric
language the properties of the Macdonald polynomials in superspace obtained in [8].

Sixth chapter: This chapter constitutes the core of this thesis. It includes the results of
the article [11] in which we derive the duality and the Pieri rules for the bisymmetric Macdonald
polynomials. Finally, the proof of the Pieri rules associated to the elementary symmetric functions
in the variables x1,...,x,,, which was not fully included in our article, are provided at the end of
the chapter.






CHAPTER 1

Compositions and partitions

In this chapter we will introduce the combinatorial objects that will be needed in Chapters 2
and 3.

1. Partitions

Partitions play a crucial role in the theory of symmetric functions. We will see for instance
that the bases of the space of symmetric functions are naturally indexed by these fundamental
combinatorial objects.

DEFINITION 1. A partition is a sequence A = (A1,..., AN, -+ ) of non-negative integers in
decreasing order, i.e.
A2 A > 2 AN >

and containing only finitely many non-zero terms. Note that we do not distinguish between two
sequences which differ only by a string of zeros. For instance, (2,1) and (2,1,0,0) are the same
partition. The non-zero entries \; are called the parts of \. The number of parts is the length of
A, denoted by I(\). The sum of the parts is the weight (or size) of A, denoted by ||, i.e.

A=A+ Ag 4o

REMARK 2. Sometimes it is convenient to use a notation which indicates the number of times
each integer occurs as a part:
A= (1M 2m2 3ms )
where m; is the number of times that i appear in X, i.e.
m; = ##{j | )\j:i}
is called the multiplicity of i in .

DEFINITION 3. Given n € N, we say that \ is a partition of n if |\| = n, and we denote the
set of partitions of n by 2,

EXAMPLE 4. The set of partitions of 5 is
Py = {(5)a (47 1)7 (3a 2)7 (37 L 1)7 (27 2, 1)7 (27 1,1, 1)7 (17 1L,1,1, 1)}
REMARK 5. We can define the set of all partitions as

P =] P

n>0

Up to this point, a partition has only been seen as a sequence. The following definition will
associate a diagram to a partition, allowing us to enter the realm of combinatorics.

DEFINITION 6. Let \ be a partition, we define the diagram of X as the set of points (i,j) € Z?
such that 1 < j < \; for 1 <i <I(A\). When drawing these diagrams, we represent each point (i, )
by a square.



EXAMPLE 7. The diagram of the partition (3,3,2,1,1) is

REMARK 8. When we write the symbol X for a partition, it can either stand for a sequence or
a diagram.

DEFINITION 9. The conjugate of a partition, denoted by N, is obtained by reflecting the diagram
of the original partition \ along its main diagonal. Algebraically, this reflection is described by the
following formula:

No=#{j| N > i}
REMARK 10. We have that A} = 1(X), Ay =1(X) and (N') = .
EXAMPLE 11. If A = (3,3,2,1,1) then X = (5,3,2) because

transposition | [
e

DEFINITION 12. Given two partitions p and X\, we shall write A C p if the diagram of p contains
the diagram of X\, i.e. \; < u; for alli > 1. In this case, we define the skew diagram as the diagram
obtained by the difference p — A which we will denote p/\.

ExaMPLE 13. If p = (5,4,3,3,2) and A = (4,3,2,2) we have that the diagram of u/\ is the
shaded part of the following diagram

DEFINITION 14. We say that a skew diagram /X is an r-vertical strip (resp. horizontal strip)
if the diagram p/X\ has r boxes and contains at most one box in each row (resp. each column).

EXAMPLE 15. If p = (4,4,3,3,1) and A = (4, 3,2,2) we have that u/X is a 4-vertical strip with
diagram

It is crucial to define a partial order on partitions which will later enable us to compare symmetric
functions.

DEFINITION 16. We can define an order on &,. Let A, p in &, we define the dominance

order as
k k

AEM@Z)\jZZujforallk21

j=1 j=1
EXAMPLE 17. Taking A = (4,3,2,2) and p = (3,3,3,2) we have that X\ > p.
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REMARK 18. This order is not a total ordering. For example, A = (3,1,1,1) and p = (2,2,2)
are not comparable in this order.

There are important combinatorial concepts associated to a partition will prove useful in the
following chapters.

DEFINITION 19. For each partitions we define
n(A) = (i—1)\
i>1
EXAMPLE 20. For example, if A = (3,3,2,1,1) we have that n(\) = 14. We may see this
number diagrammatically by taking the sum of the numbers in the following diagram:

0]0
1]1
2

[»blcom»—AO

DEFINITION 21. For a box s = (i,7) in a partition A (i.e., in row i and column j), we introduce
the arm-lengths and leg-lengths as

ax(s) =Xi—j and Ly(s)=N; —i

The leg-length thus corresponds to the number of cells in X strictly below s (and in the same column)
while the arm-length corresponds to the number of cells in X\ strictly to the right of s (and in the
same row).

EXAMPLE 22. The values of a(s) and £(s) in each cell of the diagram of A = (3,3,2,1,1) are

24]12]01
23[11{00
12[00
01

[00]

2. Compositions

Just as partitions index symmetric functions, compositions will index polynomials in general.
Compositions lose the aesthetic appeal that diagrams provide for partitions, making them more
intricate to compute. Hence, we will define the diagram of a composition using what has been
defined for partitions in the last section.

DEFINITION 23. An element n = (m1,...,nn) of ZY, is called a (weak) composition with N
parts (or entries).

DEFINITION 24. An element w of the symmetric group &y acts on a vector (v1,...,vy) € ZN
as w(vi, ..., UN) = (Vw-1(1), - -+ Vw-1(N))-

We let w,, be the unique minimal length permutation in &y such that
n=wyn"
where 1t is the partition obtained sorting out 7.
ExaMPLE 25. If n = (1,3,0,2,1) we have that w, = (13542) (in the cycle notation) and
nt=(3,2,1, 1,0).
It will prove convenient to represent a composition by a Young (or Ferrers) diagram.

11



DEFINITION 26. The diagram corresponding to n is the Young diagram of n* with an i-circle
(a circle filled with an i) added to the right of the row of size n; (if there are many rows of size 1,
the circles are ordered from top to bottom in increasing order).

EXAMPLE 27. Given n = (0,2,1,3,2,0,2,0,0), we have that the corresponding diagram is

®

DEFINITION 28. The Bruhat order on compositions is defined as follows:
v=n iff vi<nt or vt=nt and w,<w,,

where we recall that w,, is the unique permutation of minimal length such that n = w,n™. In the
Bruhat order on the symmetric group Sy, wy,<w, iff w, can be obtained as a proper subword of

w,,.

ExAMPLE 29. Ifn = (1,3,0,2,1) and v = (0,1,3,2,1) we have that n* = (3,2,1,1,0) = v+,
Wy = 54525351 and W, = 545253515251, which implies that v < 7.

12



CHAPTER 2

The non-symmetric Macdonald polynomials and the double
affine Hecke algebra

In this chapter, we will introduce the theory of nonsymmetric Macdonald polynomials. We
will extract certain results from the presentation [22] of the double affine Hecke algebras and the
non-symmetric Macdonald polynomials for reduced root systems. Additionally, following [23], we
will present more explicit results in the A,, case.

1. Double affine Hecke algebra

The non-symmetric Macdonald polynomials can be defined as the common eigenfunctions of
the Cherednik operators [10], which are operators that belong to the double affine Hecke algebra
and act on the ring Q(q,t)[x1,...,2zn]. In this section we will introduce all the necessary tools to
define Cherednik operators.

Given a permutation o € Gy, the element K, acts on f € Q(q,t)[z1,...,zn] in the following
way:

Kof(xla"'va) = f(mo(l),”';xo(N))

In the case of an elementary permutation o = s; = (4,7 + 1), we use Kj ;41 for K i41).

DEFINITION 30. We define the generators T; of the affine Hecke algebra as

lo; — x; )
Ti:tﬂ-w(Ki’ile—l), Z:].,...“]\/v—].7

Ti — Ti41
and
To=t+ %(KLNﬁT&l -1),
where T f(x1, .., Tiy- o yxN) = f(x1,. .., qT4, ..., xN) 18 the q-shift operator.

Sometimes it will prove convenient to write 7; as

xi+1(t — 1) T tIZ‘ — Ti+1
Lit1 — Li Li — Tit1

n:

Kiit1-

)

EXAMPLE 31. If o = (321) then o = s281 and

z3(t—1 tro — x3 xo(t—1 tx1 — To
Tz =TTy = 3( ) + =2 K>3 ( ) + K>
T3 — T2 T2 — I3 T2 — T1 1 — T2
_ xg(t— 1) ZEQ(t— 1) + CCg(t— 1) t:El —ZEzKl .+ tl?z — I3 1‘3(t— 1)K23
inQ,—LCQ ggg—xl Tr3 — Ty T1 — o ’ To — T3 T3 — T ’
To —x3lry —
Wit B Rt 3K2,3K1 2.

)
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The T;’s satisfy the relations (0 <i < N —1):
(T; =t)(T; +1)=0
TiTi T = Tia TiTi
T, =TTy, i—j#%1 mod N
where the indices are taken modulo N.

REMARK 32. The quadratic relation (T; — t)(T; + 1) = 0 allows to compute the inverse of T}
explicitly
T =T ' =t —14+t'T;.
To be more precise,

_ (1—t)  tx; —a,
j'v‘7 — t71 < 'Z']( ) 4 IJ IJ+1 KJ,]+1> .
Tj — Tj41 Tj — Tj+1
REMARK 33. We extend the definition of the Hecke operator to any element o € Sy in the
following way. If o = s;, -+ - s;, is a reduced decomposition then Ty is given by

T,="T, T,
To define the Cherednik operators, we also need to introduce the operator w defined as:
w=Kyn_1n-Kio7.
We note that wT; = T;_qw for i = 2,..., N — 1. We are now in position to define the Cherednik
operators:
DEFINITION 34. fori € 1,..., N, the Cherednik operators are
Y =t VT Ty Ty Ty
EXAMPLE 35. For N = 4 we have
Yy =t ToTswy,
Yy =t Ty TwyTh,
Y3y =t T3w, N1 T,

Y;; = W4T1T2T3.

The Cherednik operators obey the following relations:
LY, =Y, T, + (t-1)Y;
T;Yip1 =YT, - (t-1)Y;
TY; =Y,T; if j#4,i+ 1. (1.1)

It can be easily deduced from these relations that
(Y +Yip)Ti = Ti(Yi + Yig1) and  (YiYip)T; = T;(YiYiga). (1.2)

2. Non-symmetric Macdonald polynomials

The Cherednik operators Y;’s commute among each others, [Y;,Y;] = 0, and can be simulta-
neously diagonalized. Their eigenfunctions are the (monic) non-symmetric Macdonald polynomials
(labeled by compositions).

DEFINITION 36. For x = (x1,...,2n), the non-symmetric Macdonald polynomial E,(z;q,t) is
the unique polynomial with coefficients in Q(q,t) that is triangularly related to the monomials

Ey(w:q,0) =" + 3 by (g.t) 2"

v=<n
where < is the Bruhat order on compositions defined in [28

14



The non-symmetric Macdonald polynomials are simultaneous eigenfunctions of the Cherednik
operators.

PROPOSITION 37. Foralli=1,... N,
Yiloy = ik, where 7 = ¢t

with r, (i) standing for the row (starting from the top) in which the i-circle appears in the diagram
of .

ExaMPLE 38. We have:

(1) YiE@03) = ¢*t' B0
(2) Y2E (50,3 = ¢°t'*E(20.3)
(3) YsE (2,03 = ¢*t' " E2,0.3)
The Cherednik operators have a triangular action on monomials [21].
ProproOSITION 39. The action of Y; is given by,
Y;x" = 7;2" + smaller terms

where “smaller terms” means that the remaining monomials ¥ appearing in the expansion are such
that v < n in the Bruhat order.

3. Properties

The following properties will be fundamental in the proofs of many properties of the Macdonald
polynomials and their variations. All the results in this section are facts that we will not prove and
which were primarily extracted from [21] and [23].

3.1. Stability. The first one expresses the stability of the polynomials E, with respect to the
number of variables (see e.g. [23] eq. (3.2)]):

E L1y y TN—-1; at if :O’
E,,(acl,...,wzth;q’t):{ Onf( ' vl ifzx%().

where n— = (1,...,7n-1).

3.2. Action of T;. The second one gives the action of the operators T; on E,:

<1t5i1> En + tEsir] if n; < Ti+1
nEn = tEn if N = MNi+1

_ 1—8;,,)(1—t~16; , .

where 8; ; = 1;/Ni11 and s;0 = (N1, -+, D15 Wik 15 Mis Wik 25 - - IN)-

3.3. Recursivity. The third property, together with the previous one, allows to construct the
non-symmetric Macdonald polynomials recursively. Given ®, = t!=NTy_1---Tizq, we have that
[5]

O E,(z;q,t) = tr”(l)_NEcpn(ﬂ?; 1)
where ®n = (192,M3,...,IN—1,m + 1).
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3.4. Symmetry. For the last property we need introduce the following specialization
DEFINITION 40. We define the evaluation ug on any function f(x) as
uw(f(xl,...,x]v)):f(l,t7...,tN_1) (3.1)

and for any f(x) and g(x) Laurent polynomials in x1,...,xN, we define
[f (@), 9(x)] = up (f(Y H)g(2)) -

The symmetry says that
[f,9] =g, f]

for any Laurent polynomials f(z) and g(x) in z1,...,zN.

4. Symetrization operators

In this section we will introduce operators that will allow us to define the classical Macdonald
polynomials and their variations. We will later see that the symmetric Macdonald polynomials are
essentially symmetrized versions of the non-symmetric Macdonald polynomials.

DEFINITION 41. Let be I C [N], we introduce the the symmetrization and antisymmetriza-
tion operators

Si=> K, and A=) (-1)K, (4.1)
oceST ceST
together with the t-symmetrization and t-antisymmetrization operators
Sf=> T, and Aj=> (-1)T, (4.2)
ceS ceSy

where Gy stands for the permutation group of the elements in I

For simplicity, when I = [N] we denote the operator as

Sh=> 1, (4.3)

ocESN

There are some relations between the operators introduced in Definition For this, we shall
introduce the next notation.

DEFINITION 42. Let [N] ={1,...,N}. For I a subset of [N], recall that
tr; —x;
Afw) =[] @i—=;), A =]]@zi—-x;) and Af2)=]] <J) (4.4)

Pt . At xi—ag
t,jel i,jel t,jel
i<y i<j i<j
For simplicity, when I = [m] = {1,...,m}, we will use the notation A, (x), Al (z) or Ay ()

instead of Ajy)(x), A, 1(x) or Apn(2).

The following proposition will relate the ¢t-symmetrization operators and the symmetrization
operators defined in Definition

PRrOPOSITION 43. We have the follow relations

te; —x; 1y A
S; =81 H(z—xj> and A'}—t(Q)A—jAI
i,j€1 ¢ J
j<i

PROPOSITION 44. We have the following equalities

TS an=8hanTi=tS,  n fori=m+1,... N—1
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CHAPTER 3

Symmetric functions

Symmetric functions naturally appear in several areas of mathematics. In this chapter, we will
provide their formal definition, offer some examples of bases, and then proceed to define symmetric
Macdonald polynomials by symmetrizing non-symmetric Macdonald polynomials. For this, we will
heavily rely on [23]. Additionally, we will demonstrate some fundamental properties of Macdonald
polynomials. While there are elegant ways to prove these properties, as is done in [20], we will employ
the theory of non-symmetric Macdonald polynomials presented in Chapter 2, utilizing techniques
outlined in [27], [23], and [25]. The reason for taking this approach is that these techniques will
later be applied to the variations of Macdonald polynomials that we will consider in Chapters 4 and
5.

This chapter thus has two main purposes. First, to introduce and motivate Macdonald polynomials
and their properties, and second, to provide a guide on how to prove the analogous properties in
wider contexts.

1. The ring of symmetric functions

In this section we will introduce the basic topics in symmetric function theory. Most of this
chapter is taken from [21].

The space of symmetric polynomials in n variables is the space of polynomials in Q[z1, . .., 2]
that are invariant under the symmetric group action, i.e.

Ap=Qlzy,... 2, ={f €Qz1,...2n] | 0-f=f foralloes,}.

EXAMPLE 45. For example, we have

(1) f(z1,22) = 27 + 22122 + 23 € Ag,
(2) f(x1,22,23) = 2122 +x% + zox3 +x§ + x123 +x§ € As.

This space has a graded structure given by

An =P AL

k>0

where A¥ is the space of homogeneous symmetric polynomials of degree k in n variables. In this
theory, it is often more convenient to work with infinitely many variables given that when the
number of variables is large enough the symmetric polynomials essentially cease to depend on the
number of variables. To do this, consider the homomorphism

p: Qlzy, ... xpp1] = Qlz, ... 2]
f = f|$n+1:0'

Its restriction to the space A% is bijective for all n > k, so we can take the inverse limit as a graded
ring
k T
A% = ¥£n
17
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where the elements in A* are sequences ( f,,)n>0 with f,, € Ak with the condition f,11(x1,...,2,,0) =
fu(z1,...,2p) for all n > k, this means, the polynomials are essentially the same for n > k. We
define the ring of symmetric functions as

A= @Ak
k>0

REMARK 46. We have by that if a polynomial f(x1,...,zN) is such that T; f(x1,...,N) =
tf(z1,...,xN), then f(x1,...,xN) is symmetric in the variables x; and x;11. Moreover, for any
polynomial f(x1,...,xN), we get from Proposition that S& f(z1,...,zN) is symmetric. We thus
conclude that symmetric polynomials and t-symmetric polynomials are the same.

2. Bases of the ring of symmetric functions

We want to study certain bases of the ring of symmetric functions, putting a special emphasis
on their combinatorial properties.

Monomial symmetric functions. It is an elementary fact that the monomials z", fol all
compositions 7, form a basis for the space Q[z1,...,x,], where

n— M.
" = x| "

We can thus naturally define a family of monomial symmetric polynomials by acting with the
symmetrization operator on x", i.e.

Sy -2l = Z o-x"= Z 27,

ceSN oceSN

Let Gnx = {0 € Sy | oA = A} be the stabilizer subgroup of A. Note that each monomial
appears |G | times in the r.h.s. of the previous equation

Z 27 = |Gyl Z 2o
ceSN o€SN/GnN A

In order to have monomials without coefficients, we define the monomial symmetric polynomial as
follows.

DEFINITION 47. Given A a partition, we define the monomial symmetric function as

_ 1
|Gl

mx(T1,...,TN) Sy - 2"

where 1 is any composition such that nt = \.

EXAMPLE 48. We have some examples

e my)(z1,72) = 1 + T2,
_ 2 2 2
® m21,1) (%1, T2, T3) = T{T2T3 + 32173 + T3T 173,
2.2 2.2 292
® Mm29) (21,72, 23) = T{x5 + w125 + T375.

REMARK 49. Note that the set of all the my’s, where A runs over all partitions, is a natural
basis of A.
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Elementary symmetric functions.
DEFINITION 50. For r > 0, we define the elementary symmetric function as
Er = M(1r)
We can then extend this definition to a partition X\ in the following way
ex=ex - e,
EXAMPLE 51. Here are some examples of elementary symmetric functions.

e1(wy, T2, 23) = 21 + T2 + T3,

ea(w1, T2, w3) = X172 + X173 + ToT3,

6(3)(961,562,933) = 12273,

e2,1,1) (21, T2, 23) = (21272 + 2123 + T273) (21 + T2 + x3)2.

The generating function for the elementary symmetric functions is given by
E(t) =Y eit" =[] +t).
>0 i>1
PROPOSITION 52. The elementary symmetric functions have a triangular decomposition into

monomial symmetric functions

ex =my + E Ax\p My,
<
where ay, are non-negative integers, and p < X is the dominance order introduced in Definition .

Homogeneous symmetric functions.

DEFINITION 53. For r > 0, we define the complete symmetric function as
hr = Z my
|A|=r
We can extend again this definition to a partition X\ in the following way
hy =hy, ---hy,.

EXAMPLE 54. Here are some examples of homogeneous symmetric functions

hi(z1, w2, 3) = my (w1, 22, 23) = 21 + T2 + T3,

ho(x1, 22, x3) = m2) (@1, 22, 23) +m(11)(T1, T2, ¥3) = @F + 23 + 23 + 2122 + 2123 + T2T3,
h3(w1, 20, 23) = m(3) (w1, T2, 23) + m2,1)(T1, T2, T3) + Mm(1,1,1) (21, T2, T3),

hig1y (21, 2, 23) = (22 + 23 + 23 + 2122 + 1123 + T223) (71 + X2 + X3).

The generating function for the complete symmetric function is given by

Ht)=>Y ht =] : fxit.

r>0 i>1

Power sum symmetric functions.

DEFINITION 55. For r > 0, we define the power sum symmetric function as

N

§ : r
Dr = €;

=1

As usual, we extend this definition to a partition \:

Px=DPx. P,
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EXAMPLE 56. Here are some examples of power sum symmetric functions

o pi(x1,%2,23) = 1 + X2 + T3,
o po(x1,20,23) = 23 + 2% + 23,
b P(2,1)($17$2,$3) = (ﬁ + x% + m%)(ml + x2 + x3).

The generating function for the power symmetric function is given by

P =3 pt =1 1 j:zm

r>0 i>1

3. Symmetric Macdonald polynomials

In this section, we will define Macdonald polynomials, demonstrate their stability as the number
of variables increases, and provide a characterization using the Macdonald operator. The results of
this chapter are taken mostly from [23].

DEFINITION 57. We define the symmetric Macdonald polynomials as

1
P)\(xlv"wl'N;qvt) = mS}EVEnA,N(xla"'va;Q7t)

)

where NN = (AN, - - ., A2, A1) with the normalization constant ux n(t) given by

usn(t) = | [[Ina()]e—! | NN/
i>0

where ny (i) is the number of entries in \1,...,\ny that are equal to i (note that i can be equal to
zero), and where

1-q)(1-¢*)-(1-q")
(1—g)*
REMARK 58. Observe that the normalization constant ux ny(t) is chosen such that the coefficient
of my in Px(x;q,t) is equal to 1.

[k]q =

The first consequence we draw from the non-symmetric world is analogous to the stability in
Section [3.1] stating that as the number of variables increases, Macdonald polynomials are essentially
the same. As such, Macdonald polynomials only depend on the partition A.

PROPOSITION 59. [Stability] The symmetric Macdonald polynomial Py is stable with respect
the number of variables, that is,

et enn gy = { P i) SN > ()

otherwise
PROOF. From the definition of Py it suffices to prove that
ux,n-1(t) ‘
() SHrBrey 1 A =0
[S}tVETM,N]IN:O = AN
0 if AN#OQ

where A = (Ar,...,Anv—1) and 7, y_; = (0, An_1,..., A1), note that from Property ?7?
Sh=84 0 +Tn 1 +Tn 1Tn o+ +Tn_1---Ty)
so that
(SN By alen=0=[Sh_1(1+ Tn-1+ Tna T2+ + Tno1+-T1)Eq, o Jay=o
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Now, if A has k = n(0) zero entries, it is easy to see from Properties [3.1] and [3.2] that

N By o if i<k
TNt TiEy]any=0 =

0 if i>k
which then implies that
NP S By o, if i<k
[SfVEm,N]mNZO =
0 if 1>k
with tN=F[k]; = cx/ca. O

The characterization of Macdonald polynomials provided in Definition [57] is not very practical
because we first need to construct non-symmetric Macdonald polynomials and then take a sum over
the symmetric group. This process can be computationally challenging for large values of N. In this
section, we will present another characterization as eigenfunctions of a certain operator. Motivated
by Proposition [37, we will define the Macdonald operator.

DEFINITION 60. We define the Macdonald operator as
N
Ey=Dy-) t'7"
i=1
where
Dy=Y1+---+Yy.
This operator satisfies very strong properties.

PRrROPOSITION 61. The symmetric Macdonald polynomials are simultaneous eigenfunctions of
the operator En. To be precise,
ENP)\ = C)\P)\

where ¢y is given by,
N
771+"'+77N—Zt1_i
i=1
with 7; = q’“tl”"”(i).

PROOF. Since Py = SL E,, , and DnS% = S84 Dn, we have

AN

1
ExPy, = ——ENSYLE,, .,
N ’U,)\’N(t) NONEna N
1 N
=—— | Dy — = | SLE
UA,N(t)< o ; > N

UA7N(t

1 N
- )s]tv (DN - ZtH) Ep ns
=1

N
1 )

= Stlm+- +av— E t' E

ux, N (1) N (771 TN = ) e

N
= <n1+---+nN—Zt1—"> P,

i=1

=P,
which completes the proof. (Il
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We have our second characterization of the symmetric Macdonald polynomials. The proof of
the next Lemma can be found in [23]:

PROPOSITION 62. [Triangularity] The symmetric Macdonald polynomials form the unique
basis of the space of symmetric polynomials such that

(1) the decomposition over the monomials are triangular

Py =m) + E Cpu My,
p<A

where < s the dominance order in partitions.
(2)
ENPy = c)\Py

This characterization is still not ideal since it depends on the number of variables (since the
action of Ey depends on N). It will prove nevertheless crucial in the next section for proving the
orthogonality.

4. Orthogonality

In the previous section, we observed that Macdonald polynomials can be characterized by being
eigenfunctions of an operator as well as having a triangular expansion in terms of the symmetric
monomials. In this section, we will explore another characterization of Macdonald polynomials
wchich asserts that they are orthogonal with respect to an inner product. Together with the tri-
angularity, this inner product uniquely determines these polynomials. Most of this chapter can be
found in [20].

DEFINITION 63. We define the following scalar product on the power-sum symmetric functions:

(PasPp) = Oanzn(g,t)

where
o o
(g, 1) = 2x H T and 2x = Himmil,
=1 i1

where my; is the number of times that i appear in A.

We will prove that the symmetrics Macdonald polynomials are orthogonal with respect to the
above scalar product. For this, we have to define the following kernel

DEFINITION 64. The symmetric kernel is

oo

(triy;5q)oo ; i—1
Ky = ~—=2= with  (a;9)s0 = 1—aq’
0 E[ (TiY5; @)oo (a;9) 1131( )

LEMMA 65. We have the following relation
Ko = sz(q,t)flpx(ﬂf)px(y)-
A
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Proor. We calculate
log(Ko) Z Z log(1 — ¢"tx;y;) — log(1 — ¢"z;y;))

i,7 r>0
=YY )@

1,9 r>0n>1

11 —t

=22 nim @)

7,9 n>1

11—t
= E]. — qnpn(x)pn(y)a
n>1

from which it follows that

11—-¢" (I —tm)m™ . .
Ky = Hexp <n1_qnp > H Z nrarnl (1— gqn) Pn(®) ™ pr(y)

n>1 n>1r,>0

From the r.h.s. of the equation it is then clear that the coefficient of py(x)px(y) is za(¢,t)"t. O

The next lemma gives us a connection between the scalar product introduced in Definition [63]
and the kernel K defined above.

LEMMA 66. Let {ux},{v,} be bases of the space of symmetric functions. Then the following
criteria is verified

— Zu,\(x)v,\(y) = (ur,v,) = Oxp

PROOF. Let pi = 2x(g,t)"'pa, so that (p},p.) = dx.. Because u, and v, are symmetric

functions, we can write
— * d —
uy = axpp, an v, = QpuoPo
P o

‘We then have

(ux, vy) E axpbup

so the r.h.s. of the equivalence amounts to
Z axpbup = Oxpu (a)
P

From Lemma [65] the Lh.s. of the equivalence gives
> ua(@ua(y) = > pi(@)pp(y
A p
from which we deduce that the L.h.s. of the equivalence takes the form
Za)\pbAg = 5pg. (b)
A
Since (a) and (b) are equivalent, this concludes the proof. O

The following lemma is the key point in demonstrating the orthogonality of Macdonald poly-
nomials, this can be found in [20]
LEMMA 67. The operator defined in[79 is symmetric if you exchanges operators in x or y:
E(J«')KO — E(y)KO
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THEOREM 68. [Cauchy formula] We have the following relationship between the symmetric
kernel and the symmetric Macdonald polynomials:

Ko=) by (g,t)P(x)Px(y)-
A

PRrOOF. First, note that we can write Ky as

Ko=) dau(g,t)Pa(x)Pu(y)
A p

this is because K is symmetric in z and y, and P, is a basis of the space of symmetric functions.
Furthermore,

E*Ko =Y dxu(q.t)E*Pa(z)Pu(y) = Y dxu(q. t)ex = dru(gq,t)ea(q. t) Pa(a) Pu(y)
AL Ap
and, because E*Ky = EY K, we have the relation
dAM(qv t)CA(Qa t) = dku(q’ t)cu(q’ t)
But cy is uniquely determined by A, so we conclude that dy, = 0 unless A = u. Taking dxy = b;l

proves the theorem. O

THEOREM 69. [Orthogonality] The Macdonald polynomials are orthogonal with respect to the
scalar product in Definition[63), i.e.

(P\,Py) =0ifX#p
and
(Px, Px) = ba(g,t)
for some coefficient by(q,t) that we will give explicitly in the next section.

PROOF. Both equations are direct consequence of Lemmas [67] and O

We are now in a position to state yet another characterization of Macdonald polynomials.

ProprosITION 70. The symmetric Macdonald polynomials are the unique basis of the space of
symmetric polynomials which satisfy:

(1) the decomposition in monomials is triangular

Py =m) + Z Cpu My,
<A
(2)
(Py ) =0 if A £ .

Proor. By the Theorem and we know that Macdonald polynomials satisfy (1) and
(2). On the other hand, properties (1) and (2) determine uniquely these polynomials from the
Gram-Schmidt process. O

This definition of Macdonald polynomials has the advantage of not depending explicitly on the
variables x1, 22, .... As such, it allows to compute Macdonald polynomials explicitly.

If we analyze what has been done in this section, we can see that a relation was established
between the kernel and the scalar product. Then, we proved Lemma [67} which was fundamental as
it led quite directly to the orthogonality. In general, this method will be the standard approach:
search for a kernel on which the Macdonald operator acts symmetrically with respect to variables
x and y. This in turn translates into an orthogonality relation with respect to the scalar product
associated to the kernel.
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5. Symmetries

In this section, we will explore remarkable symmetries satisfied by the Macdonald polynomials.
These symmetries will provide us with useful tools to demonstrate more intricate properties.

THEOREM 71. [Symmetry] The Macdonald polynomials Py satisfy the following symmetry
Pk(zla"'va;qvt) = P)\(xlv"wa;qilatil)

PROOF. It is immediately from Definition [63] that

alg ) = (') aa(g, 1),
We then have that
(F:9)q101 = (@)™ ([, 9)q,t-
Thus, P\(z1,...,25;q¢ Lt 1) is Py(21,...,2N;q,t), up to a constant. But by Theorem the
coefficient of my in Py(z1,...,zn;¢ 1 ,t71) and Py\(x1,...,7xn;q,t) is 1, which entails that
P(z1,...,aniq,t) = Pa(z1,...,aniq St h),

as we wanted. O

DEFINITION 72. We define the principal evaluation uy on any symmetric function f(z) as

ur(f(z1,..on)) = (@M g N (5.1)
REMARK 73. Note that in the case A = (0V) we have uy = ug, where ug was defined in (3.1]).

LEMMA 74. If f is a symmetric function in N variables then
FOYTHPA(z;q,t) = ur(f) Pa(259. ). (5.2)

PRrOOF. . We have that Y[1E77 = ﬁ;lEn, where we recall that 7; = ¢!~
Using the fact that f is symmetric, we then have that
FO L YY) PA(eg,0) :f()/;l,...,Y];ll)dn(q,t)sl}fva7
=d,(q,)Shf(Y7 . Y DE,

=dy(q, t)SN f ﬁ{la iy Ey
N

=f N ) Pal@i g t).
It is easy to see that because f is symmetric f(7; Lo 71?;,1) is exactly the evaluation defined in
, which completes the proof. ([l

EXAMPLE 75. We have,
(5~ 1)(qt* — 1)
(t_e,l)2(q2t_1) | (3 — 12 — ¢ 2 )
2 (g%t + qt + 1)(¢°t° — ¢*t* — ¢“t + qt* + gt — 1
2 P =
(2) ue2,1)(Ps,1,1)) (gt — 1)¢'2

(1) U(D(P(3,1,1)) =

Note that in the first example, we have a simple factorization. Later, we will prove that ug(Py)
always has a beautiful factorization. However, this is not the case in general. As seen in the
second example, the expression is not elegant at all. Although we lack an explicit expression for the
evaluation uy, we will see that it obeys a very beautiful symmetry. Since ug(Py(z,q,t)) # 0 we can
define

DEFINITION 76. Let Py (x,q,t) be the normalization of the Macdonald polynomials given by

~ B P)\(J?;Qa t)
Py(z,q,t) = m
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PROPOSITION 77. [Self-duality] The following symmetry holds:
u,(Py) = ux(P,)

PROOF. For f(z) and g(z) Laurent polynomials in z1, ...,z N, we get from that the pairing
[f(2), g(@)] = up (F(Y)g(2))
is such that [f, g] = [g, f]. From Lemma [74] we thus get
[PA(z,q,t), Pu(z, q,t)] = ug (Px(Y; ") Pu(x, g, 1))
= uu(Px(2,¢,t))up (Pu(z, ¢,1))

From the symmetry of the pairing [-, -], it then follows that
’U’H(P)\(aja q, t))u@ (PM(‘T’ q, t)) = U,)\(PH(LL', q, t))’LL@ (P)\(Qf, q, t))
which proves the proposition. O

EXAMPLE 78.

u(47473,2,2,1)(P(676,2,1,1)) = u(6,672,1,1)(15(4,473,2,271))

6. Operator and Pieri rules

We obtained earlier a characterization of the Macdonald polynomials as eigenfunctions of the
Macdonald operator. In this section, we will provide an explicit formula for this operator. In fact,
more generally, we will see that Macdonald polynomials are eigenfunctions of a commuting family of
g-difference operators. Additionally, we will demonstrate the Pieri rules for Macdonald polynomials,
which are impressive combinatorial rules for the product of an elementary symmetric function and
a Macdonald polynomial.

DEFINITION 79. Forr =1,..., N, we let the g-difference operator DY be
DY =" Ayt [[=
[I|=r i€l
where
Ag( ) =02 T B
ierjer Tt i

ExXAMPLE 80. We have that
tr, — @: tro —x trg —x trs —x try —x trs —x
D§:t< ! 3)( 2 3)’7’17’2+t< 2 1)( 3 1>T2T3+t< ! 2)( 3 2)’7’17’3.
r1 — I3 To — I3 To — I Tr3 — I Tr1 — T2 Tr3 — T2
The following proposition essentially tells us that over the space of symmetric functions, the
operators DY act like elementary functions of Cherednik operators.

PROPOSITION 81. [Operator] Let f be a symmetric function. Then
e (Y)f=t""NIDNf.

PrOOF. From Lemma we have

er(Y)f = WS;VYN—T-H YN,
From Lemma [04] this then implies that
t(r+1—2N)r/2 .
er(Y)f = WSNTN—T+1 TN,

26



from which we deduce that

t(r+172N)r/2

TR s 1D D B | SRS SR ()
U sesSy i,jE[N—7r+1,N]
i<j

Notice that by symmetry we just have to prove the proposition for J = [N —r 4+ 1, N|, so we will
find the coefficient of Ty _p41 -+ 7n in (a). Moreover, the coefficient is given by

t(r+172N)r/2
[N —r]l[r]!

Z o H Aji | ™N—rg1-7Nf

oceSN 1,jE[N—r+1,N]
o(I.)=I, i<j

which, from Lemma [93] says that

tr =22 Ay p N gy TN f

is the coefficient of 7x 41 -+ 7y in DY, where L = [N]\ J. O

REMARK 82. Previous Lemma said that DY is essentially e.(Y) and since the operators Y;
commute with each others, it immediately follows that the Macdonald operators commute among
themselves. Moreover, the Lemma[7]] also works forY;, then taking f = e,, we obtain that Macdonald
polynomials are eigenfunctions of the e,.(Y) operators, and because DY is essentially e,(Y') we have
that the Macdonald polynomials are eigenfuntions of the Macdonald operators DY .

LEMMA 83. Let 6 be a {0, 1}-tuple with exactly r entries equal to 1. We have that ux(Aj(z,t)) #
0 iff A+ 0 is a partition.

PROOF. We calculate
Nt N—i+0; _  X;4N—j+6;
_ q t q it J
ux(Ay) = H PN — atN—i
1<J
If ux(As) = 0 then there exist ¢ and j such that i < j, \; = A\; and i—j = 6, —6;. Since |0; —6,| <1,
it follows that j=1+1, 0; = 0 and 9j =1, so that \; = )\7;+1 with \; +6; < )\i+1 + 9i+1~ This
means that A + @ is not a partition.
Conversely, if A 46 is not a partition then there exists an ¢ < n — 1 such that \; = A\; 41, 6; = 0 and
6; = 1, whence uy(Ar) =0. d

The Macdonald polynomials are known to form a basis of the space of symmetric functions.
Furthermore, considering » € N and A a partition, the expression e,.(z)P, is also a symmetric
function. Therefore, we can represent it as a linear combination of Macdonald polynomials,

er(z)Py(x) =Y CruPy

However, we have no information a priori about the partitions ;+ and the coefficients C} ,,. The Pieri
rules are an impressive property of Macdonald polynomials that provide an explicit combinatorial
expressions for the partitions p and the coefficients C ,. It turns out that it is simpler to first
obtain the Pieri rules for Py defined in Definition

THEOREM 84. [Pieri Rule] We have the following Pieri rules for the symmetric Macdonald
polynomials

er(x)P)\ = ZGMLPM
"
where A/ is a vertical r-strip and the coefficients are given by
O = (A (a31)).

27



PROOF. For each partition v we know from Lemma [74] that
er(Y)pl, =u, (eT)PV
On the other hand, from Proposition |[81| we get
BT(Y)]S,, = Z Ap(z;t) HTiPy
[T|=r il
Joining the two previous equations leads to
uy (e,)P, = Z Aj(x;t) HTi]s,,
[I|=r i€l
Then, applying the evaluation u, on both sides of the equation gives
u, (e, )u,(P,) = Z uu(Ar(z;t)) HTiuM(Py)
|I|=r iel
From [T,¢; i, (P,) = u,41(P,), this simplifies to
uu(er)uu(é/) = Z uﬂ(Al(m? t))uWrI(PV)
[I|=r
Applying the symmetry in Poroposition [77, we obtain
uu(er)u,,(pﬂ) = Z u#(AI(xE t))UV(P,quI)
[I|=r

Because v can be any partition, we can conclude that the above equations holds for any value of

the variables: R R
er(z)Py(z) = Z up(Ar(z;t)) Py r ()
[I|=r
where, from Lemma the coefficient is non-zero only if p + I is a partition (in which case it is a
vertical strip). O

The previous proof is found in Macdonald’s book [21] and essentially tells us that, having the
operator e, (Y') explicitly as well as the self-duality, gives us the Pieri rules. This will be the canonical
method we use in this document to derive Pieri rules.

COROLLARY 85. We have the following Pieri rules for the symmetric Macdonald polynomials
er(l')P,\ = ZC)\#P#
n

where N/ is a vertical r-strip and the coefficients are given by
up(Ag(z;t))ug(By)

Chpu =
: Up (P u+I )
PROOF. It is immediate from Definition and Theorem |

7. Combinatorial formulas

So far, we have defined Macdonald polynomials, characterized them and explored their algebraic
properties. However, we have not yet seen how these properties are connected to combinatorics. In
this section, we will explore the combinatorial form of Pieri rules, from which we will deduce the
principal evaluation and the norm squared. This section is primarily based on [25].

DEFINITION 86. For k € N, we define
(a;q)x = (1 —a)(1 —qa)--- (1 - ¢*"a)
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THEOREM 87. [Combinatorial Pieri Rule] The symmetric Macdonal polynomials satisfy the
following Pieri rules:

er(x)pA == ZOA,/LRL
n
where N/ is a vertical r-strip and the coefficient is given by

tn()\) H(l _ qax(s)thli\(s)) H (1 — qau(s)tlu(s)""l) H (1 — qa“(s)-l-ltl“(s))

C~' SEN SEUNRN SEUNRN

A — 7 '

® () H(l _ qau(s)tN—lM(S)) H (1— qax(s)tlx(s)'i'l) H (1— qax(s)-&-ltlx(s))
seEn SEANRN SEANRN

with Ry, denoting the union of the rows intersecting the vertical strip /.

PRrROOF. Let \/u be a vertical r-strip. We can then write A = p+ I, with I C [N] and |I| = 7.
Using Theorem |[84] and Definition the coefficient of Py in the expansion is

. ‘o 1 —tx;/x;

o . _ r(r—1)/2 Y S}

CA,H_UH(AI(x7t)>_uH t ) H 1—%/55]
iel,jed

where J = I¢. Applying u,, we obtain

C’A,,u _ tr(r—l)/2 H H

1<a<b<N 1<a<b<N
acl,beJ aE€JbEI

1— qMa—,U«btb—U«"l‘l 1— qua—ubtb—a—l

1 — gta—rotb—a 1 — gta—hotb—a

For simplicity of notation, we will work with the conjugate partitions A, p’ in Definition noting
that they satisfy the interlacing property

S S e
The sets I and J can then be expressed as the following disjoint unions

I= Uk21 Iy Iy = (W At

J= Uk21 I Ik = (N, 1]

where (a,b] ={k € Z | a < k < b} and pj = A\j; = N. Note that, u; =k —1,\; = k if i € I and
i =A; =k —1if j € J,. We then have

(7.1)

B 1— i—jtb—a+1 1— i—jtb—a+l
C _ r(r=1)/2 H ( q ) H ( q )

—giith— _ i—ifb—
i L—gittme) 2o (=g ithme)
a€cl; CLEJ]‘
beJ; bel;

Note that, if we fix i, and a, we have, using J; = (X}, u}_,], that

1— qifjtbfa+1 1— qifjt,u;_lfaJrl

H _ gi—jtb—a i i N —at+1
beJ; 1—q¢t 1—q =3t

From the definition of I; = (u}, A}], we can then express this product as

. ’ Y i— 4 [ 1
gt Itk /\ﬁl;t)%—#é (it g)

i—1q )\/~7>\£+1.
(ql It7i ,t)A;7#;

o1,

Cv)\ p= tr(r—l)/? H (

‘7‘>‘,‘7/1'/’
T—J 4N G—1-
j<i i< (@
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By separating the term j = 1 in the numerator of the first product and making a change of variables,
we obtain

H(q] i— 1tu —)\ +1 t) ! H(qi—jt/ti—uj+1;t)“] Xy

~ — - Y j<i i<j
Cop =t [ @5 ) PRV VA P ’
1% [I@= =505 I8,
j<i 1<y

Finally, using the combinatorial notation, we conclude that

tn()\) H(l _ qax(s)tN—l;(s)) H (1 — qau(s)tlu(s)‘i’l) H (1 — qau(5)+1tlu(5))

N SEX ) SEpPNRy/p SEPNRY /.
SO ) H(l _ qau(s)tN—lL(S)) H (1— qu(S)tlA(S)-H) H (1— qtlA(~9)+1tlA(8))7
sep SEANRN/, SEANRN/,
as wanted. O

THEOREM 88. [Principal Evaluation] The principal evaluation of a Macdonald polynomial
has the following combinatorial formula:

up(Px(z; g, n(3) H

SEX

1 — ¢ s)thl'(s))
1 _ qa(s)té(s)—i-l)

PrOOF. We have from Theorem [R4] that

ID;L = Z é,u,upua (72)
Keeping in mind that we can rewrite Py as
5 _ malx)
A\ = + lower terms
ug(Px)
we can take A = p + (1)” and compare the coefficient of m) on each side of ([7.2)). This yields

L _& 1
up(Py) M up(Py)

and therefore

up(Py) = Cruup(Py)
where the coefficient éAu is given in Theorem In this case p N Ry, = u/RA/M = )\/RA/# = (),
from which we get the following recurrence formula

1 _ qa)\(s)tN 2+1)

— (M)
(Pk) t " H ( a>\(€)+1tl>\( )) @(P,u)v
SEN/ 1
Since Py = 1, we deduce the desired formula. O

EXAMPLE 89. For A = (3,1,1) we have

1-#) A—g®)A-¢*) (1)1 -1) 1-1*)1—qt’)
1-¢t) A—qt) (1-t) A-)A-t) ~ (1-t) 1-qt)

COROLLARY 90. The symmetric Macdonald polynomials satisfy the following combinatorial
Pieri rules
$)P)\ = ZC)\’#P#
0
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where X/ is a vertical r-strip, and where the coefficient CN'ML is given by
(1 _ qax(s)tlk(s)+1) (1 _ qa“(s)—i-ltlu(s)) (1 _ qau(s)+1tl“(s))

C/\uu' = H (1 _ qa,\(s)+1tlx(s)) H (1 — qau(s)tlu(s)Jrl) - H (1 — qa“(s)tl“(s)+1)7
SGA/R)\/M SGIL/R)\/M SGCH/X/R;L/)\

with Ry, (resp. Cy,,) denoting the union of the rows (resp. columns) intersecting the vertical strip
M.
PROOF. It is immediate from Definition [87 and Theorem O
EXAMPLE 91. Taking A = (3,2) and r = 2, we have
€2 P32) = Uau,3)P4,3) + Uxa2,)Paz1) T Uas3,0) P33, +¥as21,0)P3.2,1,1)

where, for instance, the coefficient of Py o 1y is given by

1—qt? 1—¢?
Yr@,2,1) = et )\ )

The next combinatorial result can be found in [20]

THEOREM 92. [Norm] The evaluation over the partition () is given by the follow combinatorial

formula
1 — qo(s)+14t(s)

1— qa(s)tl(s)+1

<P)\(£C,q,t)7p)\(x»qvt)> = H

SEX
8. Double affine Hecke algebra relations for Symmetric case

In this section, we establish a few results involving the Hecke algebra and the Double affine
Hecke algebra that we used in the previous sections.

LEMMA 93. Let J C [N] and L = [N]\ J. We then have

i —tx;
Yo k5| I R = aw®)Ase(ze)

e Ti — Tj
o([N—r+1,N])=J 1<i<j<N
cEGN

where r = |J| and
ar n(t) = [r] [N = r]4!

PROOF. For convenience, we will let

= r; —tx;
A = = -J
@ = T (2=2)
tjET
1<g
We first prove the special case when J = [r] and L = [r + 1, N]. Let 7 be the permutation
[r+1,...,N,1,...,7] (in one-line notation). In this case, we have

> K, An(z)

o([N—r+1,N])=[r]
oceGN

= Z Z KwKw’K'yAN—r(x)A[wakl,N](x)A[NfrJrl,N]X[Nfr](-’I%x)

wesS, w’€6r+1,N

= Apyxr+1,n8 (7, ) ( Z KwAr(x)> Z Koy Apy1,3) (%)

weS, w eSS, 41N
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since w and w' leave Apx[r+1,n] invariant. Using [7]
Sh-1= Y K,Ay(z)=[N]! (8.1)
geGN
the formula is seen to hold in that case.

As for the general case, let § be any permutation such that 6([r]) = J (and thus also such that
d([r+1,...,N]) = L). Applied on both sides of the special case that we just showed, we get

x; —tx;
Z KéKU H % - ar,N(t)KJA[r]X[r—I-l,N](xa‘r) = ar,N(t)AJXL('T7x)
o([N—=r+1,N])=[r] 1<i<j<N Ti =T
ceGN

which amounts to

i —
> Ko | ] D) = 4w (1) Asxi (@)

i T —Tj
do([N—r+1,N])=J 1<i<j<N
AN

The lemma then follows immediately. (]
We now show that the product Yy_,41--- Yy of Cherednik operators can be simplified quite
significantly in certain cases.
LEMMA 94. Let r < N. For any symmetric function f(x), we have that

YN—rg1-- Ynf(z) = 15(T+1*21\’)7“/27-1\,_%1 o f ()

PRrROOF. We first show that
YN—py1-- Yy = t—T‘(7“—1)/2(WT1 .. TN#)T (8.2)
The result obviously holds by definition when r = 1. Assuming that it holds for » — 1, we have that
Yn_rp1 o Yn=Yn--YN_rp1
= rDED 2Ty Ty ) T (T Dy - Ty @y Ty

Making use of the relation Tj_jw = w7}, we can move the term T _,4; of every product to the
right to get

Vo1 Yy =t "D 2T Ty ) vy Tverst Ivergn - IvoawTy - Ty
= ¢t =Dy - Ty _,)"
which proves by induction.
Using Tj_ 1w = w1} again and again, we then get from that
YN_rp1-- Yy = t—r(r—l)/Zwr(TT o Tn_1) - (T Tn—y)

If f(z) is a symmetric function, the rightmost N —r terms in every product in the previous equation
can be pushed to the right and made to act as 1/t on f(z). This yields,

YN—T+1 e YNf(l') = tir(N?T)ir(ril)/2 TN—r+1""" TNf(ZE)

which proves the lemma. (Il

The next result shows that e.(Y7,...,Yy) can be recovered from S}f\, acting on Yy_,41---Yn.

LEMMA 95. Forr < N, we have that if f(x) is a symmetric function then

(Y1, V) f(x) = msfvm_m Y ()
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PrROOF. First, ifwe S, and o € Gr-{—l,N then (Tng)YN_T+1 Yy = YN—r—i—l . “YN(TwTU)
by (L.2)). This yields
TwTUYNfrJrl e YNf(iE) - te(w)jLz(a)Yqumkl T YNf(x)

given that f(z) is symmetric. Hence, summing over all the elements of &, x &,y in Sy =
Y veay Lo gives a factor of [N — r[![r];! from (2.1). We thus have left to prove that

er(Y1,...,YN)f(z) = > Ty YNy Ynf(2)
[0*]€6N/(6+XErt1,N)

where the sum is over all left-coset representatives o* of minimal length. Such minimal length

representatives are of the form (in one-line notation) o* = [i1,...,iN—pr, IN—rt1,---,in] With 41 <

Iog < -+ <in—p and iy_;q1 < IN—pp2 < -+ <ipn. A reduced decomposition of o* is then given by

(SiN o SN—l) o (SiN—r+1siN—r+1+1 cee SN—T) (83)

We will now see that the factor T5,_ ., Tiy_, 1 +1...Tn—p of T~ changes Yy _, 11 into Y;

leaves the rest of the terms invariant. First, we use the relation T;Y;11 = tY;7T; to obtain

TN YN—r1YN—rp2 YN f(@) = YN TN N2 YN f(2) = YN_ YN_rpo - Y f(2)
Proceeding in this way again and again, we then get that

Ty oiiTin piitr - INo YN 1 YN YN () = Yiy  YN—ry2 - YN f(2)

as wanted. By assumption, all of the remaining indices of the s;’s in (2.3)) are larger than in_,41.
Hence Y;, _,., will not be affected by the remaining terms in 7T,-. Following as we just did, it is
then immediate that

N—r+1 and

TG*YN7T+1 o YNf(x) = Y—iN7r+1 e }/;Nf(x)
Finally, summing over all o*, the lemma is then seen to hold. ]
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CHAPTER 4

The m-Symmetric Macdonald polynomials

In [18], aiming to understand Macdonald positivity, a novel class of Macdonald polynomials
was defined. The m-symmetric Macdonald polynomials are defined as the t-symmetrization of the
last variables of a non-symmetric Macdonald polynomial, while leaving the first m variables non-
symmetric. As such, they coincide with the symmetric Macdonald polynomials when m = 0, and
as m becomes sufficiently large, they transition into non-symmetric Macdonald polynomials. These
polynomials, remarkably, satisfy most of the properties of the Macdonald polynomials outlined
in the preceding chapter. This not only implies that these properties hold in the non-symmetric
case (for sufficiently large m) but also facilitates a seamless transition between the symmetric and
non-symmetric realms without sacrificing their inherent elegance.

1. The ring of m-symmetric functions

We define the ring R,, of m-symmetric functions as the subring of Q(q,t)[[x1, z2, 3, . ..]] made
of formal power series that are symmetric in the variables z,,4+1, Zm+2, Tm+3, . ... In other words,
we have

R, ~Q(q,t)[z1, ..., zm] @ A
where A,, is the ring of symmetric functions in the variables x,, 1, Tm+2, Tmt3, .- -

EXAMPLE 96. (1) We have that f(z1,x2,2374) = T122(23 + 23) is 2-symmetric,
(2) We have that f(x1,x2,x314) = X122T3%4 + Toks + ToZy + Taxg + x% 18 1-symmetric,
REMARK 97. [t is immediate that Ry = A is the usual ring of symmetric functions and that
RyCRICRyC---.

2. m-Partitions

We know that bases of the space of symmetric functions are indexed by partitions A = (A\; >
-+ > A > 0) while bases of the ring of polynomials are indexed by composition. Bases of R,, are
naturally indexed by m-partitions which are pairs A = (a; ), where @ = (a1,...,amn) € ZZ; is a
composition with m parts, and where A is a partition. -

DEFINITION 98. Given a composition a and a partition X, a m-partition is A = a U \ that
denote the partition obtained by reordering the entries of the concatenation of a and .

A= (a‘l,' .. 7am;Am+1,' . ';Al)
We call the entries of @ and X the non-symmetric and symmetric entries of A respectively. The

non-zero entries A; are called the parts of A. We define the length of A as £(A) = m + €(\). The
degree of an m-partition A, denoted |A|, is the sum of the degrees of a and X, that is,

Al=a1+ - +am+A+Xa+---.
Observe that we use a different notation for the composition @ with m parts (which corresponds

to the non-symmetric entries of A) than for the composition 7 with N parts (which will typically
index a non-symmetric Macdonald polynomial).
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EXAMPLE 99. The 2-partitions of 3 are
(0,0;2,1),(0,051,1,1),(1,0;2),(1,0;1,1), (0, 1;2), (0,15 1, 1),
(0,0;3),(2,0;1),(0,2;1),(1,151),(3,05),(0,3;),(2,1;), (1, 2;).

We will say that a is dominant if a3 > as > --- > a,,, and by extension, we will say that
A = (a; \) is dominant if @ is dominant. If @ is not dominant, we let a® be the dominant composition
obtained by reordering the entries of a.

There is a natural way to represent an m-partition by a Young diagram.

DEFINITION 100. The diagram corresponding to A is the Young diagram of a U\ with an i-circle
added to the right of the row of size a; fori=1,...,m (if there are many rows of size a;, the circles
are ordered from top to bottom in increasing order).

EXAMPLE 101. For instance, given A = (2,0,2,1;3,2), we have
A — %

REMARK 102. Observe that when m = 0, the diagram associated to A = (; \) coincides with the

Young diagram associated to X. Also note that if n is a composition with m parts, then the diagram
of n coincides with the diagram of the m-partition A = (a;0), where a = 7.

REMARK 103. Since that two circle can not be in the same row, there is not a natural way to
define the conjugate diagram in this context.

DEFINITION 104. We let A©) = a U X, that is, A0 is the partition obtained from the diagram
of A by discarding all the circles. More generally, fori=1,...,m, we let A¥) = (@a+ 1)U\, where
a+ 1= (a;+1,...;0; + 1,ai41,..-,am). In other words, A s the partition obtained from the
diagram associated to A by changing all of the j-circles, for 1 < j <, into squares and discarding
the remaining circles.

EXAMPLE 105. Taking as above A = (2,0,2,1;3,2), we have A = (3,2,2,2,1), A =
(3,3,2,2,1), A® =(3,3,2,2,1,1), A® =(3,3,3,2,1,1) and A® = (3,3,3,2,2,1).

DEFINITION 106. We define the dominance ordering on m-partitions to be such that
A>Q — AW >0 foralli=0,...,m (2.1)

where the order on the r.h.s. is the usual dominance order on partitions defines in .

We will associate arm and leg-lengths to the cells of the diagram of an m-partition.

DEFINITION 107. Because of the circles, we will need two notions of arm-lengths as well as two
notions of leg-lengths. The arm-length a(s) is equal to the number of cells in A strictly to the right
of s (and in the same row). Note that if there is a circle at the end of its row, then it adds one to
the arm-length of s. The arm-length a(s) is exactly as a(s) except that the circle at the end of the
row does not contribute to a(s).

The leg-length €(s) is equal to the number of cells in A strictly below s (and in the same column,).
If at the bottom of its column there are k circles whose fillings are smaller than the filling of the
circle at the end of its row, then they add k to the value of the leg-length of s. If the row does not
end with a circle then none of the circles at the bottom of its column contributes to the leg-length.
The leg-length Z(s) is exactly as U(s) except that the circles at the bottom of the column contribute
to g(s) when there is no circle at the end of the row of s.
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EXAMPLE 108. The values of a(s) and £(s) in each cell of the diagram of A = (2,0,0,2;4,1,1)
are

34]22[10]00]

23 11
24 10

01

00

5

36]22[12]00]

13[01 o
14(00 9

03

02

5

3. Bases of the space of m-symmetric functions

while those of a(s) and {(s) are

We have the following bases, indexed by m-partitions, of the space of m-symmetric functions:

Monomial m-symmetric functions. Let the m-symmetric monomial function m (z) be de-
fined as
— pa — pa
ma(x) ==z 20 mA (Tt 1, Tmg2s - -+ ) = T2 MA(Tit1, Tongo, - - - )

where mx(Zm+1, Tm+2, - - - ) 18 the usual monomial symmetric function in the variables ., 41, Zm+42, - - -
« (0%
m)\(xm-‘rla Tm+2, .- ) = E xml-}—lxm2+2 T
(0%

with the sum being over all derrangements a of (A1, Az, ..., Ayx),0,0,...). It is immediate that
{ma(x)}a is a basis of R,,.

Hall Litlewood m-symmetric functions. Let Ho(71,...,%m;t) = Eq, .. a,,.,08n-m)(T1,- .., 2n5;0,1)
be the non-symmetric Hall-Littlewood polynomial (the non-symmetric Macdonald polynomials only
depend on the variables z1, ..., z,, when ¢ = 0 and the indexing compositions have length at most
m). For simplicity, we will denote the non-symmetric Hall-Littlewood polynomial H,(z;t) instead
of Hy(z1,...,Zm;t). We should note that the polynomial Hg(z;t) can be constructed recursively
as follows. If a is dominant then Hg(z;t) = a®. Otherwise, T;Ho(x;t) = Hg,o(z;t) if a@; > ai41
(with s;@ = (a1...,8i41,84,...,am,)). Since Hy(x;1) = x*, the following ¢-deformation of the
m-symmetric power sum basis

pa(z;t) = Ha(x; t)pa(z) (3.1)
also provides a basis of R,,.

Power-sum m-symmetric functions. Another basis of R,, is provided by the m-symmetric
power sums.
pa(x) ==z . xlm pa(z) = 2% pa(z)
It should be observed that the variables in py, contrary to those of my in my (), start at x; instead
of Zm4+1. In this expression, py(z) is the usual power-sum symmetric function
N

pa(w) = H P ()
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where p,(x) =] + a5 +---.
4. m-Symmetric Macdonald polynomials

To construct Macdonald polynomials in N variables in the symmetric case, we use the t-
symmetrization operator S% on non-symmetric Macdonald polynomials. Similarly, the m-symmetric
Macdonald polynomials in N variables can be obtained by applying the ¢-symmetrization operator
St 4+1,n to non-symmetric Macdonald polynomials. It is worth noting that the findings presented
in this section are once again taken from [18].

DEFINITION 109. The m-symmetric Macdonald polynomials in N variables are defined as
1
P g t) = —— &t E 1 q,t 4.1
A(l‘l; s TIN5 (4, ) UA,N(t) m+1,N WA,N(Il’ s N3 (g, ) ( )

with na,N = (a1, ..., Gm, AN—m .-, A1), where we consider that X\; = 0 if i > £(\) and the normal-
ization constant up n(t) given by

uan(t) = | [JIna(@)]g-a! | NN =m=b)/2 (4.2)
i>0
where ny (i) is the number of entries in A1,...,AN_m that are equal to i (note that i can be equal to
zero), and where
i, = L=0d —¢*) - (1-¢"
(1—q)*

Observe that the normalization constant ua n(t) is chosen such that the coefficient of my, in
Pp(x;q,t) is equal to 1.

REMARK 110. If v is any composition such that v; = a; for i = 1,...,m and such that the
remaining entries rearrange to X\, then
PA(xla s axN1Qat) = d’Y(Qat) an—&-l,N E’Y('rlv o 7xN7Q7t)

for some non-zero coefficient d.(gq,t) € Q(q,t). This is an easy consequence of (??) and (??) (see
for instance Lemma 55 in [A8] for a more precise statement).

In the case where A = (a; (), an m-symmetric Macdonald polynomial is simply a non-symmetric
Macdonald polynomial:

P(u;@)(x;Q7t) = En(xaqvt) (43)
where n = (a1, ..., am, 0N ™).
The m-symmetric Macdonald polynomials are stable with respect to the number of variables

ProproOSITION 111. Let N be the number of variables and suppose that N > m. Then

P s xN—1;q,t) I N>m+L(\
PA(ﬂfl,..-,I'N—lao;Qat){ OA(xl 100 :)therwi:; W

The m-symmetric Macdonald polynomials are the common eigenfunctions of a set of m + 1
commuting operators. First, they are eigenfunctions of the Cherednik operators Y;, fori =1,... ,m:

YiPa(21, ..o xn; o) = e (@ ) Pa(an, . ons g, t)  with el (g t) = gt @D (4.4)

where we recall that 75 (7) is the row in which the é-circle appears in the diagram associated to A.
They are also eigenfunctions of the operator
N
D=Yppu+-+Yy— Y 77
1=m-+1
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which is such that
F o ' m—+£(\) _
DPy(x1,...,xniq,t) =R (. t)Pa(wr, .. onsq,t) with ef(qt) =) g™ ¢ = >
i i=m+1
(4.5)
where the prime indicates that the sum is only over the rows of the diagram of A that do not end

with a circle. We stress that the eigenvalues EX)(Q, t) and €®(g,t) do not depend on the number N

of variables and uniquely determine the m-partition A.

Letting the number of variables to be infinite, the m-symmetric Macdonald polynomials then
form a basis of R,,.

PROPOSITION 112. We have that
PA(IE; q, t) =mp + Z dAQ(qv t) maq (46)
Q<A

Hence, the m-symmetric Macdonald polynomials form a basis of Ry,.

Finally, let
calg,t) = H (1 — g@)t)+Ly (4.7)
sEA
where the product is over all the squares in the diagram of A (not including the circles), and where
the arm and leg-lengths were defined in Definition The integral form of the m-symmetric
Macdonald polynomials is then defined as Ja(z;q,t) = ca(q,t)Pa(z;q,t).

5. Inclusion, evaluation and symmetry

Since an m-symmetric function is also an (m + 1)-symmetric function, it is natural to consider
the inclusion i : R,, = R;4+1,a — a. The inclusion of an m-symmetric Macdonald polynomial
turns out to have a simple formula which will prove fundamental in the next section. The proof,
being quite long and technical, will be relegated to Appendix [71]

THEOREM 113. The inclusion i : Ry, — Ry,41 ts such that

i(Py) =Y tasale,t)Pa
Q

where the sum is over all (m+1)-partitions Q whose diagram is obtained from that of A by adding an
(m+1)-circle at the end of a symmetric row (a row that does not end with a circle). The coefficient
Ya/a(q,t) is given explicitly as

1 — qaa(8)+148a(s)

dam(at) = ]

s€colg,/a

1 _ qﬂ.()(S)-‘rltZQ (S)

where colg,p stands for the set of squares in the diagram of ) that lie in the column of the (m +1)-
circle and in a symmetric row (a row that does not end with a circle), and where the arm and
leg-lengths were defined before Example (with the indices specifying with respect to which m-
partition they are computed).

Now, let Inv(a) be the number of inversions in a:
Inv(e) =#{1 <i<j<mla; <a;}

and let
colnv(a) =m(m —1)/2 —Inv(a) = #{1 <i < j <m|a; > a;}
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As usual, for a partition A, we let n(X) = >,(i — 1)A;. In the case of an m-partition, we will define
n(A) := n(A™), where we recall that A(™ is the partition obtained from the diagram of A by
converting all the circles into squares.

We now give the principal specialization U@(f(CC17$2,...,Z'N)) = f(1,t,...,t""1) of an m-
symmetric Macdonald polynomial.

PROPOSITION 114. For A = (a; \), the principal specialization is given by

— — @ (8)pN—L'(s)
. _ 4n(A)—colnv(a) [N m]t' (1 q t )
ug(Pa(r;q,t)) =t N],! sgo (1 — g )1

where A° stands for the set of cells (including the circles) in the diagram of A, and where the co-arm
and co-leg are given respectively by a’(s) =j — 1 and ¢'(s) =i — 1 for the cell s = (i,7).

PROOF. Define the operator
Un=01-t)1+Tn-1+Tn-oTn-1+ -+ Tm--Tn_1)P,
where ®, was introduced in (??). The action of ¥y on an m-Macdonald polynomial turns out to
be quite simple [18]:

Uy Jp(w;q,t) = ¢~ # SIS lasald 1o (2 g, 1) (5.1)
where AV = (ag, cey @i AU(ag F 1))7 and where the integral form of the m-Macdonald polynomials
was introduced in Section Note that the diagram of A" can be obtained from that of A by
transforming the 1-circle into a square (and then relabeling the remaining circles so that they go
from 1 to m — 1 instead of from 2 to m).

Using (T;f)(1,...,tN ") =tf(1,...,tN " foralli=1,...,N — 1, and for all f(x1,...,2n) €
Q[z1,. .., zy], we easily deduce that
up(Ung) = (L= )L+t 4+ 7 up(g) = (1= """ ug(g)
for all g(z1,...,2n) € Q[z1,...,2N]. Applying ug on both sides of (5.1) and using Ja(z;q,t) =
ca(q, t)Pa(x;q,t), we thus get that
t_#{QSJSm | ajfal} CAD q,t
up(Py) = N A5 (g, 1)
(L—tN=ml)  ea(q,t)
Since AP is an (m — 1)-partition while A is an m-partition, this recursion will allow us to prove the
proposition by induction on m.

In the base case m = 0, we have colnv(a) = 0 and A = (; \) = A(™) = A° can be identified with
A. Hence the proposition simply becomes

ug(Ppo) (5.2)

(1 _ qa'(s)tN—Z'(s))

. _ an(X
up(Px(z3¢,1)) =t . H (1— qa(s)té(s)+1>
SEA

which is the well-known evaluation of a Macdonald polynomial [20].

We will now see that the general case holds. Let

Alat) = TL A=) and dafa.t) = J] (1 g OV
seN° sEA°
First observe that
CA (qa t) CAD (qa t)

ch(at)  (1=1)chalgt)
since the 1-circle contributes in ¢/ (¢,t)/ca(g,t) while not in cyo(g,t)/cao(q,t). Using da(q,t) =
das(g,t) and (5.2)), the proposition will thus hold by induction if we can show that

tn(A)—coInv(a) [N — m]t' 1 — t_#{QSjSm lajSa} 7fn(/\‘:‘)—colnv(a.’) [N —m+ 1]t'
[N]e! (1—=1) (1 —tN=mt) [N]¢!
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where @’ = (as, ..., a,). But this easily follows from n(A) = n(A"),
colnv(a) = colnv(a’) + #{2 <j<m|a; < a1}

and

(1 _ 25N—rn+1)

[N—m+1)!= =)

[N — m]!
(I

In the special case m = N, our evaluation formula for the m-symmetric Macdonald polynomials
can be simplified. It provides a reformulation of the principal specialization of the non-symmetric
Macdonald polynomials which can be found for instance in [23].

COROLLARY 115. The non-symmetric Macdonald polynomials are such that
1— qa(s)tN—Zl(s))

(1 _ qa(s)tf(s)-&-l)

Byt Nl ) = 0+ o) T (
sEN

where we recall that n* is the partition obtained by reordering the entries of .

PROOF. From (4.3)), we have in the case m = N that Pg,p(2;q,t) = Ey(x;q,t) with n =
(a1,...,an). Using Proposition we thus get that

@ N ()
_ a(s $4( s)+1)

Ep(Lt,...,tN"Yq,1) :t”W>+N(N—1)/2—colnv(n> 1 . H
sen°

where we have used the fact that n(A) = n(nt + 1Y) = n(n*) + N(IV — 1)/2 since every row of 7
ends with a circle. It is straightforward to check that

H (1 _ qa'(s)thl'(s)) _ H (1 _ qa(s)thé’(s))

sen° sen°

1— a'(s)thé’(s) 1— a(s)thf'(s) 1— a(s)thf'(s)
H( q ):H( q ) H( q ) (5.4)

(5.3)

Hence

e (1- qa(s)tf(s)-‘rl) (1-— qa(s)té(s)—&-l) - (1— qa(s)té(s)-&-l)

sEN
where o stands for the cells of the diagram of 7 corresponding to circles. Note that when s is in the
position of a circle, we have a(s) = 0 and ¢(s) = 0. Because there is a circle in every row of 7, we
thus obtain

(1 _ qa(s)thfl(s))

H (1= @) [N]:

s€o
Using the previous result in , the corollary follows immediately from and the relation
Inv(n) = N(N —1)/2 — colnv(n). O
We now introduce an evaluation depending on an m-partition. We will see that it satisfies
a natural symmetry property. First, to the m-partition A = (a1,...,am;A), we associate the
composition
A = (ala ceey Amy, )\13 R )‘ZvONimie)

Let w be the minimal length permutation such that w+y, is weakly decreasing. If we forget about
the extra zeroes, we thus have that wy, = A, where we recall that A®) stands for the partition
whose diagram is obtained from that of A by removing all the circles. The evaluation up is then
defined on any m-symmetric function f(z) as

0) 0)
UA (f(xla s ,.TJN)) = f (q_Aw(l)tW(l)_la ) q_Aw(N)tw(N)_l) (55)
Observe that in the case A = (0™;0), up corresponds to the principal evaluation wuy.
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LEMMA 116. If f is an m-symmetric function in N variables then

FOY TN Pa(250,1) = ua(f)Palz;q,t) (5.6)

PROOF. Let 7 = yo. We have that Y, 'E, = 5, 'E,, where we recall that 7; = ¢ ¢!,
Using the fact that f is m-symmetric, we then have from Remark [T10] that
FOT YR PA(zs g, t) = f(YT L Yy D dy (@, )80 40 v By
= d"?(q’ t)an+1,,Nf(1/1_lv SRR YJ\71)E77
= dy (g, t)Sﬁwl,,Nf(ﬁfly e 7ﬁ]§1)En
= f(ﬁl_lv s ,ﬁ]:fl)PA(gﬁ Q7t)
It thus only remains to show that the specialization x; = 7; ! corresponds to the evaluation defined
in (5.5). Let w be the minimal length permutation such that wn = A(®). We have immediately that
N = AS()i). Hence, from the definition of us, we only need to show that r, (i) = w(é). But this is a
consequence of the minimality of w. Indeed, if 7; = 7; and ¢ < j then the minimality of w ensures
that w(i) < w(j), which implies that the circles increase from top to bottom in equal rows. O

The next proposition extends a well-known property of the Macdonald polynomials [20]. Recall
that ug(Pa(x,q,t)) was given explicitly in Proposition m

ProrOSITION 117. Let I5A(1:,q,t) be the normalization of the m-Macdonald polynomials given
by
= PA (33, q, t)
PA('T7 q, t) =
’U/@(PA(LU, q, t))

Then, the following symmetry holds:
UQ(PA) = ’LLA(PQ)

PrOOF. For f(z) and g(z) Laurent polynomials in 1, ..., 2y, it is known [22] that the pairing
[f(2). g(@)] :=up (F(Y )g(2))
is such that [f, g] = [g, f]. From Lemma we thus get
[P,\(ac(N)7 q,t), Po(z(ny, q,t)] = uy (PA(le)PQ(x(N), q, t))
= uq(Pa(z(n), ¢, 1) up (Po (). 4. 1))
From the symmetry of the pairing [-, -], it then follows that
uq(Pa(z(ny, 4, 1) up (Pa(z(ny, ¢ 1)) = ua(Palz(ny, ¢ 1))ug (Pa(z(n), . 1))

which proves the proposition. O

The final result of this section is concerned with the behavior of Pa(x;q,t) when ¢ and ¢t
are sent to ¢~! and t~!. For ¢ € Sy with a reduced decomposition s;, ---s; , we let K, =
K 41 Ki i1, and T, = T;, ---T;,.. We also let w,, = [m,m — 1,...,1] be the longest per-
mutation in the symmetric group S,, (which we consider as the element [m,...,1,m+1,..., N] of
Sx), and denote the inverse of T, by T, .

ProrosiTION 118. We have that
¢ @ py (gt = t(?)n T Ky, T, Pa(z;q,1)
or, equivalently, that
q‘”‘tlm’(“)PA(xmq_l, e X1 T 1, Ty g T = t(rg)TmeA(;v; q,t)
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REMARK 119. The proposition is an extension of a similar result on non-symmetric polynomials
(see Lemma 2.3 a) in [23]) which states that

m
2

VOB (2, ..z g ) = ¢ )Tmen(ml, ce s Tmi g, ) (5.7)

This relation was also proven in a broader context in [1] in connection with permuted-basement
Macdonald polynomials [17]. When the number of variables N is equal to m and A = (n;0),
Proposition becomes (the q powers canceling from the homogeneity of Ey). But when
the number of variables is larger than m and A = (n;0), Proposition s actually stronger than
since it says that for any non-symmetric Macdonald polynomial such that £(n) < m we have

m
2

M, (27t a1qT Bty T, T = # )Tmen(w;q,t)

PROOF OF PROPOSITION [I18] It suffices to prove the result in N variables. Let Y;* be the
Cherednik operator Y; with parameters ¢! and ¢! instead of ¢ and ¢, and similarly for the operator

D*. We thus have from (4.4) and (4.5) that
Y/ Pa(aigt7) = eV (@ ) Palasg Tt i=1m

and
D* Py(z;q~ 't ) = el (g7 t7!) Pa(asqhth)

The main part of the proof thus consists in proving that 1 - - - 7, Ky, T, Pa(z; ¢, t) is an eigenfunc-

tion of Y1*,...,Y and D* with the right eigenvalues. In order to achieve this, we prove that for
any f € R,, we have
Y (Tl-"TmmeTwm)f: (Tl-~-TmmeTwm)Yif i=1,....m (5.8)
and
D~ (7’1 e TmmeTwm) f= (7'1 . ~TmmeTwm) Df (5.9)

where D = Yy, 01 + -+ Yy + Z?’:m“ ti—1. Tt is then immediate that
Y (71 . 'TmmeTwm) Pp(z;5q,t) = (71 . 'TmmeTwm) Y;Pa(z; g, 1)
= 55\1)((]*1,15*1) (71 . ’TmmeTwm) Pp(x;4q,t) i=1,....m
and
D* (71 . ’TmmeTwm) Py(x;q,t) = (71 . ’TmmeTwm) DPy(x;q,t)
=eR@ ) (n - maKe, T,) Palsq.t)

as wanted. The proof of and , which is somewhat technical, is provided in Appendix

We have thus proven that 71 - - 7, K., To, Pa(;q,t) is equal to Py(z;¢71,¢t7!) up to a con-

stant. Hence, we have left to prove that the proportionality constant corresponds to the powers of
¢ and t in the statement of the proposition. In the proof of Lemma 2.3 a) in [23], it is shown that
K, T, z*= @ =(%) z@ | gmaller terms
where the order is the order on compositions defined in Section ??. We thus deduce straightfor-
wardly that the action of 7y - - 7., K, T, on the dominant term my = z*my(Zm41,...,2n) of
Py(z;q71,t71) is such that
T T Ky, T, M = qlaltlnv(“)f(g)m,\ + smaller terms

where the smaller terms are of the form mbmA(me, ...,xy) with b smaller than a. This concludes

the proof of the proposition. O
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6. Orthogonality

Recall that Inv(a) is the number of inversions in a, and let |a| = a1 + - -+ + ay,. The following
scalar product in R,, is defined on the ¢-deformation of the m-symmetric power sums introduced in

B-1):

(pa(x;t), pa(@;t))m = o ¢4t (@ 2y (¢, 1) (6.1)
where o
1-— q>‘1
2x(q,t) = 2 H =~
i=1

with z) = [];5, i" (M) .0y (i)! (recall that n (i) is the number of occurrences of 7 in \). Observe that
when m = 0, this corresponds to the usual Macdonald polynomial scalar product [20].

The main goal of this section is to show that the m-symmetric Macdonald polynomials are

orthogonal with respect to the scalar product (6.1) and to provide the value of the squared norm
| Pa(z;q,t)||?. But before proving the theorem, we need to establish a few results.

DEFINITION 120. We define K,,(x,y) is a reproducing kernel for the scalar product (6.1)):
S

Kn(z,y) = t~(3) Ko (2, y) TN F, (6.2)
where
Hi+jgm(1 - tq_lxiyj)

NFp =
[t jemer (T —a tiy;)

and the superscript (x) indicates that the Hecke algebra operator TLji? acts on the x variables.
We will see later in Proposition that

We first show that the eigenoperators Yi,...,Y,,, D are symmetric with respect to K,,(z,y)
when the number of variables is finite. In order not to disrupt the flow of the presentation, the proof
will be relegated to Appendix

PROPOSITION 121. For x(ny = (21,...,2N) and yny = (Y1, ..,YN), we have that

)/,L‘(I)Km(x(N)a y(N)) = Yi(y)Km(x(N), y(N))

fori=1,...,m, and
DY Ko, (z(ny, yoy) = DY Ko (2 (n0), y(v)

As already mentioned, the eigenvalues of the Y;’s and D do not depend on the number of
variables N. Using Proposition we can thus define the operators Y; and D as their inverse
limits. In other words, the operators Y; : Ry, — Ry, (for i = 1,...,m) and D : R,, — R,, are
defined such that

YiP(ziq.t) = ) (a.)Pa(z;q,t) and  DPy(x;q,t) = X (q,t) Pa(w; q,t)
for all m-partitions A, where EX)(q, t) and e¥ (g, t) are such as defined in (4.4]) and (4.5]) respectively.

We will now see that the previous proposition also holds for Y; and D.

PRrROPOSITION 122. We have that
VO K (@,y) = VYV K (2,y)

fori=1,...,m, and B .
Moreover,
Kom(2,y) =Y ba(q,t)Pa(x50,t)Pa(y; ¢, 1) (6.3)
A
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for certain coefficients bp(q,t) € Q(q,t) that will be given explicitely in Corollary .

PRrROOF. From (??) and the fact that K,,(z,y)/Ko(z,y) only depends on x1,..., 2, we have
that

Km(x’y) = ZdAQ(%t)PA(x;(L t)PQ(y; Q7t)

AQ
for some coefficients daq(g,t). From Proposition [111} we then get in N variables that
Kn(zvy,ywn) = Y, daa(,)Pa(zn; ¢, 8) Palynvy: 4. 1)

L(A)L(QY<N

Therefore, if for instance the action of D) were different from that of D) then there would exist
a coefficient daq(q,t) such that e (q,t)daa(q,t) # €5(q,t)draa(g,t). But then, choosing N large
enough, this would contradict the fact that D®) and D®) have the same action on K, (TN, Y(N))-
Hence, the first part of the proposition holds.

Now, this entails that for all A, we have
61% (q7 t)dAQ (q7 t) = 68 (qa t)dAQ (qa t) and 55\1) (q7 t)dAQ (Q7 t) = 58) (q7 t)dAQ (Q7 t)a 1= 17 cee, M
Given that the eigenvalues as a whole uniquely determine A, we must have that daq(g,t) = 0 if
A #£ Q. Letting ba(q,t) = daa(q,t), we get that (6.3)) also holds. O

The following proposition will be instrumental in the proof that K, (x,y) is a reproducing kernel
for the scalar product (6.1)).

PRrRoOPOSITION 123. We have
Hi+j§m(1 — tziy;) ]

It jcmst (1 = @iy;)

t*(?)Tu()fn) - Zt‘“‘v(“)Ha(x; t)Hq(y;t)

a

where the sum is over all @ € ZZ,.

PROOF. Letting y; — qy; in (6.3)), we obtain

[Litj<m @ —tziy;)

=(7) Ko(z, qy)To.()x)
" it j<man (T — 2iy;5)

1 = Kn(z,qy) = Y _ ba(g,t) Pa(w;0,t) Palqy; 4. )
A
= balg, )™ Pa(x;9,t) Pa(y; ¢, 1)
A

by the homogeneity of Py(y;q,t). Using Pr(21,...,Zm;q,t) = 0 if £(A) > m by Proposition
we get when restricting to m variables that

Hi+j§m(1 — tzy;)
Hi+j§m+1(1 - l’iyj)

= Ko(z, qg) 1)

1 = Z B(a;@) (Q7 t)P(a;@) (‘@ q, t)P(a;@) (g» q, t)
a

where T = (21,...,%,) (and similarly for 7), and where E(Q;@)(q,t) = b (4, t)qlel. Letting ¢ = 0
and using Ky(Z,z) = 1 whenever z = (0,...,0), we then obtain

[Liyjcm (1 —taiy;)
[Litjcmi (1 — 2y,
Note that we have used the fact that P9 (7;0,t) = He(%;t) = Hq(x;t) given that He(z;t) only

depends on 1, ..., Z;,. We thus only need to show that B(a;@)(o, t) = t~v(@) which will be achieved
by using the specialization y; = t*~! in the previous equation. First observe that setting ¢ = 0 in

f(’?)Tu()w)

)] = ba0)(0,t) Ha(: ) Ha(y; t) (6.4)
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Corollary yields Hg(1,t,...,tm=1;t) = tn@")¢nv(@) (4(s) is always larger than zero given that
every row in the diagram of 1 = a ends with a circle), and that

[lijem— xit?) B 1
Hi+j§m+1(1 —z;iti—t) H;T;l(l - ;)
Specializing the variables y in (6.4) thus gives
m 1 1
t@)ﬁ@{ _ }: _
"L (1 —2) [LZ (1 =)

since []/", (1 — x;) is symmetric. Finally, we observe that []/~ (1 — tx;)~! is the generating series

= > sy (0, )@@ (1)
a

of the complete symmetric functions hy,(z1, ..., Zmy) to deduce [20] that
1
e S ICNESEND SRR NCO D DR CID DI ATE
i=1 Ti n A l(N)<m AslON<m aiaten

where P\ (Z;t) is a Hall-Littlewood polynomial, and where the elementary relation Py(Z;t) =
Y a:a+—r Ha(z;t) can be found for instance in [21]. Comparing the previous two equations, we
obtain immediately that E(a;@) (0,t) = t~™v(@) a5 wanted. O

COROLLARY 124. We have
Ko(w,y) =Y q 1 9t7™@) 2, (q,6) ' pa(a; t)pa(yi t)
A

PROOF. Letting y; — ¢~ 'y; in Proposition m yields

(e | Higjem (= tq™  @iy;) el Ty
O = | 2 ettt
i+7<m ? a

since Hq(q y;t) = ¢~ 1% Hy(y; t). The corollary then follows from (??) and the definition of py (z; ).
O

We immediately get that the function K,,(z,y) is a reproducing kernel for the scalar product
61

PROPOSITION 125. Let {fa(z)}a and {ga(x)}a be two bases of Ry,. Then the following two
statements are equivalent.

(1) Km(z,y) = fa(z)ga(y)
A
(2) (fa(z), ga(z))m = daq for all A, Q.

PROOF. Using the bases {p} (z;t)}a and {pa(x;t)}a, where pi (x;1) = ¢l®t™V (@) 2y (¢, t)pa (25 1),
the proof is exactly as the proof of the similar statement in the usual Macdonald polynomial case
[20]. d

Before stating the main theorem of this section, we need to relate the inclusion and the re-
striction. First, it is straightforward to verify that the inclusion i : R,, — R;,41 is such that
18]

i(pa(w;t)) = pro(a;t)
where A = (a,0; \). The restriction r : R, 11 — Ry, which is defined as

T(f) - f(xl, N xm’ 0’ Im+27 :Cm+37 e )|(w7n+27w'm+3)~~ )’_)(w7n+1)17n+2;-~)
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is on the other hand such that [18]

o pa (z3t) if bpy1 =0
r(pa(z;t)) = { 0 otherwise (65)

where Q_ = (b_; u) with b_ = (b1,...,bn).
The following proposition can easily be verified using the basis {pa(x;t)}, of Ry,.

PropPOSITION 126. We have

<i(f)’g>m+l = <f7r(g)>m (66)
forall f € Ry, and all g € Rypyq.

We can now establish the orthogonality and the squared norm of the m-symmetric Macdonald
polynomials.

THEOREM 127. We have
<PA(IE;q,t),PQ(.’L';q7t)>m:0 1fA7éQ
and }
]_ — q&(S)Jrltf(S)

. . _ _la|4Inv(a)
<PA(x,Qat)7 PA(Z,q,t»m =q°'t H l—q“(s)t2(5)+1

EIS]

where the product is over the cells of A (excluding the circles), and where the arm and leg-lengths
were defined before Example [108

EXAMPLE 128. Using A = (2,0,0,2;4,1,1) such as in Ea:ample we get that ||Py(x;q,t)]|?
is given by
(1—@)(1 = )1 — )1 — ¢"t°)(1 — g)(1 — ¢*¢*) (1 — q)(1 — ¢*t")(1 — qt*)(1 — qt?)
(1=t —qt)1 = ?t?)(1 — ¢*t°)(1 — ¢t*)(1 — ¢*t*)(1 — qt)(1 — ¢*t°)(1 — ?)(1 — 1)

PROOF. Proposition and (6.3) immediately imply that the m-symmetric Macdonald poly-
nomials are orthogonal, that is,

(Pa(z59,t), Pa(z;q,t))m =0  if A£Q

We thus only have to prove the formula for the squared norm of an m-Macdonald polynomial.
Let A = (a1,-..,@m—1,am;A) and A= (a1,...am—1; AU {am}). Observe that A can be obtained
from A by discarding the m-circle. The restriction of an m-Macdonald polynomial is given (in the
integral form) by [18]

r(Ja(e,q,t)) = ¢*mt#l1a<and J5 (2, q,1)
which amounts to
r(Pa(x,q,t)) = g*mt#lila<endy (g, 8) Py (z,q,t) (6.7)
where
1 — goa(®)¢la(s)+1

_cilgt)
SOA/[\(qvt) = - H 1— qu(S)th(S)-i-l
seEA

From the definition of the arm and leg-length, we see that a;(s) = ax(s) and £;(s) = £a(s) for all
s € A except those in row /A the row in which the m-circle of A lies. Hence

1— qu(s)tZA(s)+1
Pasala:t) = H 1 — qua®)¢la(s)+1 (6:8)

sErowA/A
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Also observe that the formula for the inclusion in Theorem [T13] gives

~ 1— qu(s)+1tiA(s)
1 —
¢A/A(q’t) - H 1_ qu(s)+1tZA(s) (6.9)

sEcolA/A

where we observe that for s € col, 3 we have that a(s) = a(s).

The proof will proceed by induction on m. In the case m = 0, as was already observed, the
scalar product is the usual Macdonald polynomial scalar product. Using A = A, la| =0, Inv(a) =0,
a(s) = a(s) y £(s) = £(s), we thus have to show that the Macdonald polynomials are such that

1— qa(s)+1t€(s)

(Pr(w,q,1), P(%,q,t))0 = H W

SEA
But this is the well known formula for the norm squared of a Macdonald polynomial [20].

Supposing that the theorem holds for the (m — 1)-symmetric Macdonald polynomials, we will
see that it also holds for the m-symmetric Macdonald polynomials. Let A and A be as before. From
the formula for the inclusion of an (m — 1)-symmetric Macdonald polynomial, we have

Q

where Q is obtained from A by adding an m-circle. Taking 2 = A, we get from the orthogonality of
the m-Macdonald polynomials that

(i(Py (2, ,1), Pa(2, 65 8))m = ¥y 5 (4, ) (Pa(, ¢, ), Pa(2; 1)) m
or equivalently, that
(Pa(@, ;1) Pal@, 0, 0))m = v 5 (0, O)(i(Py (2,4, ), Pal@, 4, 6))m
From Proposition we then obtain
(Pa(@, ;1) Pa(@, 4, 0))m = v 5 (0, )(Pa (2,4, ), 7(Pa(, ¢, ) )1
which amounts, using (6.7)), to
(Pa(2,q,t), Pa(, 4, 1)) = gttt as<amady . (q,0)p, 3 (0, 0)(Py (2,4, 1), P (2,0, 1))m—1

By induction, we thus get

<P (ZE t) P (ZC t)> _ amt{i|ai<am}w—1 ( t) A( t) |é|tInv(¢i) H 1*q&A(S)+1t5A(S)
AT, q,1), AT, q, m — ( A/A q, (pA/A q,t)q 1 _qu(s)teA(s)+1

seA
1— qu(S)HtEA(S)

_ q|a\t1nv(a)¢/:/1[\(q, t)onsala,t) H

_ ai(s)pli(s)+1
sEAl qA()t/\()

Now, aa(s) = a;(s) for all s € A, £x(s) = £5(s) for all s € A\ coly /4 while az(s) = aa(s) and
3(s) = la(s) for all s € A\ row, ;. The squared norm of Py is thus equal to

H (1- qu(s)HtéA(s)) H (1- qu(s)+1tZA(s))

A\col, & s€col, /4
la| Inv(a),,—1 R A/A A/A
gt (4, 8)ep 400
AJA A/A H (1- qa,\(s)té/\(s)-l-l) H (1- qu(s)téA(s)-l-l)
A\rOWA/A sErowA/;\
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Finally, using (3.3) and (6.9)), we obtain
H(l _ q&A(S)J"ltZA(S))

P t), P 1)) = glaltinv(@) €A
(Pa(,q,t), Pa(2,q,t))m = q T[ = e Oem)

SEN
as wanted. O

COROLLARY 129. The operators Y;, fori=1,...,m, and D defined before Proposition are
self-adjoint with respect to the scalar product (-,-),, that is,

Yif,qym = (f,Yig)y fori=1,...,m and (Df,g)m = (f,Dg)m

We can also immediately deduce from Proposition the value of the coefficients b (q,t) in
63).
COROLLARY 130. We have
Km(z,y) =Y ba(q.t)Pa(x50,t)Pa(y; ¢, 1) (6.11)
A

where

- . 1— qa(s)+1té(s)
ba(q,t) ™" = (Pa(x;q,1), Pa(w;q,t))m = g™ H 1= @
A

sE

The function K,,(x,y) is not totally explicit due to the presence of the operator T,, . Using
Proposition this defect in Corollary can be corrected.

ProPOSITION 131. The following Cauchy-type identity holds

- 1 —tx;y; 1 o
K — => t)Pa (25, t)Pa(y; ¢~ 1t 71 12
0(1’, Z/) H 1 _ Tiy; H 1_ Ty a/A(qv ) A(xa q, ) A(y7 q -, ) (6 )
1<i<j<m 1<i<m A

where § stands for the alphabet
g = (qyly s QYms Ym+15 Ym4-25 0 0 )

and where (5)+148
B B i B 1— q& s +1t€(s)
an(@ )" = o007 = [T = S
seEA

Proor. We get from (6.11)) that K,,(z,y) is symmetric in « and y. Therefore, using Tu(,?,)
instead of TS”’ in K,,(z,y), we obtain from (6.11)) that

Iiyjcm(1 = ta" miy)) - =
- = ba(q,t)Pa(x;q,t t(Z)TUSy)PA yiq,t
It jcmar (T —q T iy;) EA: (@ 1) ) { o PA( )]

KO(xvy) [

Applying (71 --- Tmme)(y) on both sides of the equation and using Proposition m thus yields
Hi+j5m(1 - txly])
Hi+j§m+1(1 - xiyj)
The proposition is then immediate after checking that

o | Hoviem( —t2i5) | I 1 tay; I 1
Wimn, — - 1 — xlyl
1<i<m

it jcm (1= 2iy;) \<iciem LT iy

Ko(z, §)KY) l ] = ba(q,t)Pa(w;q,t) [q‘“'tlnv(“)PA(y;qfl,t’l)}
A
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REMARK 132. The previous proposition suggests that there is a natural sesquilinear scalar prod-
uct (-, ) in Ry, such that

a s)+1tf(s)
(Pa(w;0,1), Pa(50,1)" = dra ealq: 1) = dae H — a( PO e (6.13)

and for which the l.h.s. of (6.12)) is a reproducing kernel. Indeed, deﬁmng (-, as
<f(£[', Q7t)7 g(xa q, t)>/ = ti(gl) <f(fE, q, t)v T TmmeTwmg(x; q, t)>m

where h(z;q,t) = h(z;q~ 1, t71) for any h(z;q,t) € R, we have from Proposition that (6.13)
holds. Note that, fori=1,...,m—1, the adjoint of T; with respect to this sesquilinear scalar product
is T; while, as was seen in [18], T; is self-adjoint with respect to the scalar product (-, ).

Working in N = m variables, we obtain a Cauchy-type identity for the non-symmetric Macdon-
ald polynomials. Note that since there is no restriction on m, the result holds for any number of
variables.

PROPOSITION 133. For T = (21,...,&m) and § = (x1,...,Tm), we have
o 1 —tz;y, 1 N 1 .
K@a) | I —2 | Il +—1|= D @B @ q.t)Ey ("t (6.14)
2L 1 —-my; 21—y
1<i<j<m J 1<i<m nEZgO
where ~
1— q&(S)Jrltf(S)
-1
ap(g,t)”" = H 1 — e+l +1
sEn

PROOF. From Proposition we have that Pz (%(m);¢q,t) = 0 if A # (. Moreover, when
A =0, we get from that Pla,0)(2(m);¢,t) = Ey(Tomy;q,t) for n =a = (a1,...,an). The result
is then immediate from Corollary since the diagram of the composition 7 is equal to that of the
m-partition (a;0), and since a(s) = a(s) + 1 given that every row of the diagram of n ends with a
circle. O

REMARK 134. A different Cauchy-type identity for the non-symmetric Macdonald polynomials
was provided in [24]. For T = (x1,...,%m) and § = (1, ...,Zm), it reads in our language as

Ko@wn) | [ 28| [ ——| = 3 a@0B)@a.0E,Ga L) (6.15)

1—tx;y; 1—tx;y;
1<j<i<m iY; 1<i<m iYi neLY,

We will now see that (6.14) and (6.15) are essentially equivalent by recovering (6.14]) from (6.15).

First observe that
ay(q ' t7) = t71"ay (g, 1)
and
E,(tz; gt =t E, (7,471, t7Y)
We also have using (?7) that

Ko(f,y>|(w(qﬂrl)—ZZA L) ZZA ¢.t) " pa(aZ/t)pr(§) = Ko(qz/t,7)

Letting (q,t) — (¢~ %, t71) in 5) followed by x; — tx;, for 1=1,...,m, thus yields
_ 1 —twy; 1 _ | .
Ko(ql’,y) H 17 H 3 .|~ Z aﬁ(qat)En(m’q 7t )Eﬂ(y’Qat)
L4 — T;Y; 21—z, -
1<j<i<m 1<i<m nGZZO
Interchanging T and § then leads to (6.14]).
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Finally, we get from Proposition and Theorem [I27] that the m-symmetric Macdonald poly-
nomials also have and orthogonality /unitriangularity characterization akin to that of the usual
Macdonald polynomials.

PROPOSITION 135. The m-symmetric Macdonald polynomials form the unique basis { Px(x;q,t)} o
of Ry, such that

(1) (Pa(x;q,t), Pa(x;q,t))m =0 if A #Q  (orthogonality)

(2) Pp(x;q,t) =mp + Z dra(q,t)mgo  (unitriangularity)
Q<A

for certain coefficients dpa(q,t) € Q(g,t). We recall that the dominance order on m-partitions was

defined in .

7. Appendix

7.1. Proof of Theorem [113l

PrOOF. We will prove the result in N variables. The case N — oo will then be immediate.
Recall that

1
Pp(xy,...,2N5q,t) = msfnJrl,NEnA,N(Ih S XN t)

First consider the case A = (a;bN~™) for any b > 0. The case b = 0 was proven in [18] (the proof
is essentially the same as the one we will provide in the case b > 0) so we can assume that b > 0.
In that case, there are two possibilities for the (m + 1)-circle. It can be added in the uppermost
row of size b to give A> = (a,b;6V~™71) or in a row of size 0 to give A° = (a,0;6V ™). But
from Proposition we have that Ppo(z;¢,t) =0 in N variables given that b > 0 by assumption.
The only possibility is thus A’. Observe that in this case, all the rows above that of the (m + 1)-
circle in A end with a circle and thus do not contribute to s /A~ As such, we need to show that
i(Pp) = Phs.

Recall from (??) that S}, ) v = S}, o yRmi1.n. Using na n = (a1, ..., am, 0¥ ~™), we obtain

from (?7?) that
Rm—}-l,NEnA’N(xla cee 7xN;Q7t) = (1 +t+ t2 +oee +tN7m71)E77A,N(x17 s 7:CN;q’t)
Hence, in order to prove that i(Pa) = Pp», we need to show that
1 ¢ 2 N—m—1 1 ¢
m8m+2,zv(1 R e e s e A U mSerz,NEnAb,N
But this is easily seen to be the case given that na, v = s y and

(1+t++tN7m71) (1+t71+”.+t7(N7m71)) t(me)(mefl)/Z 1

up v (1) - up () tN=m=D)(N=m=2)/2 ~ 4y, (f)

We now consider the general case. We let na n = (a1,--., Gm; AN—m,-- -, A2, A1), where we
consider that Ay_,, can be equal to 0. Observe that we can assume that Ay_,, < A; since the case
AN_m = A1 corresponds to the case A = (a; bV =), which was already established.

We will proceed by induction on N —m. The theorem is readily seen to hold when N =m +1
since in this case A can only be of the form A = (a;b), which has been seen to hold. In the following,
we will denote by A\ b the partition obtained by removing one row of length b from A (similarly
A\ {b, ¢} will stand for the partition obtained by removing the entries b and ¢ from ).
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We will first show that the theorem holds for the (m + 1)-partitions Q = (a,b; A \ b) such that
b # AN_m. For simplicity, we will let s = Ay_,, and use the notation A* = (a,s; A\ s) and
QF = (a,s,b; A\ {b, s}). By induction on N —m, we have that
1

mst +2,N By Z¢A/A+ )St 13 NEnan (7.1)

)

Our goal is to show that
1
St nEan| = 7.2
un (@) o N Ea| Yot /a+ (7.2)
This will prove our claim since ¥g+/p+ = ¥q,a given that the only difference between AT and A is
the extra (m 4 1)-circle in row s (which does no affect 1+ /4+).
Using Ry41,8 = 1+ D1 Rimy2, N, We get
Sfﬁ+1,N = SZI+Q,NRm+17N = Srtn+2,N + S?iz+2,NTm+1Rm+2,N (7-3)

Now, when acting on E,, ., the operator an+27N will produce a linear combination of E,’s such
that the first m + 1 entries of v are a1, ..., am, s with s # b. This implies that the term S}, ,, y in
the r.h.s. of (7.3) will not contribute to the coefficient ¢q,5. Therefore, using
StiroNTmi1Rmy2 N = Lo NSpis NTmi1Rmt2, N
= £m+2,NTm+1an+3,NRm+2,N = £m+27NTm+1an+2,N
we obtain from (|7.3) that
1
UA N(t)

Given that 1y = 1a+ n, we then obtain

1

Wﬁm-&-lNTm-&-lS m+2,NEna n ’

st ‘ -
m—+1 N AN
+ Po UA,N

Pq

1
I
UA,N(t) m+1,N

From (7.1)), we then have

1 1 UA+ N(t)
S ‘ N ion T 1St g E ‘
Uy, (t) m-+1, N NA,N z:wA/AJr ( ) UA,N(t) m+2,N +19m+43,N~na, N Po

Now, we observe that the only way to generate P is to act with T},41 on S, +3,nEn,

1

7St E
UA+,N( ) m+2, NNy + N>

= 7UA+’N(t)£ +2,N Tyt (

FE
MNP, up N ()

Pq

.y (otherwise

the resulting indexing composition will not have a b in the (m + 1)-th position). From (‘7")7 we see
that

Trnt1Smas N Engs y = SmasnTms1Engy o = tSpis NEng x + A4, )80 45 N B
for some coefficient A(q,t). This yields

1 up+ N (t) ug n(t) t
7815 E = 2 ) 7815 E
uA,N(t) m~+1,N=NA,N Po ¢Q+/A+ UA’N(t) UQ-%—JV(t) m—+2,N ’U/Q’N(t) m~+3,N=na,N

up+ N (t) ug n(t) ( t
up,N(t) uor n(t) \ua,n

Pq

= Yo+ A+ @ Spt2,nEne, N)

Pq
UAtN(t) UQ7N(t)
up,N(t) ug+ n(t)
The result thus holds since it is not too difficult to show that
upr+ N (t) ug N (t)
up,N(t) ug+ (1)
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given that

upe () =11y ugn(t) VT2l
= N3 ' and = |
uan(t) t (714! ug+ n(t) [n = 1]1/!
with n the number of occurrences of s in Ay_p, ..., A1.

Finally, we have to consider the case where the (m + 1)-partition Q = (a,b; A \ b) is such that
b= AN_m. This case turns out to be somewhat more complicated. This time, we use the relation

Rt+1,N = Rmt+1,v—1(1 +Tn-1) = Ronp1,n—2TnN-1
to get from (?7) that
Stin =8 ion(Rmsin-1(1+Tn-1) — Rugr,n—2Tn-1)
=L o nSmran-1Rmit N1 (0 +Tn1) = Lo NLrio N 1Smian—aRmi1n—2TN 1
=L onShiiN1t E;n+2,Nan+1,N—1TN—1 - Elm+2,N£/m+2,N—1an+1,N—2TN—1 (7.4)

We first establish the result when A\; = Ao. In this case, Ty 1 E =tE which implies from

A, N TIA,N
the previous equation that
1L (1+1) ¢ t :
m‘gm-i-l,N D) 2 NS, N—1Ens x — i) Lo nLonto N-1Smi1,N—2Ens n
(7.5)
In order to use induction, we will need the relations
t t 2 ot t 2
q)quJrQ,N = Serl}Nfl(I)q and q)q8m+3,N = Serl,NfQ(I)q (7.6)

where ®,, which was defined in (??), is such that ®,E, = =t""VNE,, . with A= —1a:0\ \)
and 7 the row in the diagram of n; , corresponding to the entry A\; — 1 (the highest row of size
A1 — 1 in the diagram of 73 ,;). The first term in the r.h.s. of (7.5) thus gives

(1+1¢) B

TN (1t
m+2 N81t—n+1 N—1E77A N — #
uA,N(t) ) 3 s

’LLA’N(t)

/ t
Lono NPgSmya,nEny

Hence, by induction on N — m (using a similar expression as in (7.1)) we have that the terms
Shi3nEny  that can appear in S}, yEy. . aresuch that A = (A —1,a, A\i; A\ {A\1, \i}). Letting
A = (@, \i; A\ i), we observe using L) 5 yS) 1oy 1 = Shyyo y that

/ t ! t _ 4r—N ot
£m+2,N(I)qu+3,NEnAYN - ‘Cm+2,NSm+2,N—1(I)qEnA,N =t Sm+2,NE77A,N

since the row in the diagram of nz , corresponding to the entry A; — 1 is the same as that of the
entry A1 — 1 in the diagram of 73 ,. Therefore, focusing on the term 2, we have

(1+1¢)

ui v (1) ug ~(t)
St E ‘ = (14t —oN L 2N
uA,N(t) m+2,N“m+1,N—1-1MA,N Po ( + )wQ/A

ua,N(t) ug n(t)

where Q = (A1 —1,a,5; A\ {\1,5}). Doing a similar analysis for the second term in the rhs of (7.5)),
we obtain that

t ’ uf\,N(t) uq, N (t)

N o NSt N E — g s
U/A,N(t) m+2,N~m+2,N—-1“m+1,N—-1-nMA,N Po Q/AUA,N(t) UQ,N(t)

with A = Ay — 1, A — La; A\ {1, Ao}) and Q = (A\y — 1, A; — 1@, 53 A\ {1, A2}). We thus have to
prove that

“A,N(ﬂ uq, N (t)
un, N (1) ug y(t)

ui v () ug N (t)

up,n (1) ug 5 (t)

(L+8)va, 4 —tha, i = o/ (7.7)
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Since s < A1 = A2 by assumption, we have that

uq, N (t) [n— 1]y “]\,N(t) tN_m_Q[”]l/t! UA,N(t) tN_m_3[”]1/t!
- - : _ 7 = (7.8)
up,n(t) N nf T ug N (8) [ — 1]y 4! ug (1) [n— 1]y 4!
with n the number of occurrences of s in Ay_y, ..., A1. It thus remains to prove that
1+1¢ 1
( ; )1/10/[\ — 7¥a/i = Ya/a (7.9)

Comparing 9, /i Y /R and g /a, we get that their factors are identical except in the rows corre-
sponding to A\; and Ay in A (they are consecutive rows, with that of Ay just above that of A1). The
squares in those rows contribute

1— A1+1t£—1 1— /\1+1t€—1 1— )\1+1t€—2
i R T R G )(1—q )
1— q 1+1t€ (1 _ q)\l—i-lté) (1 _ q)\l—i-lté—l)
respectively to 1/’(2/[\7 wfz/]\ and g/, where £ is the leg-length of the square in the row of A in the
diagram of Q. We therefore get that (7.9) holds given that

(1 —|—t) (1 _ q)\l-i—lté—l) 1 1— qA1+1té—2 (1 _ q>\1+1t€—1) (1 _ q/\1+1t£—2)

t (1 — ght1gh) t Lo gmtl (1= gl (1 — gatiglL)

Finally, we need to prove the result when A\; > As. In this case,

(t—1)
IN—1Epy xn =1Esy y(nan) T WEWA,N

where 7 is the difference between the row of Ay and that of A; in the diagram associated to na .
Using (7.4)), we obtain this time
1 t (t — q)\1—/\2t7‘) /

t
WSWVFLNEUA,N - UA N(t)(l — q)\lf)\Zt"’)£m+2’N8m+1’N71EnA’N

UAN
t—1) ¢
- U N(t)(l — q)\l_A2tT)‘C;n+2,N ;71+2,N718m+1,N72E?7A,N

t /

+ (D) £m+2,NS’fn+1,N—1ESN—1("7A,N)

t t
- mﬁfﬁl‘i‘Q,Nﬁ;ﬂ-ﬁ-Q,N—ISm—‘rl,N—QESN—l(T]A,N)

Using (7.6) and doing a similar analysis as in the A\; = Ay case, we obtain by induction that

(t — ghr—22¢m) /o st 5 ‘ o (t=ghren) o uy v ug ()
up, N ()(1 = ghr—der) TMABNTmALNATIAN o T (1 — ghahegr) T Ay (8) ug o (8)

and that

(t-1) / (=1 Cup N () ug v (1)

_ / ' Epx|, =

O q)\17>\2tr>£m+2,N£m+2,N71$m+1,N71 N | o (1— ghi—atr) Q/A ur N () UQ,N(t)
Ijetting I = (A2 — La; 2\ \a), [ = (A2 —1,a,8 A\ A2), r= (A =1, A —1a; A\ {A1, A2}), and
I = (A1 —1,A2 — 1,a,s; A\ {A\1, \2}) as well as making use of the relation (see Lemma 55 in [18])

St E B (1 _ q)\lf/\gtr+1)
m+1,Nsnv_1(na,n) — t(l—q)‘l_)%t") naQ,N

we get similarly by induction that

t St E C(=gh ety e N () ug (1)
7UA,N(t) m+2,NOmA1LN=15sn 1 (N | (1 — gri=Petr) FS/FUA,N(t) up (1)
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and

l / i t (1 — q)\li/\ztwrl) up N(t> uQ N(t)
——— Lo nLmo N—1Sm+1 N-2BEsy 1man) == P /P :
up, N (t) ’ ’ ’ ey (1—ghi=2atr) "1 Muy y(t) upa y(2)
We thus have to show that
(t—gh 2t uyyDuon(t) (-1 e s ui N (1) uo,n (¢)
(1—gh2etr) " R up () ug y () (1= M 22t7) " Ry y (1) ug i (8)
N (1 _ q>\1*/\2tr+1) o uf‘,N(t) UQ,N(t) B (1 _ q)\lf)\th‘Jrl) o uﬁN(t) UQ,N(t) _ ¢Q A
(1-— q/\17>\2tr) rs/T UA,N(t) uf‘s’N(t) (1— qu,)\ztr) s /T UA,N(t) uf‘s7N(t) /
(7.10)

Since s < Ao, the only case where €, I or I'* may not exist (for the lack of an extra s in A) is the
case A = (a; A1, A2) in N = m + 2 variables. Let us consider it first. Using ([7.8)) with n = 1, as well
as d’(z/ix = ¢fs/f = dzfsﬂa =01in (3.9), we have to prove in this case that

(t —gh—et)

m#f@/;\ = Ya/A
But this is immediate given that g /A= 1 and
1— ghi—degr—1
Yo/ = T e

As previously mentioned, the remaining cases will involve all terms: Q, Q, I's and T%. Using
(7.8) together with

up y (t) T2 ]! ug (1) _ tN=m=3(n]y !

= and =
uf‘s7N(t) [n—1]4-1! ufS,N(t) [n— 1]%'
in (3.9), we have to prove this time that
(t =) (1) (gt (g

t(1— qu—Aztr) Q/[\_tz(l _ qu—AQtr)wQ/[\"" 11— q)‘1_>‘2tr) Ps /0 2(1 - q>‘1_>‘2tr) 1/)f~s/f~ = ¢Q/A

Comparing d’()/[\a ¢()/Z\v wfs/fv 1/}1:5/1:, and ¥/, we get that their factors are identical except in
the rows corresponding to A1 and Ay in 2/A. The squares in those rows contribute
1— q)\2+1tl71 1 _ qA1+1t’l“+lfl (1 _ q)\1+1t7“+l71) (1 _ q)\2+1tl71)
1= patig ’ 1= putigrel and (1 — gntip+l) (1 — gatigl)

respectively to 1/’0//17 @[’Q/I\a 1/st/f, 77/11:5/1:, and ¥q/p, where [ is the leg-length of the square in the
row of Ao in the diagram of €2, and where we recall that r is the difference between the row of Ao
and that of A in the diagram associated to A (or, equivalently, in the diagram associated to 7 n).
The result then follows from the relation
(t _ q)‘l_’\ztr) (1 _ q>\2+1tl—1) (t _ 1)
t(l _ qkl—)\gtr) (1 _ q)\2+1tl) t2(1 _ qkl—Agtr)

N (1 _ q)\l—)\gtr+1) (1 _ q)\1+1t7"+l—1) B (1 _ q/\1—/\2t7"+1) _ (1 _ q)\1+1t7“+l—1) (1 _ q)\2+1tl—1)

t(l _ q)qf)\gtT) (1 _ q}\1+1t’l“+l) t2(1 _ quf)\th) (1 _ q}\lJrltT‘Jrl) (1 _ q)\2+1tl)

which can straightforwardly be checked using

(t—1) (1 —gh2grth) 1

7t2(1 _ qz\l—kgtr) - t2(1 _ q)\l—/\gt’l') R
and then
(L—ghetm ) (L—ghther+=h) 1 el (1—t)(1 =gt
t(l _ q)\lf)\ztr) (]_ _ q/\1+1tr+l) t (]_ _ q/\lf)\ztr)(]_ _ q/\1+1tr+l)
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followed by

(t _ q)\l—)\Qt’r‘) (1 _ q)\g—‘rltl—l)
t(1—ghretr) (1= gt

(1—t)(1 =g
(1 _ q/\1*>\2tr)(1 _ q/\1+1tr+l)
(1 — ghHrH=1) (1 = getig—1)
=gty (1= gatid)

_|_ q)\l—)\gtr—l

O

7.2. Proof of Proposition Let H,,(t) be the Hecke algebra generated by 17, ..., Tyn—1.
We define the linear antihomomorphism ¢, : Hp,(t) — Hy,(t) to be such that

om(T;) = Thn—s for 1=1,...,m—1

For any permutation o € S,,, we thus have that ¢,,(T,) = T5 for a certain permutation & € S,, of
the same length as . Hence

em(Tw,) = To,, (7.11)

given that w,, is the unique longest permutation in S,,. Moreover, it is easy to see that ¢, o @, is
the identity and that

om(Ti) = T (7.12)
LEMMA 136. Letw), ; =[1,m,m—1,...,2] be the longest permutation in the symmetric group
on {2,...,m}. Then, for alli € {1,...,m}, we have
Twm = i,1~--T1 -Tw;n_l QOm(Tszfl) (713)
and
‘Pm(Twm) = om(Ty---Tim1) - ‘Pm(Twﬁn,l) T T, (7.14)

Proor. It suffices to prove (7.13) since ([7.11]) can be obtained from (7.13]) by taking the inverse
and then applying ¢,,. Since wy, is of length m(m — 1)/2, (7.13)) will hold if we can prove that

Wi = 81+ 810181 S
for i =1,...,m. The result is well known when ¢ = 1. For an arbitrary 7, we use the simple relation
S¢p W, Sm—¢ = Wm

successively (for £ =1,...,i—1) on the i = 1 case

1
Wm = Wy 151" Sm—1

O
For simplicity, we now define
_ m\ — H‘—i— i <mn (]‘ - tqilxiyj)
Eon(w,y) = G T Ky (2,y) = Kolw,y) | 72 (7.15)
" wm Hi+j§m+1(1 —q tzy;)
LEMMA 137. Fori=1,...,m — 1, we have
T Koy, yvy) = T3 Ko (20, Uv)) (7.16)
Hence
T Ko (2 (), yvy) = 0 (Téy)) Kn(z(n), () (7.17)

for any o € S,,.
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ProoFr. We have that f(m(a:(N),y(N)) is symmetric in x; and 2,11 and in y;,—; and Ypm_i+1
except for the term
(1 —tq ' iym—i)
(1 =q¢'ziym—it1)(1 — ¢ ' Tit1Ym—i) (1 — ¢ 2iym—i)
We thus only have to prove that Ti(i)B = TSL-B, or equivalently, that (Ti(m) —t)B = (Ty(,f’zl —t)B.
The lemma thus holds after checking that

B =

t)B — q_l(t‘ri - xiJrl)(tymfi - ymfiJrl)

(1 —t)B = (1,

[

|
PRrROOF OF PROPOSITION [I21] Recall that our claim is that
YO Ko (@ vy yny) = Y Ko@), yov)) (7.18)
fori=1,...,m, and that
DY Ko, (z(ny, y(y) = DY Ko (2 (30), y(v) (7.19)
For the remainder of the section, we will consider that x = (x1,...,2x5) and y = (y1, ... ,yN) We
first prove . For simplicity, we write Y; =a-b-w-c, wherea=T;...T,,_1, b= I

and ¢ = T1 TZ 1 (note that if i = 1 then ¢ = 1). We will also let d =T, and use a for a(“”) and
a for ) (and similarly for b, ¢, d and w). Using this notation, (7.18]) translates into

abwced Ky (z,y) =abwed Ky, (z,y)

But, since d K, (z,y) = oW (d)K,,(2,y) = d K,,(z,y) from and (7.17), this amounts to
abwedK,,(z,y) =abwed K,,(z,y)

which we can rewrite as B o
K (r,y) =abweddecoba Ky, (x,y)

where a stands for the inverse of a (and similarly for the other terms). From Lemma this

becomes
Kp(z,y) = abwedoY (@) dew b K, (z,y)

It was proven in [8] that @b K, (v, y) = @b K,,(z,y) (see the symmetry of G(x,y) in (140) therein).
Therefore, we have to prove, using Lemma that

Kp(z,y) = abwed oW (@) @bde K, (z,y)
=abwedY @ wbp (e)d Ky (,y)
= abwedpy (@bl (€)d K (z,y)
) )

since, as we have seen before, d K,,(z,y) = ¢¥)(d
The equality will thus follow if we can prove that

abwedp,(@)obp,(€)d=1

where 1 stands for the identity operator. Now, we use Lemma to get d = cepp(a) and
d = @m(d) = m(c)pm(€)a, where e = T,,, . This yields

abwcdpn(a )Wb@m( )d —abwc(ceapm( )) om(a )Wbsom( )(@m(c)@m(é)a)
=abwewby,(€)a (7.20)

Finally, we have that ¢,,(€) = (T, ) =T, _, = & since ¢, changes the set {T%,...T},_1} to

m Wit
{T1,...,Tyy_2}. Using b’ = & b and e’ = éw, we obtain that
abwewbpn(6)a=abwevéba=abweewba =

as wanted.
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For (7.19)), we have to prove that

DOTOR, (x,y) = DWTWEK

Kom(2,y)
Since T.\*) commutes with D and T(y)K (x,y) = T(m)K (z,y) from and (7.17), we only

m

need to show that

TS

D@ K, (x,y) = DY K,,(x,y)

Now, D) commutes with 5:,5?1,N and
. _ _
SW(L;c)LNKm(x,y) x K (z,y)

since I_(m(ac(N),y(N)) is symmetric in Z;,41,...,2x (and similarly when x is replaced by y). It is
thus equivalent to show that

51 DO K, (x,y) = S'Y \DWEK,,(z,y)

From the definition of D, the result will thus follow if we can show that

S NV Kon(a,y) = 8,55%21 NV Ko (,y)
fori = m+1,...,N. Using S (+1N T® = tS v and ﬂ(m)Km(x,y) =t 'K, (z,y) for j =
m+1,...,N, we obtaln in those cases that (up to a power of t)

Srrgi)l NY( )K (z,y) o 32?1,1\/”(1)1_11@) e 'Trsf)[_(m(% Y)
Using the same relation with x replaced by y, we thus have left to prove that
st N AT L T@ R (2 ) = Sfi"fl,Nw(y)Tfy) L TWER, (2, y)

But this was proven in [8] (see the symmetry of L(z,y) in (154) therein). O

7.3. Missing piece in the proof of Proposition We will prove the following lemma
which was needed in the proof of Proposition

LEMMA 138. For any f € Ry, in N variables, we have
Vi (o mmKe, To,) f= (Ko, Lo, ) Ysf  i=1,....m (7.21)

and

D~ (Tl T TmmeTwm) f= (Tl coe TmmeTwm) Df (722)
where D =Y, 1+ + Yy + Zf\]:mH i1,

PrOOF. We first prove (7.21)) in the case i = 1. Observe that Y; and 7y - -7, K, T.,,, both
preserve R,,. We can thus prove instead that

Yl* (Tl te TmmeTwm) .f = Kam+1 (Tl te TnLmeTwm) Y/1.]0

where o1 =[1,...,m,N,N —1,...,m+1]. Hence, using the expression for Y, we need to prove
that
T* . 'T]tlflstl s 81T TmmeTwmf = Kgm+1T1 s TmmeTmeflsl e SN,1TN,1 s Tlf

where we use s; = K; ;41 for simplicity. Using K., T.,,, = T} K., and multiplying both sides by
T --T¥, this is equivalent to proving that

m—1"

* * * —1 A T
Tm"'TNflstl"'SlTQ TmmeTwmf K0m+1 'TmTwm_lemTl 81...SN,1TN,1"'T1f

where we used T, =Ty_1---ThT,,, . Letting f' =T,,_1---Tif, we thus have to prove that

Wm—1
* * 2 / * —1 B A /
Tm"'TN—lsN—l "'517-2"'7—mmeTwm,1f :KUerlTl TmTwm 1me7—1 S1 ---SN—lTN—l Tmf
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for f’ € R,,. Owing to the relations meTl_l = Tnlewm and Sy_1-++81To " T = T1*** Tin—1SN—1"" " S1,

we can extract 7 - - - T,,_1 to the left on both sides of the equation. We thus have left to prove that

T "'T]’:f—lstl"'SlemTwm_lf/ = Kc, T mesl ...SN,1TN,1 Tmfl

m m+1 Wm 1

With the help of s,,—1--- 51Ky, = Ky, 51 Sm—1 = Ko, , and me_lfwm_l = ijilem_l,
this now amounts to showing that

* * !/ A 'R !
Tr T 18n—1 Smf = KoporSm - SN2TN_1- Tonf

Letting oy, = [1,...,m — 1, N, N — 1,...,m] and using the fact that f’ € R,,, this is seen to hold
since

T%...T1§713N71...8mf’ :Tr’;...T]’:FlKamf’ :KD'mTNfl"'Tmf/

T !
= KU,"LJrISm - SNflTNfl e Tmf

We now consider the general case in (|7.21]). From the relation
Y, =Ty TaW Ty - Ty
we have to show that, for 1 < i < m, we have

(T*—l Tf}/l*TfT:(_l)Tl -~-TmmeTwm =T ~-~TmmeTwm (T’i—l T1}/1T1 "'Ti—l)

3

But this is indeed the case since using the Y; case and T} K, 1., = K., T, T; foralli =1,...,m,
we get that

(Try - TIYPTY - T )T Ky Ty, = Ty YY1 T K, T, Ty - Ty
= Ti*—l . 'T{(Tl .. ~7—mmeTwm}71T1 . 'E—l
=71... K, T, (i1 - T Ty - Tiq)

Finally, proceeding as in the proof of (7.19)), in order to prove (|7.22]) we only have to show that
(Svngrl,N)*YntLJrlTl T TmmeTwmf =T1" TmmeTmefn+1,NYm+1f
on any f € R,,. This is equivalent to proving that

¢ = = ¢ ¥,
Kam+1 (Sm-‘rl,N)*Y’ﬂ*l-‘rlTl T K, T, [ =110 T’fﬂmeTmem-‘,-l,NK”"rlf

since 7y - -+ T Ko, T,y St N Y1 preserves Ry,. Using (St 4 y)* T =t~ 18],y y)  and T f =
t~'f for i =m+1,..., N, this thus amounts to showing that

t — 1k Tk T
St nEop i Sn-1-sim I Tt Ky, To,, f

=7 K, T, St T, Tyt (7.23)
— 1...Tm W L wim, m-‘rl,N m 17'1 Sl...sm

where we have used the relation Ko, ., (S}, 11 x)* = S} 11 v Ko, We will now see that (7.23)
holds. We first use K, ., sy—1-""Smy1 = Ko, ,, to obtain

t — 1% Tk T
S7n+1,NKUm+18N—1 81T Tl T TmTl U TmmeTwmf

_ ot — 1 Tk
= m+1,NK<7m+25m sy AT TR T K, T, f

= :n+17NSm.SlT1_1Tf.T;’LTl ...TmKWnLTwan
since K,,,.,f = f. We then observe that
Ty TrTS Kepoy = Koo T Tl = Koy Ty T -+ Th
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since Sy ++ -+ S1Wh, = WmSm - S1, where w), = [L,m,m —1,...,2,m +1,...,N]. But then (7.23)
holds given that
t — 1% Tk T
Sm+1,Nsm coesyry AT TN T Ky, T, f
_ ot — 1 Tk ik
=Sy, NSmo sty Iy - TRTE 1 T K, f
_ ot — 1 Tk ik
— Sm+1,NSm e 817-1 Tl . .T’I’TLTwanl .o .Tmme+151 . e Smf
t -1 75
= m+17NKw1nTm+1Tw7nTm U T1T2 T TerlS] U Smf

A —1
et NEw, 71 T T, T - Thy “s1 - S f

T t -1
=71 T K T St T - Tiry Y1+ s f
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CHAPTER 5

Symmetric functions in superspace and bisymmetric
functions

1. Ring of symmetric functions ins superspace

In this section we will introduce the basics notions concerning symmetric functions in superspace.
Most of this section is taken from [§].

Consider the ring Q[z; 0] = Q[z1, z2,...,2N,01,02,...,0N], where the variables obey the rela-
tions

Tilj = TjTq, Gixj = 33]‘91', 919] = —9]‘9,‘
We can define an action of Sy on Q|x;0] as follows, given a permutation o € Sy and f € Q[z; 6]
the action of o on f is

Kof = KOKDf = F(@50)s-- s Ton)s Oo(1)s - - - Oo(n)

The space of symmetric polynomials in superspace in N variables is the space of polyno-
mials in Q[z; 0] that are invariant under this action, i.e.

Ay =Q[z; 019 ={f € Q[z;0] | Ky - f=f foralloe Sy}
EXAMPLE 139. Here are two examples of symmetric functions in superspace when N = 2:

(1) f(x1,22,601,02) = 0123 + Oza7,
(2) f(z1,22,01,02) = 0165 (af — 23),

The space of symmetric polynomials in superspace has a doubly graded structure given by
Ay = P An(nm)
n,m>0

where Ay (n|m) is the space of homogeneous symmetric polynomials in superspace of degree n in
the x variables and degree m in the 0 variables. Since 6;0; = 0, the degree m in the 6 variables
implies that each term of the symmetric polynomial in superspace has exactly m distinct 6;’s.

As we will now see, as a vector space, the ring of symmetric functions in superspace is equivalent
to the ring of bisymmetric functions. This relationship will prove crucial as it will allow us to disre-
gard the 6 variables to work with a single family of variables. The theory will thus be reformulated
in a more tractable way, enabling us to use all the machinery introduced in the previous chapters
to establish properties of the Macdonald polynoials in superspace.

DEFINITION 140. We will be concerned with the ring of bisymmetric functions
'%m,N = Q[l‘l, .. ,xN]GmX6m+1,N'

Bases of % n are naturally indezed by pairs of partitions (A, 1), where X (resp. p) is a partition
whose length is at most m (resp. N —m). We will adopt the language of symmetric functions in
superspace [8] and consider the bijection

) — (A% A°) = (A4 0m; 1)
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where 6y, = (m—1,m —2,...,0). The superpartition A = (A*, A®) thus consists of a partition A®
with m non-repeated entries (one of them possibly equal to zero) and a usual partition A° whose
length is not larger than N —m.

REMARK 141. Since the variables 8°s satisfy anticommutating relations, any polynomial in su-
perspace F(x;0) can be written as

F(z;0) = > 0;Ar () fr(x) (1.1)
IC{1,....N};|I|=m

where, for I = {i1,... im} with i1 < iy < -+ < iy, we have O = 0;, ---0; . Observe that by
symmetry a polynomial in superspace is completely determined by its coefficient fi1 . my(v), and
moreover, that f(1, . my(x) needs to be bisymmetric.

EXAMPLE 142. (1) If F(z1,22,01,0:) = 0102(xf — 23) = 0102(21 — 20) (23 + 2220 + 2122 +
x3) then fra(z1,x2) = 23 + 23wy + 123 + 23

For our purposes, working with symmetric functions in superspace is equivalent to working with
bisymmetric functions.

2. Superpartitions

We want to study different bases for the space of symmetric functions in superspace. As we shall
emphasize their combinatorial properties, we first need the analog of a partition in this context.

DEFINITION 143. A superpartition is a pair of partitions
A=(A%A) = (A, A A1, - )
with the conditions
AM>A> - >An >0 and Apy1 > Api2>-->2A >0

Note that A® has distinct parts. The length of A is £(A) = L(A®)+£(A®). Sometimes it is convenient
to consider A with exactly N parts. In this case we add N — £(A) entries equal to zero to A*. The
number m (the number of part of A*), is called the fermionic degree of A and the bosonic degree
of A is

n=AY+|A|=A1+ A+ AL

A superpartition has degree (n|m) if it has bosonic degree n and fermionic degree m.

DEFINITION 144. Given n,m € N, the set of superpartitions of degree (n|m) is denoted by
SPar(n|lm).

EXAMPLE 145. The set of superpartitions of (4]2) is

SPar(4]2) = {(1,0;3),(1,0;2,1),(1,0;1,1,1),(2,0;2),(2,0;1,1), (2,15 1), (3,0; 1), (3,15 ), (4,05 ) }
REMARK 146. We can define the set of all superpartitions as
SPar = U SPar(n|m)
n,m>0

DEFINITION 147. A superpartition A = (n|m) of length 1 is described by a pair of partitions

(A*, A®), which satisfy the following conditions:

(1) A* C A®;

(2) the degree of A is n;

(8) the length of A® osl;

(4) the skew diagram A®/A* os both a horizontal and a vertical m-strip.
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REMARK 148. There is a correspondence (A%, A®) — (A*, A®) between Definition and
Definition ' Given (A%, A®) define A* = (A% A®)T the partition obtained when you sort the
composition given by the concatenation of A and A*, and A® = (A*+ (1™), A*)T. It is not difficult
to see that they satisfy the conditions in Definition . On the other hand, given (A*,A®), let A®
be the entries in A* that correspond to a row of the the vertical m-strip A® /A* and let A® be its
complement.

EXAMPLE 149. To A* = (3,2,1,1,0) and A® = (4,2,2,1,1) correspond the superpartition
(3,1,0;2,1).

DEFINITION 150. Given a superpartition A the superdiagram or the diagram of A is the dia-
gram of A® where the bozes corresponding to A® /A* are drawn as circles.

EXAMPLE 151. Given the superpartition (3,1,0;2,1), we know that A* = (3,2,1,1,0) and A® =
(4,2,2,1,1). Its corresponding diagrams are

] | u

A® = A”

then A®/A* =

Thus, the diagram of the superpartition (3,1,0;2,1) is

O

O
O

DEFINITION 152. The conjugate of a superpartition, denoted by A’, is obtained by reflecting
the diagram of the original partition X along its main diagonal.

ExAMPLE 153. If A = (3,1,0;2,1) then A’ = (4,2,0;1) because

O e
He) reflecting @
O O

DEFINITION 154. We say that a skew diagram Q/A is a vertical r-strip if the diagrams of
Q®/A® and Q*/A* are vertical r-strips.

EXAMPLE 155. If Q = (4,2,0;2,2) and A = (3,1,0;2,1) we have that /A is a vertical 3-strip

with diagram
Q®/A® = H and /AT =

u 1

DEFINITION 156. We can define an order in SPar(n|m). Let A, Q in SPar(n|m), we define
the dominance order as

A>Q = A" >Q and A® > QF
where the symbol > on the right side is the usual dominance order on partitions.
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EXAMPLE 157. Taking A = (3,0;4,1) and Q = (2,1;3,2) we have that
A =(3,0;4,1) > QF = (2,1;3,2)
A® = (4,4;1,1) > Q° = (3,3:2,2)
which implies that A > €.

REMARK 158. Again, this order is not a total ordering.

3. Bases of the space of symmetric functions in superspace

We want to study natural bases for the space of symmetric functions in superspace and their
bisymmetric counterparts.

Monomial symmetric functions in superspace.

DEFINITION 159. Given A a partition, we define the monomial symmetric function in
superspace as

1
ma(x1,...,&n) = —=——8N 01 Opz”
|GnA
where 1 is a composition such that n* = A and Gy a = {0 € Sy | Ko A = A} and Sy correspond
to the simetrization operator respect the action of symmetric group over Q[z;0].

ExXAMPLE 160. We have
m(2,0,1) = 9192I%LL‘3 + 926‘1.%'%&53 + 930233%.%'1 + 91931‘%1‘2 + 92931‘%1‘1 + 9301x§x2

= 9192(1‘%%3 — x%l‘g,) + 92(93(33%1‘1 — JJ%.’L‘Q) + 9193(1‘%372 — x%.l‘g)

REMARK 161. Note that {m }a, where A runs over all superpartitions, is a natural basis of the
space of symmetric functions in superspace.

REMARK 162. Note that in this case, the bisymmetric part of this polynomials is just z", i.e.
ma(O1,.. . 0m;x1, .. Ty) = Z Kby 0Dy (z)2"
cESN

where 1 is a composition such that n™ = A*.

Elementary symmetric functions in superspace.
DEFINITION 163. Forr > 0, we define the elementary symmetric functions in superspace
e, and €, as
€r = Mmyo;1r) and e, = M)

We can extend this definition to a superpartition A in the following way

EAN = EAalpAs = éA‘ll s ’éA?n,eAin,+1 . '€A§V

EXAMPLE 164. We have for instance
® él :01($2+$3)+02($1 +$3)+93(l’1 +IZ’2)
[ ] ég = 01$2$3 + $102(E3 + $1£L’203

o c(2,1;2) = (01m223 + w10023 + 112203) (01 (22 + 23) + O2(21 + 23) + O3(21 + 22)) (T 17273 +
T1T2T3 + T17273)
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Complete symmetric functions in superspace.
DEFINITION 165. For r > 0, we define the complete symmetric functions in superspace
h, and h, as
h, = Z (1+ Ay)mp and h, = ZmA

AF(n|1) AFn

We can extend this definition to a superpartition A in the following way

ha = hachas = hag - haa has - hag,

m—+1
EXAMPLE 166. We have
zL (14 0)mo;1) + (1 + 1)m1;0),
[ ] h2 (1 + )m(o 2) + (1 + O)m((];lyl) + (1 =+ 1)m(1;1) + (1 + 2)m(2;0),
o h = (m

(1:2) ©0:1) + 2m(1,0)) (M(2) + m(1,1))-

Power-sum symmetric functions in superspace.

DEFINITION 167. Forr > 0, we define the power-sum symmetric functions in superspace

pr and P, as
Dr = mM(r,0) = Zezx: and p, = M = Z-rz
We can extend this definition to a superpartition A in the following way

DA = DAePAs = DA¢ -+ DAs PAS | ** " PA%

m

EXAMPLE 168. For example

o p1 = 011 + Oax9 + 0313

[ ] ﬁQ = 91$% + 92.%% + 03(E§

® D(2,152) = (0122 + 6223 + 93x§)(91x1 + Ooxo + O323) (23 + 23 + m%)
REMARK 169. Note that in this case we can write

pa(O1, .. Oz, ) = Z Kobr-- 0mAp(z)Anapr(z1,. .., 2N)
gEeSN
We then have pp = Amz®px(1,...,2ZN), where a is a composition such that a™ = A®. Also, notice
that pp corresponds to the antisymmetrization of the m-symmetric py .

4. Bisymmetric Macdonald polynomials

By Remark [I40] the Macdonald polynomials in superspace are essentially equivalent to their
bisymmetric counterpart. In the following chapters we will work with bisymmetric polynomials, for
this reason up now, we will use the same notation for bisymmetric polynomials and polynomials in
the super space. Most of this chapter is taken from [§].

DEFINITION 170. The bisymmetric Macdonald polynomial indexed by the superpartition A is
defined as

,PA(xh.n,fI;N;CL )_ Aci\(())A S;NET]A(I.IM'WCEN;QJL)

with the normalization constant ca(t) such that

1
_ nas (D],_1! t(me)(mefl)/2
CA(t) 11;!)[ A ( )]t 1
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where nps (1) is the number of entries in A® that are equal to i, and where

(-l —¢*)---(1—-4¢"
[k"}q - (1 _ (])k

We observe that the normalization constant ca(t) is chosen such that the coefficient of

A1 A M1 HUN—m
xl ...xmmxm+1...xN

in Pa(2;,t) is equal to 1, where (A, p) «— A.

REMARK 171. Note that

1
Pa(x1, .. 2N ¢ t) = w5 AmPaa . aoas) (21, .., N3¢, 1)
Al (z) mL(Ag, #A%)

where P(A;zn7___7A(11r7As)(x1, .., TN; g, t) is the m-symmetric Macdonald polynomial defined in the pre-
vious section.
The bisymmetric Macdonald polynomials are stable.

PROPOSITION 172. [Stability] The symmetric Macdonald polynomials Py are stable with respect
the number of variables, that means,

Palar,. . an-15g,t) if N > €A
PA(xl,...,l’N—hO;%t){ OA(xl Nl i)therwisé :

PROOF. The proof is similar to that of Proposition [I72} O
In this case, we have that two operators are needed to characterize the bisymmetric Macdonald

polynomials.

DEFINITION 173. We define the the bisymmetric Macdonald operators as

N
Eixn=Yi+ +Y, and EQ,N:Yerl‘i‘""'_YN_Ztlii
i=1

As expected, they have the bisymmetric Macdonald polynomials as eigenfunctions.

PROPOSITION 174. The bisymmetric Macdonald polynomials are simultaneously eigenfunctions
of the operator Ey, to be precise,

E1,nPa = cAPa Eo nPa = daAPa

where cp = 7+ -+ Tm and dy = Tma1+ -+ 7N — Zf\il tl*i} with M = qnitlfr,,(i)‘
PROOF. The proof is quite similar to the proof of Proposition O

Note that Ey y and E2 y do not depend on the numbers of variables N. We can then consider
Ey =lim By v By = lim Fy §
We name F; and Fy the Macdonald Operators the superspace.

We have our first characterization of the symmetric Macdonald polynomials. The proof of this
result can be found in [8], see Prop 10.

PrOPOSITION 175. [Triangularity] The Symmetric Macdonald polynomials are the unique
symmetric polynomials indexed by partitions which satisfy
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(1) the descomposition over the monomials are triangular
Par=mp + Z CQ,AMy,
Q<A
where < s the dominance order in partitions.

(2)
E1Pr = caAPa EyPp = daPa

5. Orthogonality

Motivated by the section {4| of the chapter III, we will define a scalar product and emulating
the same methods as in that section we will show that the bisymmetric Macdonald polynomials are
othogonal with respect to that scalar product. Because many of this ideas are similar to section [4]
we will skips some proofs. Most of this chapter can be found in [7].

DEFINITION 176. We define the following scalar product over bisymmetric power polynomials

((pA,pa)) = daaza(g,t)

We will prove that the bisymmetric Macdonald polynomials are orthogonal with respect to this
scalar product. But we first have to define the following kernel:

DEFINITION 177. The symmetric kernel is

K =Fn.Kj
where Ko was introduced in Definition [64] and where
s Ah@
I a-=w)
1<i,j<m

The following proposition can be found in [§].

LEMMA 178. The following identity holds:

m

ADN F () = (=1) () Ay (1) Fon ()
where N F,,(x,y) is defined in .

This Lemma give us the follow immediate consequence
PROPOSITION 179. We have the next relation between K, defined in[120 and F,,

m

AVK,, = A, (k.

PRrOOF. Note that by and Lemma [178] we have

Agg)Km — (_t)(gl)Am(y)Tu(;ﬁ)FmKO
= t(yg) A (y) Fn Ko
— (A, (y)k.

We again have a relation between our kernel and power functions.

LEMMA 180.

K= ZZA(L]J)APA(J?)Z?A(Q)
A
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The next lemma gives us a connection between the scalar product in Definition [I76] and the
kernel K defined above.

LEMMA 181. Let up,vq symmetric functions, then the following criteria of orthogonality is
verified

Ky =Y un(@)va(y) <= ((ua,va)) = daq
A

The following lemma is the key point in demonstrating the orthogonality of Macdonald poly-
nomials,

LEMMA 182. When acting on the kernel, the operators in Definition are symmetric in x
and y:
By AL WKy = BV AL (5)Ky

EVAL (y)Ky = EY AL (y)Ky

m

Proor. By Proposition [179| we have
AWK, = tZ) A, (y)K
This yields

(Vi o A VALK = (V7 + +Y§”>7(m) (()A@)Km
Y

(Y(x) Y(x))(At ) K,,
( ) -g -+ Y(z ) m
= (At y + Y(y ) K
(Y(y) Y(y )AL (y)K.
The proof for Y7 + ... +Y,, is exactly the same. O

THEOREM 183. [Cauchy formula]
Ky = Z by (x)Pa(y)

THEOREM 184. [Orthogonality] The bisymmetric Macdonald polynomials are orthogonal with
respect to the scalar product introduced in|176], i.e.

(Pa,Pa) =0 if A #Q
and

(Pa,Pa) = bal(g,t)
where we will give by (q,t) explicitly in the next section.

PROOF. Both equations are direct consequences of Lemmas and O
We are now in a position to state the second characterization of the bisymmetric Macdonald
polynomials.

PROPOSITION 185. The bisymmetric Macdonald polynomials are the unique family of bisym-
metric polynomials which satisfy

(1) the decomposition over the monomials is triangular

Pr=mp + E CO,AMQ
Q<A

where < s the dominance order in superpartitions.
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(2)
(Pr,Pa) =0 if A # Q.

This provides us with a characterization of the bisymmetric Macdonald polynomials which does
not depend on the number of variables.

THEOREM 186. [Symmetry] The bisymmetric Macdonald polynomials Pa satisfy the following
symmetry

m

q(Q)_lAa‘PA(qI]J s qTm, Tm4-1,5 - - 7mN7qat) = P,\(.’L']_, .. .7$N;q_1,t_1)

Proor. Using Theorem with a = (A2,,...,A}), we have
q‘Aalt(Tg)PA(x; gt h = t(g)ﬁ oo Tm Ko, To Pr(x5q,1),
Taking A,, and dividing by A}n/t(z) we then obtain
1
Al (@)

m

m
2

Q‘AayltpA(x; qila til) = q( )7_1 cooTm AmmeTmeA(x; q, t)

But, Ay Ko, = (—1)3) A, AT, = (—1)E) Ay and Ko, AV (@) = (—1)(F) AL (2), which gives
-1 - )= |A® 1 :
Palzig~t 1) = ¢(2)] |T1...TmmAmPA($7q»t)a

as we wanted. O
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CHAPTER 6

Self-duality and Pieri rules for the bisymmetric Macdonald
polynomials

In this chapter, we will focus on demonstrating symmetry, explicitly finding the Macdonald op-
erator as a combination of g-difference operators, and proving Pieri rules for bisymmetric Macdonald
polynomials. Particularly, the task of explicitly finding the expansion of the operator e,.(Y1,...,Yy,)
and e.(Yp41,- .., Yy) naturally led us to express the kernel N'F,, defined in Chapter 4 as a prod-
uct over areas in Z x Z that, under the action of Hecke operators, are modified by adding points.
Although this method was quite technical, it allows us to find the desired expansion and opens the
possibility of tackling similar problems using these tools.

1. Evaluations and symmetry

The element w of the symmetric group &y acts on a vector (v1,...,vy) € ZN asw(vy,...,vy) =
(Uw*1(1)7 ey Uwfl(N))'

Let w be the minimal length permutation such that wA = A*. The positive evaluation uj\' is

defined on any f(x) € Zp N as

k(- oaw) = Fgem =@, gheon e ) (1.1)
while the negative evaluation v, is defined as
uy (f(xr, .. o)) = flghemee@=1 g Ao (N =1 (1.2)

REMARK 187. In the case of Ag = (0,;0), where 6,, = (m — 1,m — 2,...,0), the negative
evaluation corresponds to an evaluation considered in [T, I5]. To be more precise, if the symmetric
function in superspace is F(x,0) as given in , then uy (fi1,...my (7)) = 5;%,,,,,’q’t(F(x,9)) n
the language of [15].

It turns out that we can use other permutations than the one of minimal length when taking
the evaluations. We use the notation A + (1™) for the vector (A1 +1,..., A + 1, Appy1, ..., AN).

LEMMA 188. Let o be any permutation such that oA = A* and o(A+ (1™)) = A®. Then, when
computing uf (f) and uy (f) for a bisymmetric function f, the permutation o can be used in
and instead of the minimal permutation w. That is, when computing u} (f) and uy (f) for a
bisymmetric function f, we have in this case that

uf (flan,. . oay)) = fgot=o® gt oo )

and
uy (f(z1,. .. zn)) = f(g heotrM=L g7 heon e (V) =1y

PROOF. We first prove that if w is the minimal permutation such that wA = A* then w(A +
(1™)) = A®. Suppose that w is such a minimal permutation and suppose that A; = A; with ¢ <m
and j > m. Then, by minimality, w=!(i) < w~!(j) which means that A; + 1 occurs to the left of
Aj in w(A+ (1™)). We then deduce immediately that w(A + (1™)) = A®.
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Now, let o be such that oA = A* and o(A + (1™)) = A®. As we have just seen, the minimal
permutation w is also such that wA = A* and w(A + (1™)) = A®. Hence, w™'o acts as the identity
on A and A + (1™), which means in particular that w™lo € &,, x &,,41 n. Since f is bisymmetric,
we thus have u} (K,-1,f) = uj (f). Hence

A® 1o A® —
UX(f(xwfla(m s Tuig(w)) = g ot L gtean e ()
which is equivalent to after performing the transformation i — o~!w(i). The proof in the case
of uy is identical. O

We will say that (A,o) generates a superevaluation whenever A is a superpartition such
that

(1) oA =A*
(2) o(A+(1m)) =A®

LEMMA 189. If f is a bisymmetric function then

FOTHAL (@) PA(250,1) = uy (£) A7, (2)Palw;q,t) (1.3)
Moreover, if g(Xm1,...,ZN) 18 symmetric in the variables Tpmi1,..., TN then
9Yms1, -, YN)AL (@) Pal@; 4, 1) = ui (9) AL, (2)Pa(a; ¢, 1) (1.4)
while if g(x1,...,%m) is symmetric in the variables x1, ..., 2, and of homogeneous degree d then
91, Y )AL (2)Pal@i g, t) = ¢~ uf (9) A, (2)Pa(z3 ¢, 1) (1.5)

ProOOF. We first prove (1.3). We have that Y[lE77 = ﬁ;lEn, where we recall that 7; =
¢"it' =) Using the fact that f is bisymmetric, we then have

FO YR DAL @) Pa(wig ) = F( Yy Dea(D) AL S, v En
= ()Alm m+1, Nf(Yl Nl)Eﬁ
= ()Alm +1 Nf(ﬁl_ ,...,ﬁ&l)En
:f(771 ’---777N) v (@)Pa(;q,t)

It thus only remains to show that the specialization x; = 7; ! corresponds to the negative evaluation.
We have that r, (i) = w( ), where w is the minimal permutation such that wn = A*. Therefore,
T; = ﬁ;l = ¢ mtw(@O=1 " By definition, we also have that A} = mny-135) or equivalently, that

—A*

A;(i) = 1;. Hence, the specialization x; = ﬁ;l amounts to z; = ¢~ v (D=1 a5 wanted.

As for the proof of (1.4)) and (1.5)), observe that w1 A® = A+ (1™) and w='A* = A imply that
Ay = Apyy fori € {m+1,...,N} while AP . = A%, + 1 for i € {1,...,m}. Proceeding as in

the proof of (1.3), we get straightforwardly that the specialization is at x; = 7j; instead of z; = ﬁi_l
We can then immediately deduce that (1.4]) and (1.5 hold from our previous observation. O

l

1.1. The double affine Hecke algebra and a symmetric pairing. We will introduce in
this subsection a symmetric pairing associated to the evaluation u,  that generalizes the symmetric
pairing in the double affine Hecke algebra. We first explain the symmetric pairing in the double
affine Hecke algebra.

The double affine Hecke algebra has a natural basis (over Q(g,t)) given by the elements of the
form (see for instance (4.7.5) in [22])

2", Y ™7 (1.6)
for all n,v € Z" and all permutations w € G y. The map ¢ defined by [22]
¢ (2"T,Y ) =2 Ty Y " (1.7)
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is an anti-automorphism. Notice that we have in particular that
p") =Y and Y 77)=2"

The evaluation map © is then defined as

O(a) = uy (a-1) (1.8)
where uy (f(z1,...,2n) = f(1,¢*,... Y1) for any Laurent polynomials f(z). For instance, using
JOY 1=y (f) and T,, - 1 = /) we have

O(g(@)Tw f(Y ™) = uy (9(x)Tu f(Y ) - 1)
uy (fug (9(2)Tw - 1)
g (Fug (9)
Using the fact that (w) = £(w™1), we see that
O(g(@)Twf(Y ™) =0 (f(2)Tw-19(Y 1)) =00 p(g(x)Tu f(Y ™))

Since the basis is given by elements of the form g(z)T,, f(Y ~!), we thus have established that

©=0oyp (1.9)
For all Laurent polynomials f(z), g(z), let the pairing [f, g] be defined as
[f.9] = O(f(YH)g(x)) (1.10)

Using the previous relation and the fact that ¢ is an anti-automorphism, we immediately get the
symmetry of the pairing

[f.91=O(f(Y1g(2)) = ©op(f(YHg(x)) = O(9(Y 1) f(2)) = g, f]
Now, consider the evaluation u (f) given explicitly as
uxo(f(xlax27 s Ty Tm41y - - - ,JIN)) = f(ql_ma q2_mt7 s 7q0tm_17tm7 sy tN_l)
on any Laurent polynomial f, where A is such as defined in Remark

Our goal is to define a pairing associated to the evaluation u, . We first need to extend the
map ©. Let ©,, be such that
O (a) = up, (a - Es. (x;q, t)) (1.11)
where Es, (x;q,t) is the non-symmetric Macdonald polynomial indexed by the composition
Om=m—-1,m—-2,...,1,0,0,...,0)
Observe that f(Y~) - Es, (#:0,t) = uy, () Es,, (x:0.1).

LEMMA 190. Let ¢ be the anti-automorphism defined in (1.7). We have that

O, =000 (1.12)
Proor. We first show that
O (Tw) = O 0 9(Ty) = Oy (Tyy-1) (1.13)
for any permutation w € Sy. Let Fy,(z) = T Es,, (25 ¢,t) - 1. As this is a polynomial in x1, ..., 2y,
we can consider the quantity
Q(Fw(y_l)Eém (x;q,t)) = Uy, (Fw)ua(Edm) = Qm(Tw)ua(Ezim) (1.14)

since uy (Fy) = uy (Tw - Es,, (75¢,t)) = O (Tyw). From © = O o ¢, we also have
O(Fu (Y™ )E;s, (259,1) = O(Es, (Y15 q,t)Fu()) = O(Es,, (Y15 ¢, )T Es,, (2))
Using again © = © o ¢, we can then replace w by w™! in the term on the right to get
Q(Fw(Y_I)Eém (CU; q, t)) = @(E5m (Y_l; q, t)Tw_lEﬁm (il?)) = ®(E5m (Y_l; q, t>Fw_1 (.’IJ))
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Using © = O o p one last time, we can transform the term on the right to obtain
O(Fu(Y NE;, (25¢,1) = O(Fy—1 (Y 1)Es, (2:¢,1)) = Om(Ty—1)uy (Es,,) (1.15)

Comparing (1.14) and (1.15), we can thus conclude that (1.13) holds given that u, (Es,, ) is not
equal to 0 (it can be deduced easily from the fact that E,(z;q,1) = 2" for any 7).

We can now prove that ©,, = ©,, o ¢ holds in general. Recall that any element of the affine
Hecke algebra can be written in the form f(x)T,g(Y '), where f(z), g(z) are Laurent polynomials.
On the one hand, we have

O (f(2)Twg(Y 1)) =y, (9)Om (f(2)Tw) = uy, (9)ux, (f)Om(Tow)

while on the other hand, we have
O 0 p(f(#)Twg(Y ™)) = O (9(2)Tw-1 F(Y 1)) =y, (f)uy, (9)Om(Tw—)

Since we have previously established that ©,,(T,,-1) = ©,,(T,,), we conclude from the previous two
equations that ©,, = ©,, o . O

We now define our new pairing. For any Laurent polynomials f, g symmetric in the variables
T1yeeeyTm, let

[f, 9lm = up, (F(Y ™ H)g(x) AL, () (1.16)
This new pairing is again symmetric.

LEMMA 191. If f and g are two Laurent polynomials that are symmetric in the variables
T1,...,Tm, then

Lfs 9lm = 9, flm

PROOF. Let A be the t-antisymmetrizer in the first m variables

AL =3 (—1pfeT, (1.17)
c€ES,,
We have that T;A!, = —A! for any i = 1,...,m — 1. Hence, for every polynomial f(z), we get
that AL, f(z) = AL (z)g(z), where g(x) is a polynomial symmetric in x1,...,%,,. In particular, by
degree consideration, we have that

AL (2) = (g, 1) AL Bs,, (239, 1)
for some non-zero constant ¢,(q,t) (at ¢ = 1, the r.h.s. produces the usual Vandermonde de-
terminant, so ¢;,(¢,1) = 1 # 0). It is also immediate that Al AL = d,,(t).A!, where d,,(t) =

ZUEGm (1/t)(“) is a non-zero constant. With these relations in hand, we can relate [f, glm to Op,.
Indeed, we have

O (AL, F(Y T H)g(2)AL,) = din(t) O (f(Y ) g(2) A7)
= dm (t)uy, (F(Y ™ 1)g(@) A, - Bs,, (2:4,1))
= dp(t)em (g, huy, (F(Y " Hg(x) - AL ()
= d(t)em (g, 1)L, glm (1.18)

where, in the fist equality, we used the fact that A?, commutes with f(Y ~!) and g(x) because they
are both symmetric in the first m variables. We now use ©,, = 0,, o p and p(A%) = Al to
interchange f and g:

O (AL F(Y ) g(2) A7) = Om 0 p( AL f(Y () AL,) = Om (AL g(Y 1) f(2)AL,)
The symmetry [f, g]n = [g, f]n then immediately follows from (L.18). O
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1.2. Symmetry of the bisymmetric Macdonald polynomials. We can now extend a well-
known result on Macdonald polynomials to the bisymmetric case. But first, we need to give the
explicit expressions for u, (Pa(z,q¢,t)) and uj{o (Pa(z,q,t)) that were obtained in [15].

For a box s = (i,7) in a partition A (i.e., in row ¢ and column j), we introduce the usual
arm-lengths and leg-lengths:

ax(s)=Xi—j and Ix(s)=\j—i (1.19)
where we recall that A’ stands for the conjugate of the partition A. Let B(A) denote the set of boxes

in the diagram of A that do not appear at the same time in a row containing a circle and in a column
containing a circle.

I ags
. EEEEE

A= — BA =[]
O

3 H
For A a superpartition of fermionic degree m, let SA be the skew diagrams A® /8, 1.

1O
[ ]

A= = SA=

O

OHEN!

Finally, for a partition A, let n(A) = >, (i—1)A;. In the case of a skew partition A/u, n(\/p) stands
for n(A) — n(w).

The following theorem was proved in [15] for Macdonald polynomials in superspace (in fact, only
(1.20]) was proved therein. But using (1.24]), one can immediately deduce (1.21))). From Remark
it also applies to bisymmetric Macdonald polynomials.

THEOREM 192. Let A be of fermionic degree m. Then the evaluation formulas for the bisym-
metric Macdonald polynomials read

#(SA)+n((A) /m) H(i,j)eSA(l _ qj—ltN—(i—l))

Yo (PA) - q(m—l)‘Aa/5m|—n(Aa/6m) HSEBA(l — q%r® (s)tlA*(S)-i-l) (120)
and
m|A® /S |[=n (A /0m) Iy 1 — gl igi=(N+D)
uf, (Pa) = e Hepesal ) (1.21)
tr(SA)+n((A)*/dm) [Locpa(l — g e (8)¢—lax(s)-1)

We can now state the two symmetries satisfied by the bisymmetric Macdonald polynomials.

THEOREM 193. Let 75X (x,q,t) and ﬁ;(x,q,t) be the two normalizations of the bisymmetric
Macdonald polynomials:

5 Pa(z;q,1) Palz;q,t)
Py, q,t) = — _
A ( ) Up, (PA(:L‘, q, t)) ”U,XO (PA(Z’, q, t))

where we recall that Ay was defined in Remark[I87. Then, the following two symmetries hold:

ug(Py) =ux(Pgy)  and  ud(PY) = uf(P)

and ’ﬁf{(m, q,t) =

PrOOF. We first prove the symmetry involving the negative evaluation. From the definition of
the pairing [, -] and from Lemma we get that

[PA(CL’, q, t)v ,PQ<1'7 q, t)}m = uXO (,PA(Y—Zil)Afn(x)lpﬂ(xv q, t))
= uq (PA (1’, q, t))uxo (Ain (x)PQ ((E, q, t))

75

(1.22)



Using Lemma [T91] we then have
u5 (PA(.T, q, t))u[_\o (Afn(m)Pﬂ (CC, q, t)) = ul_\ (PQ (93, q, t))uxo (A;@ (QZ')PA(ZZ?, q, t))

and the first symmetry follows immediately.

We will now deduce the symmetry involving the positive evaluation from the negative one. As
we will see, it essentially follows from Equation (4.6) in [30] which, when rewritten in our language,
says that

Am(ql'l’ ceey qu)PA(qxla <oy qTmy Tmg1y -y TN G, t) = qlAa‘Am<x)PA($; ]-/qv ]-/t)
Simplifying the previous equation as
gD (qaa s gy T, w0 t) = Paw; 1/g, 1)) (1.23)
we deduce that
[ug (Pa(@: 0, D)] (g yms 1/

— PA((]Qltl_w(l), el qﬂmtl—w(m)7 qu+1tl—w(m+1)7 o ,qQNtl_w(N); 1/q7 l/t)

_ qm(mfl)/2—|A“'|,PA(qu+1t17w(1)’ o 7qu+1t17w(m), qu+1t17w(m+1), e qQNtlfw(N); q, t)

= qm(m—l)/Z—lA“Iug(pA) (1.24)
It is then immediate that
ug (Pa(;q,t))
’LLXO (PA (1’7 q, t))

—_ ué('PA(x;q,t))
uj\_o (PA(I7 q, t))

=ug (PY)

[ (Pa(@; 0, 0)] (s 1/qrsy =

] (a:)=(1/q,1/t)

from which we conclude that the second symmetry also holds. O

2. Double affine Hecke algebra relations

In this section, we establish a few results involving the Hecke algebra and the Double affine
Hecke algebra. They will be needed in the next section. We start with a generalization of a known
result in symmetric function theory.

LEMMA 194. Let J C [N] and L = [N]\ J. We then have

i —tx;
Yo w5 I R = aw®)Ae(ze)

e Ti — Tj
o([N—r+1,N])=J 1<i<j<N
cEGN

where r = |J| and
ar N (t) = [r]¢!][N — r]4!

PROOF. For convenience, we will let



We first prove the special case when J = [r] and L = [r + 1, N]. Let v be the permutation
[r+1,...,N,1,...,7] (in one-line notation). In this case, we have

E KUAN(QS)
o([N=r+1,N])=Ir]
oceECN

= Z Z KwKw’K'yANfr(x)A[N—r+l,N](x)A[N—T+1,N]><[N—r]($vx)

wES, weES, 11N

= Ap)x 1.8 (2, T) ( Z KwAr($)> Z Kw’A[TJrLN](x)

weS,. we€S, 11N

since w and w' leave Apx[r41,n] invariant. Using [?]
Sh-1= Y K,Ay(z)=[N]! (2.1)
AN
the formula is seen to hold in that case.

As for the general case, let ¢ be any permutation such that 6([r]) = J (and thus also such that
d([r+1,...,N]) = L). Applied on both sides of the special case that we just showed, we get

x; —tx;
Z KsK, H ﬁ = ar,N(t)KéA[r]x[r-i-l,N] (v,2) = ar,N(t)AJxL(337$)
o([N—r+1,N])=[r] 1<i<j<n 7t
ceESN

which amounts to

x; —tx;
> Kso I[I =2 | =a~®Awlz2)

Ti — T
So([N—r+1,N]))=J 1<i<j<N 7' J
doeSn

The lemma then follows immediately. (]
We now show that the product Yy_,41--- Yy of Cherednik operators can be simplified quite
significantly in certain cases.
LEMMA 195. Let r < N —m. For any bisymmetric function f(x), we have that
YN g1 - Y fa) = ¢@GmArT1=2Nr/2nep ) (T - T f ()

PrOOF. We first show that
YN_pp1- Yy =t 70Dy o Ty ,)” (2.2)
The result obviously holds by definition when r = 1. Assuming that it holds for » — 1, we have that
YNrp1- - Yn=Yn-YN_r11
DD 2Ty T ) T (T Ty Ty oawh o T

Making use of the relation T;_1w = w7}, we can move the term TN77~+1 of every product to the
right to get

YN g Yy =t T ) T Iy Tt Tt - TvawTh - Ty
D2 (T Ty )T
which proves by induction.
Using T;_ w = wT} again and again, we then get from that
YN—rg1--- Yy = t_T'("_l)/QwT'(TT v Tn_1) - (Ty - Tn—y)
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If f(x) is a bisymmetric function, the rightmost N — r —m terms in every product in the previous
equation can be pushed to the right and made to act as 1/t on f(x). This yields,

Yn_rp1-- Yaf(z) = t—r(N—r—m)—r(r—1)/2 W (T Togr—1) - (T1 - To) f ()
which proves the lemma. O
LEMMA 196. Let r < m. For any bisymmelric function f(x), we have that
ALYy VAL f(x) = (=1)T ORI 4 (T Ty ) - Ty Ty )"

ProOOF. We first note that for the same argument used in Lemma [195] we have that
Yy---Y, = tf’(f‘+1—2N)/2(TT o Ty—y) - (Ty - Ty )"

Because A!,T; = — A, for i € [m] the leftmost N — m terms in every product in the previous
equation can be pushed to the left and made to act as —1 over A!,. This yields,
ALY, Y, = (_1)T(m—r)tr(T+1—2N)/2 (T - Tn—1) - (Topepg1 - Ty )"

which proves the lemma. (Il

The next result shows that e.(Y7,...,Yy) can be recovered from S}f\, acting on Yy_,41---Yn.

LEMMA 197. For r < N, we have that if f(x) is a symmetric function then
1
(Y, ..., - S'YNoy1--- Y
€ ( 1 N)f('r) [N*T]t![?”]t! NIN—-r+1 Nf(x)
ProOF. First, if w € &, and 0 € &,41,n then (T, To)YN_ri1- YN = Yn_ry1 - YN(TWT5)
by (1.2). This yields
TWToYn—rp1- Ynf(2) =t OV Y f ()
given that f(z) is symmetric. Hence, summing over all the elements of &, x G,1 n in 8§ =
Y vcey Lo gives a factor of [N — r]![r];! from (2.1). We thus have left to prove that

er(Yia7YN)f(m): Z TU*YN—r—i-l"'YNf(x)
[0*]1€6N/(6rxErt1,N)

where the sum is over all left-coset representatives ¢* of minimal length. Such minimal length
representatives are of the form (in one-line notation) o* = [i1,...,iN—r, iN—r41,--.,tn] With i1 <
fog <+  <iy—pand in_p41 < iN_pg2 < -+ <in. A reduced decomposition of ¢* is then given by

(SiN o SNfl) T (SiN77‘+lsiN77‘+l+1 s SN*T) (23)
We will now see that the factor T;_  \Tiy_, ,+1...Tn— of Ty« changes Y11 into Vi, ., and
leaves the rest of the terms invariant. First, we use the relation 7;Y;11 = tY;T; to obtain

TN YN—r1YN—rg2 YN F(2) = YN TN YNy YN f(2) = YN YN_rgo - YN f(2)
Proceeding in this way again and again, we then get that

TiN7T+lﬂN—r+l+1 s TNfTYN7T+1YN7T+2 to YNf(x) = Y—iN7r+1YN*T+2 o YNf('T)
as wanted. By assumption, all of the remaining indices of the s;’s in (2.3)) are larger than in_,41.
Hence Y;, _,., will not be affected by the remaining terms in T5-. Following as we just did, it is
then immediate that
To’*YN—r+1 e YNf(x) = Y;N—wrl o }/iN f(.l?)
Finally, summing over all ¢*, the lemma is then seen to hold. O
LEMMA 198. For r < N, we have that if f(x) is a symmetric function then
1
(Y1, .. YAl =AY - VAL
r¥is o YV Al () (@) = [ MY VAl ()
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PrROOF. First, ifwe S, and o € Gr-{-l,N then (Tng)YN_T+1 Yy = YN—r—i—l . “YN(TU,TU)
by (L.2)). This yields
T ToYN—rp1 - YNAL f(a) = ()Y Y, AL f(2)

given that f(x) is symmetric. Hence, summing over all the elements of &, X &,41,, in A} =
Y veey Lo gives a factor of [m — r];![r];! from (?7). We thus have left to prove that

er(Y1, ..., Y)AL f(z) = > TyeYy - Yy AL f(x)
[U*]EGNL/(G’I‘X6T+1,’rn)

where the sum is over all left-coset representatives ¢* of minimal length. This follow in the same

way that Lemma ?7. O
3. The action of e,.(Y;41,...,Yy) on bisymmetric functions

In this section, we will obtain the explicit action of the operator e.(Y,,t1,...,Yn) on a bisym-

metric function. This will then be used in the next section to deduce the Pieri rules e, (41, -, TN)

for the bisymmetric Macdonald polynomials.
We need a notation similar to 42| for subsets of [N] x [N]. If A C [N] x [N], we let
tr; —y;
Ra(ey) = [] (—awy), Aaley) = [] @i-w), and Aa@y) = [] (x_)
(i,5)EA (i,5)EA (igyea N 1Y
With this notation in hand, we define

AL, (x)
-Fm('ra y) = M7
Ry xim) (7, )
and ( )
Rp(z,ty
NFp(z,y) = —122
( y) RB’ (ZL', y)

where B is the set of integer points in the triangle with vertices (1,1),(1,m — 1) and (m — 1,1),
while B’ is the set of integer points in the triangle with vertices (1,1), (1,m) and (m, 1).

EXAMPLE 199. The product N Fs(z,y) can be seen at the quotient of the factors stemming from
the two following regions

3

2.

1'.
1 2 3

3.

2'.

1"'
1 2 3

Hence NFs(x,y) is equal to
(1 — t.l?lyl)(l — t.l?lyg)(l — t.ﬁgyl)
(1= z1y1)(1 — 2192) (1 — 21y3) (1 — 2291) (1 — 72y2)(1 — 23y1)
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Let AY stand for the antisymmetrizer A, defined in @ but acting on the y variables instead
of the x variables. The next lemma was proven in [8] in another form.

LEMMA 200. We have
AW Re(w,ty) Rer (2,y) = (~1) ) AL (2) A (1)
where C is the set of integer points in the triangle with vertices (1,1),(1,m —1) and (m —1,1) while

C' is the set of integer points in in the triangle with vertices (2, m), (m,m) and (m,?2).

ProOF. Equation (129) in [8] rewritten in our language (and with the ¢-power corrected) says
that

1 m
gAY | T 0=ty [T -y | = (DE)AL @)
m(y) i+j<m i+ji>m+1
B ij<m
The lemma then immediately follows. ([

COROLLARY 201. The following identity holds:

m

AYPNF (2,y) = (1)) A () Fru ()

PROOF. The identity can be deduced from Lemma after completing the square in the
triangle B’ corresponding to the denominator of N'F,,(z,y). O

We now establish a few elementary relations that will be needed later on.

LEMMA 202. Forallie {l,...,N—1} and all j € {1,...,N}, we have

— 1 (].—tilyj)
1) T; =
O g =~ 10— 2my)( - o)
TR P S ek 21 1)

(I—ziy;) (= 2ipayy) (1 — 2y5)
PROOF. We only prove the first relation as the second one can be proven in the same fashion.

Since (1 — z;y;)(1 — it1y;) is symmetric in z; and z;11, it commutes with T;. The first relation is
thus equivalent to T;(1 — x;11y;) = t~1(1 — tx;y;), which can easily be verified. O

The following lemma concerns the function

RBk (:Ev ty)
RB;C (33, y)
where By, is the set of integer points in the trapezoid with vertices (1,1), (1,m), (k,m) and (m+k —
1,1) while By, is the set of integer points in the trapezoid with vertices (1,1), (1,m), (k+1,m) and
(m + k,1). That is, B}, is the union of By, with the line segment from (k + 1,m) to (m + k, 1) of
slope —1. Note that N'Fo, (x,y) = NFp(z,y).

LEMMA 203. For k > 1, we have
Tho Tosma NFi Ha,y) =t "NFy, (2,y)

NF(@,y) = (3.1)

Consequently, forr > 1,
(Tr . 'T7'+m—1) e (Tl e Tm)N]:m(x7y) = t_rmN]::n(x7y) (32)

Proor. The lemma follows from Lemma Diagrammatically, acting with T, on N'F,,
amounts to adding a dot to the triangles associated to the numerator and the denominator in the
diagram of N'F,,. For instance, if m = 3 the diagram associated to T3 N F3 is:
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1 2 3 45
3.
2] .

1l - - X

1 2 3 45

The product Ty ---T,, adds a diagonal above the triangles associated to N'F,,. For example,
TlTQTngg is

1 2 3 45
31 - X
2] - X
1| - X
1 2 3 45

Finally, as 7 increases, extra diagonals are added. We get for instance, in the case r = 2 and m = 3,

that acting with (ToT3Ty)(TyT>T3) on N'F3 adds the following two diagonals:

3] x
2| - X
. X X
12345

2 .
1 . e . X
1 23 45

]

For the next lemma, we need to introduce some notation. Given a permutation o € Sy, we let
A, ={i€[l,m] | o7 (@) €[1l,m]} and B, ={ic[m+1,N]|o (i) € [m+1,N]}
Their respective complements are
AC =[1,m]\A,, and B =[m+1,N]\B,

REMARK 204. It is important to realize that if w € G, X Spyy1 N then Ay = Apyy, (and similarly
for AS, B, and BE).
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For A x B C [N] x [N], let also (A x B)<« = {(i,j) € A x B|i < j}. Finally, we define

Aa(wy)= [ @i—y) and Aa(wy)= [] (mw)

(id)eA (ijyea N1 Y
i) i

LEMMA 205. For o € &y, let

Amgx%g (x,z)

b(0) = (-7 [ T] (t =1z,

where
s(s—1)

D, = + #QAS X Uy ) < + Zs
with s = #Aye and Zy, = #{(i,7) € [m] x [m] | o (i) > o(j)}. We then have the following equality:

. Z%gxa([m])(xvx) Am(gj)

jgg T Du o) (2, ) Ko (A (2))
Moreover, if w € &, X Gppq1,n then
B(ow) = (~1)%8(0) (35)

PROOF. From Remark[204] (B.5) is easily seen to hold given that Ky (A () = (—1)Z* Afw),....wem)} (T)-
We now prove (3.4). After simplifying the terms [[;c . (¢t — 1)z; in (o) and in the r.h.s. of (3.4),
we have left to prove that

D, Amg (CL’)A&BE (x) _ Z%gxa([m])($7 ) Ay (z)
Amgx%g(xvff) Amgxa([m])(‘raw) KJ(Am(x))
As all the remaining products are of the form (z; — x;), it will prove convenient to simply work

with sets, taking special care of the signs that may appear. On the r.h.s. of (3.6]), we have in the
numerator

(-1) (3.6)

(%B5 x a([ml)) U (Im] x [m])<

We observe that o([m]) = A, UBS since 071(i) € [m] <= i € o([m]). Hence, the numerator on
the r.h.s. of (3.6) is equal to

(BE X 2y ) U (BE x BE) < U (BE x BE)> U (g x Ay ) U2y x A ) < U(RAS 2y U(RAE < AE) < (3.7)
Now, the denominator on the r.h.s. is equal, up to a sign (—1)%<, to
(25 x o ([m))) U (o)) x o(fm]) -
which is in turn equivalent to
(A5 X As) U (AT X BZ) U (As X Ag)< U (A X B )< U (By x Ag)< U (By x By )< (3-8)

It is immediate that A x B = (A x B)s U(A x B)< if A and B are disjoint. Moreover, (A x B)s =
(B x A). (which accounts for an extra sign (—1)#(B>*4)<) Hence, comparing and (3.8), we
have that (AS x AS) < U (BE x BE )< is left on the numerator while (A5 x BE) = AS x BE is left
on the denominator, with the extra sign being

(_1)#(%2 XBo)<+#(Uo X B ) < +#(Ao xAT) <

Taking into account the sign (—1)% obtained earlier, we obtain
D, = #(%2 x %§)< + #(Q{J X %§)< + #(Qla X Q[§>< +Zs
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-1
Observer that #(BS x BS). = 8(82 ) since s = #AS = #BS. The elements of A, being all

smaller than those of B¢, we get
#(2Ao x BY)< = #AUs - #B5 = (m — s)s
Finally, given that the sets %A, are disjoint ¢, we have
#(Ao x AT ) < + #(A; X Ao )<« = #AZ - #As = 5(m — 5)
We thus have as wanted that
(—1)Dr = (—1)* =D/ 2H# A ) <47,
O

Before proving the main result of this section, we obtain a criteria to show the equivalence of

two operators.

LEMMA 206. Let O and O’ be any operators acting on bisymmetric functions. If for all sym-
metric functions g(x) we have

o(mtimy) =9 (mtow)

Of(x) =0'f(x)

then

for all bisymmetric functions f(x).

PRrROOF. A basis of the space of bisymmetric functions is provided by products of Schur functions
{sa(z1,....zm)sp(z1,...,2N) | }r, where A and p are partitions of length not larger than m and
N respectively. Tt is well-known that [20]

1
_— = sx(@1, -y Tm)Sa (Y1, -y Ym)
R[m]x[m] (1‘7 y) A ;Z(z)\):<m

Hence, by hypothesis,

0=0-0) (70 )= T (0-0)srmnmns @) sr e )

R[m]x[m] (J},y) XA <m

Taking the coefficient of s)(y1,-..,¥m) in the expansion tells us that the action of O — O’ on the
basis element s)(x1,...,%m)s,(x) is null. We thus conclude that O and O’ have the same action
on the basis element s(x1,...,%m)s,(x), and thus on any bisymmetric function. O

PROPOSITION 207. Let f(x) be any bisymmetric function. Then

er(Ymit, - YN)AL (@) f(x) = ) > Co(x)Ts Ko f(x)
JC[m+1,N] [0]€eEN/(GmXGmi1,N)
|J|=r o([m])NL=0

where the coefficient Cj () is given by
C.]7O-(Z’) = tr(r+172N)/2Am (l‘)AJXL(x, x)TJ (AVJXU([m])(JZ, m)@(U)KO (Am(x)))

with L = [m + 1,N]\ J. We stress that Cj,(z) = Cjow(z) if w € &y X Sy, n. As such, it
makes sense to consider [0] € SN /(Sp X Sppt1,N)-
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ProoF. From Lemma and the relation Kgy(Ap (7)) = (=1)%% Ko (Apw(),...w(m)} (), we
have immediately that Cj,(z) = Cjow(z) if w € &, X Sppp1 N.

We now prove the central claim in the theorem. From Lemma [206] it suffices to show that

e (Vs Vi) AL (2) I8
7“( 1+1 N) m( )R[m]x[m](x7y)

= > 3 CromiK, (g(x))

JC[m+1,N] [0]€GN/(SmXGmi1,N) Rim)x m) (2, Y)
|J|=r o([m])NL=0

for every symmetric function g(x). Hence, the proposition will follow if we can prove that

er(Ymat, oo, YN ) Fm (2, y)g(x)

= > > Cro(x)Ts Ko (g(ac)) (3.9)

JC[mA1L,N] [0]€6N/(SmXGmi1.n) Ryom)om) (2, 9)
|J|=r o([m])NL=0

for every symmetric function g(z). The rest of the proof will be devoted to showing that (3.9) holds.
Let F(z,y) == e;(Yimi1,- -+, YN)Fm(z,y)g(x). Since S}, y commutes with F(z,y), we have by

that
anJrl,NO(x’y) = [N - m]t!F(x’y)

or, equivalently, that
1

F(x,y) = m‘srtn+1,Ner(Ym+la oS YN) (2, y)g() (3.10)
Since Fp,(z,y)g(x) is symmetric in Zy,41, ..., TN, we can use Lemma ?7? to rewrite F(z,y) as
1
) = (7 iV = Sy 2 ToVvers YTl )g(o)
O'EGm+17N

The relation S¢, ; yT, = t““)S}, | \ can then be used to get
1
F(l’,y) = [N o — m]t![r]t!S;t"'H’NYN#H e YNJ:M(x,y)g(x)
It then follows by Lemma that

t(2m+r+172N)r/2 . . _ _ _
F(z,y) = N —r_ m]t![r]t18m+1’Nwr(TT o Tore1) - (Ty - T Fn(, y)g(x)

From Corollary 7?7, we can use
(—1)(%)

L AYNF, (x,
A (y) )

Fm(z,y) =
to deduce that
(_1)(’;) {@mAr+1-2N)r/2
Ap(y) [N —r —m]![r]:!
Since g(z) commutes with all T;’s we can use Lemma ?7 to get

p(t)

-1)(E)An(y)

where, for simplicity,, we have set

F(z,y) = Svtn+1,NwT~A£rzzj) (TT e 'Tm+r—1) T (Tl e 'Tm)N]:m(mv y)g()

F(z,y) = Sp1 n ADNF (@, y)g(x)
tr(r+1—2N)/2
[N — 7 —m]![r]¢!
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Now, we will multiply and divide the quantity NF,,(z,y) by Ram(x,y), where M is the triangle
with vertices {(r+2,m), (m+r,m), (m+r,2)}. This way, the denominator R, becomes a rectangle
and we have

F(J?,y) =

(v) Rp, (.13, ty)RM (33, y) (l‘)

St w" AY
LN R[m+r] x[m] (ZL’, y)

Observe that the rectangle [r] x [m] C B, is such that Ry (z,ty) commutes with AW Tt is also

obvious that R, ) x[m] commutes with .AS;T{). Hence

2 g R (@)

But B, \ ([r] x [m]) is the triangle with vertices (r+1,m —1),(r+1,1), and (m+r —1,1). We can
thus use Proposition 7?7 to get

F(z,y) = AY R\ (111 ) (@ ty) Raa (2, ) g ()

+ Rpjxm) (o, ty) Al

F(z,y) = p(t)S, W A% mart(@)g(x
(@) = PO 10 g PPN i) (@)

It will prove convenient to multiply and divide by Riyqri1,8)x[m](®;Y) S0 that Rinjxm)(z,y) ap-
pears in the denominator. This yields

B im) (2, 19) Rimgr 1, M) x [m] (25 9)
Rinyxim) (7, )

F(z,y) = p(t)Sy, 11 nw Alria,miry (@)9(2)

Applying w” (which amounts to the permutation that maps j — j — 7 modulo N followed by
TN—r+1,N = TN—r4+1TN—r42 """ TN) we obtain that

RiN—r1,N]x[m) (T, 1Y) Rimg1, N—r] x [m] (2, Y) AL @Dg(z)  (3.11)

F(z,y) = p(t)Sh 11 NTN-r41,N

R[N] x[m] (‘T7 y)
We should stress at this point that F(z,y)/Al (z) is both symmetric in z1, ..., 2, and in Ty 41, ..., TN
This is because applying S!, 41, ensures that the result is symmetric in Zp,41,...,2x while the
symmetry in i, ..., &, is straightforward given that A}, () commutes with S}, | yTN 11N

Now, we need to use the expansion

Shav= >, K. 11 i (3.12)

T — 1
€S mi1N m+1<i<j<N J

in . From the symmetry of F(x,y), it will suffice to focus on the term 7y_,y1 5 as the
remaining terms 7; for J C [m+ 1, N] and |J| = r will be obtained by symmetry (only those terms
can occur since S}, ,; y only contains K,’s such that o € &,,41 x). For simplicity, we will let
Jo=[N—r+1,N]and Ly = [m+ 1, N —r]. When we only focus on the term 75, = Tny_ry1.n,
we need to sum over the o’s in such that o(Jy) = Jo. Observe that those permutations
leave the expression to the right of S!, 41,y invariant in (3-11). Using Lemma m (in the case
J =[N —r+1,N] and with [1, N] replaced by [m + 1, N — r]) to obtain

T, —tx;
Z K, H ﬁ =[N —m —r]![r!As L, (,7)
0EG 1N m+1<i<j<N “* J
a(Jo)=Jo

we thus conclude that the term in 7, in F'(z,y) is given by

RJO X [m} (I, ty)RLo X [m] (’I7 y)
Rinyxm) (7, )

eI A g (2, @)y AL (@)g()
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By symmetry, we thus get that

Ry [m] (:K, ty)RLx [m] (:L’, y)

Rinyxim) (2, 9) AL (7)g(x)

F(z,y) = 7 H1m20/2 > Agp(z, )y
JC[m+1,N]; |J|=r

where L =[m+ 1, N]\ J.
Now, we want to expand F(z,y) as

Py = Y ) Cro (@)1 K (9“)

Jg‘[mﬁl’N] [0]€EGN /(G mXGmi1,N) R[m]x[m](x,y)
J|=r

for some coefficients Cj,(z). Since g(x) is an arbitrary symmetric functions, the terms in 7,9(x)
need to be equal on both sides. We thus have that

_ _ Ryxm ($7ty)}BL><[m] (ZL',y) — 1
rrH1-2N) /2 4 g la, ) =X Al (z) = E 71Cr4(2)) Ky <>
J><L( ) R[N]x[m}(xay) ( ) ( J J, ( )) R[m]x[m}(‘r,y)

AT,
The coefficient T;lcj7w(x) can be obtained by multiplying by K, (R[m}x[m] (z, y)) and then taking

i

the specialization y; = m;(l) for i = 1,...,m (this way, all the terms such that ¢ # w cancel on the
r.h.s.). Hence

Ry m) (@, ty) R < (7, )
R[N]X[nL] (’I, y)

T Crw(a) =t TN A G (g7 e, x) Al (2) Ko (R x ) (2, 1))

—_p 1
YiT T i)
or, equivalently,

RJX [M] (J?, ty)RLX [m] (l‘, y) At (.T)
Ranpw(mp)xm) (@ y) ™

77100 (2) = trrH1=2N2 Ay (g e x) (3.13)

=T, )
When considering y; = x;(li), the following holds:
_ (‘“Eix— i’fu(a‘)) it i w(j)
R(zi, ay) = )
—(a—1) if i=w(j)
The extra sign that the specialization generates on the r.h.s. of (3.13) is then

#(J % [m]) +#£(L x [m]) + #((([N] \ w([m])) x [m]) = #J - m + #L-m+ (N —m) -m
which is equal to 2(N — m)m. The extra sign, being even, can thus be ignored.

We now split the set J x [m] as the disjoint union of G; and Gs, where
Gi={(,g) e x[m]|i#w()} and G2={(i,j) €Jx[m]|i=w(j)}

Hence, after multiplying and dividing the r.h.s. of (3.13) by R¢g,(x,y), we obtain

RGl (‘Ta ty)
RG1 ({)37 y)

RGl (xa y)RLX [m] (Ia y)
R(npw(im))) x[m] (2, Y)

77 0w (x) = TN AL (g7 e @) Re, (2, ty) Ay, ()

-1
Yi=Ty (i)

It is easy to check that

Rg, (z,ty) T # m
G ) =A z.1). R ¢ — (t — 1)#(INw([m])
RG1 (m7y) ) wa([m])( ) )a G2 (1'7 y) i x;zl) ( )

yi:Iw<i)

86



as well as

AVJ><w([rn]) (l‘, .13)

jow([m])(vaj)
RG ($7 y) = L, RL m (.13, y) =
' vimanty  (Tw(t) Twm)#7 ile:Wl_[w([mD o O GO

and
AN w(m)) xw(im) (2, )

vizrgly Ty Tw(m)) N THFETHT

R(NNw([m]))x [m] (5 Y)

Hence, using J Nw([m]) = BE,, we obtain

T C () = TN 2 A (g7 e, @) A g () H zi(t—1) AJX (D ZExwlm) At ()
ieBe (INNw([m])) xw([m])

w

where the dependency is always in the variables (z, z) when not specified. We deduce immediately
that Cy. = 0 whenever L Nw([m]) # 0 since Apyy(m))(®,2) = 0 in that case. Finally, using
[N] =2, UAS, UB, UBSE and w([m]) = Ay, U BE,, we get that

7 - - n Z%C w([m
7 Cr(a) = 702N A (g e @) A gy | [ @it - 1) | XD A
ien; Aats,xw((m))

when L Nw([m]) = (. From Lemma this implies that
C.],w ({E) = tr(r+1_2N)/2Am (x)AJXL(xv 1')7—.] (ngw([m]) ((E, x)q-j(w)Kw (Am)) .
when L Nw([m]) = (. This proves (3.9) and the proposition thus holds. O

4. Pieri rules

Before proving the Pieri rules for the bisymmetric Macdonald polynomials, we first need to
establish a crucial lemma.

We will say that a composition (Aq,...,Ay) is biordered if Ay > Ay > -+ > A, and Ajyq >
Ay > --- > An. Note that if A is not biordered then there exists a permutation o € &, X G y1.n
such that oA is biordered. For J C [N], we will also let 7)A = A + &/, where e/ =1 if i € J and 0
otherwise.

LEMMA 208. Suppose that o € Sy and J C [m + 1, N| are such that o([m]) N L = 0, where
we recall that L = [m + 1,N]\ J. Let (A,w) generate a superevaluation, and suppose that the
composition @ = o~ 17(A + (1™)) — (1™) is biordered. The following holds:

(1) If (Q,wo) does not generate a superevaluation then uf(C;,) = 0, where Cj,(z) is such
as defined in Proposition [207.

(2) Suppose that (Q,wo) generates a superevaluation. If § € Sy is also such that (2, wd)
generates a superevaluation then o(S&,, X Gpip1n) = 0(6m X Spy1n) in SN/ (S, X

Smt1,n)-
(3) If I C [m+ 1, N] is such that @ = o~ (A + (1™)) — (1™), then I = J.

PROOF. We first show that (1) holds. Suppose first that  is not a superpartition. Given that
Q is biordered, this can only happen if Q, = Q441 for a given a € [m — 1], which can be visualized

Z 8 (4.1)
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with b =a + 1. Now, Q = o~ 177(A + (1™)) — (1™) translates in coordinates to
Q@+@m), = +0m) y el () (4.2)

where e/ = 1ifi € J and 0 otherwise. Hence there are two possible cases: (i) o(a),o(b) € [m+1, N]
or (ii) o(a) € [m],o(b) € [m + 1, N]| (the case o(a) € [m + 1, N],o(b) € [m] is equivalent).

Consider first the case (i). We have that o(a), o (b) € J since o([m]) N L = () by hypothesis. We
thus deduce from that Q, = Ay () and Q = A, (), which implies that A,,) = Ay@). This in
turn implies that the permutation w can be chosen such that wo(b) = wo(a) + 1, in which case we
will have Afa(a) = Ay + 1 and Afg(b) = Ay + 1. Hence the term Ay o (jm)) (2, ) in Cj, ()
contains a factor A, (p),0(a)(x) such that

(1, A (o) — @Te@) | _ gt P70 — ghow gl mwote)
Up (TJ o(b),o(a) (-'I/')) = Up AT () — GTo(a) - qAa(b)+2t1*'LUU(b) _ qu(G,)+2t17w0’(a) -

o(a

0

and thus Cj,(z) vanishes in that case.

The case (ii) is almost identical. We have that o(a) € [m] and o(b) € J since o([m])NL = 0 by
hypothesis.

o(a) [ 1O
L O

o) [T

We thus deduce from that Q, = A,y and , = A, (p), which implies that A, (q) = As(). This
in turn implies that the permutation w can be chosen such that wo(b) = wo(a) + 1, in which case
we will have ASG( A
contains a factor A, »(a)(x) such that

a = Ag(a) + 1 and Afo‘(b) = Aa(b)- Hence the term AJXU([m])(fE,Q}) in OJVU(I)

T o) — mg(a)> GhomH12—wo(b) _ Ao +lgl-wa(a)

+ I _
U (TJAU(b)’U(a) (l‘)) = Ua ( qAa(b)Jrltlwa(b) _ qu(a)JFltl*U)D'(a) -

qTs(b) — Lo(a)
and thus Cj,(z) also vanishes in that case.

We now have to show that Cj,(z) = 0 when any of the two following cases occurs:

(1) wo (24 (1™)) £ Q®
(2) wo(2) #Q*

In the case (1), we have
Q% # wo(Q+ (1)) = wry(A+ (1)) = 7y(HA®

This can only happen if 7, J)A® is not a partition, that is, if we have the following situation:

b {

o ||

where 1 +b = a, A® = AP, a € w(J) and b ¢ w(J). Note that b cannot belong to w([m]) since
otherwise the diagram of A* would be of the form

b

a |

(4.3)

and thus not a partition. We therefore conclude that b € w(L). Hence there exist j € J,l € L such
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that ¢ = w(j) and b = w(l), which implies that the term Ay (z,z) in Cj(x) contains a factor
A;j () such that
A?tQ—a _ quBtl—b

t P
uﬂANu»=ux(xﬂ ”)=q ~0

® ®
T; — X qAa tl—a _ qAb t1-b

as wanted.
We finally need to consider case (2) which amounts to
Q" #Fwo(Q+ (17) = (1)) = w(ry (A + (1)) — p(1™)) = 7 A® —wo(1™) (4.4)

From Case (1) we know that Cj,(x) = 0 if 7,,(;)A® is not a partition from which we can suppose
that 7, J)A® is a partition. Hence (4.4)) will hold in the two following situations:

AN W (4.5)

a

where X stands for a removed cell (the diagrams of A® are those without X’s and black square).
We first show that the case to the left cannot occur. Indeed, we have in that case that

a) b w(J)
b) b€ wo([m])
¢) b ¢ w([m]) (otherwise A would not be a superpartition)

From b) and ¢) we deduce that b € w(o([m]) N [m]). Therefore b € w(J) since o([m]) N L = @ by
hypothesis. But this contradicts a).

Finally, we consider the case to the right in (5. We have 1+b=a, A® +1 = AP, b € wa([m])
and a € w(J). Therefore, there exist j € J,s € o([m]) such that a = w(j) and b = w(s). The term
Ajxom) (@, ) in Cjq(z) thus contains a factor A; ,(x) such that
gtz; — %) B qA§J+1t27a _ qA?tkb

=0
q‘@tl_a _ qA?tl—b

A (0) = uf (S22
j s

which completes the proof of part (1) of the Lemma.

Part (2) and (3) of the lemma are much simpler to prove. We start with (2). Since both (€2, w?)
and (2, wo) generate a superevaluation, we have that

Q" = woQ = wold and Q° = ws(Q+ (1™)) = wo(Q + (1™))

Hence, 07160 = Q and o~ 1§(2+ (1™)) = (Q+(1™)). We thus conclude that 0716 € &,, X Gyi1. N
or equivalently, that 0(&,, X G,41,8) = 0(Ss, X Spt1,n), as wanted.

As for (3), we have
Q=0 A+ (1) - (™) =0 (A + (1™) = (17) = 1T (A+(1T) = A+ (1™)
which implies that I = J. (I

We can now state our main theorem. It is important to note that a more explicit characterization
of the indexing superpartitions appearing in the Pieri rules will be provided in Corollary Also
recall that the evaluation u,+ (Pa) was given in (1.21).

THEOREM 209. For r € {1,...,N — m}, the bisymmetric Macdonald polynomial Pp(x;q,t)
obeys the following Pieri rules

er($m+17 ce. ,.I'N)PA(LIZ Q7t) = Z
Q

ux (Co) Uag (Pa)
uy (AL,) uys (Pa)

0

) Pal(x,q,t)
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where the coefficients Cj . (x) were obtained explicitly in Propositz'on and where the sum is over
all superpartitions Q such that there exists a 0 € Sy and a J C [m + 1, N| of size r such that

e o(Q+ (1) =7,(A+(1™))
e o([m))NL =0, where L=[m+1,...,N]\ J
o (Q,wo) is a superevaluation, where w is such that (A, w) generates a superevaluation

PRrROOF. We know from Theorem that

er(Ym-‘rla ) YN)A%(‘I),’S\;(xv q, t) = E E CJ,U(x)TJKUﬁ\; (l‘, q, t)
JC[m-‘rl,N] [O’]GGN/(GnLX677L+1,N)
|J|=r o([m])NL=0

where we recall that 75[1*,' (z; q,t) was defined in Theorem Using ™D 6 denote er(Tmt1y- - TN),
we obtain from Lemma that

ug (el TAL (2)PE (m1g,0) = > Cro(x)T1 Ko Py (254, 1)
JC[erl,N] [O‘]GGN/(GmXGm_{.l,N)
[7/=r o(m)nL=0

Let A be a superpartition such that (A,w) is a superevaluation. Applying u} on both sides of the
equation (and dropping the dependencies in x in the evaluations for simplicity) leads to

ui (e (AL uf (P = Y > ux (Coo)ul (11K, Py) (4.6)
JC[m+1,N] [0]€6N/(EmXCmt1,N)
|J|=r o([m])NL=0

Now, in uX(T_]Kgﬁq;), the evaluation amounts to the following substitution

2 = Aot f-wo)

where again e/ = 1if i € J and 0 otherwise. Comparing with (6.9), we have that the substitution
is
z; = ¢ igl—wa (i)
where Q = o~ 17;(A + (1™)) — (1™). Choosing o in [o] such that ©Q is biordered, we deduce from
Lemma that for u} (Cj,) not to vanish, we need (Q,wo) to generate a superevaluation (and
in particular for © to be a superpartition). We also get from Lemma 2) and 3) that the
superpartition {2 can arise in at most one way in the sums in the r.h.s. of (4.6). As such, we obtain
that
ug (e uf (AL ) (Pg) = Y ui (Cuo)ud (Py)

Q
where the sum is over all superpartitions € such that there exists a 0 € S and a J C [m + 1, N]
of size r such that o(Q+ (1™)) = 7,(A + (1™)), such that o([m]) N L = 0, and such that (Q, wo) is
a superevaluation.

The symmetry established in Theorem then implies that

1 - -
ug (e VUL (AL )YPT) = ug, (Z uX(c‘,yc,)Pg>
Q
Now, the previous equation holds for every superpartition ¥. Therefore,

er(Tmt1s- - ,xN)uX(A:n)ﬁX(x’ q,t) = Z UX(CJJWSX(%; 1)
Q
from which we finally obtain that

er(Tmit, - wn)Pa(Ts0,t) =
Q

) PQ(erqat)
Q
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5. Pieri rules and vertical strips

In this section, we will give explicitly which superpartition 2 appear in the Pieri rules of Theo-
rem They will turn out to be certain vertical strips.

For partitions A and p, we say that u/)\ is a vertical r-strip if |u| — |A| = r and p; — A; € {0,1}
for all 4, where we consider that p; =0 (resp. A; = 0) if ¢ is larger than the length of p (resp. A).

Given the superpartitions A and ©, we say that Q/A is a vertical r-strip if both Q® /A® and
O*/A* are vertical r-strips. When describing the vertical strip Q/A with Ferrers’ diagram, we will
use the following notation:

the squares of A will be denoted by [ ]

the squares of /A that do not lie over a circle of A will be denoted by [Jj
the squares of /A that lie over a circle of A will be denoted by [

the circles of A that are still circles in €2 will be denoted by ()

the circles of Q that were not circles in A will be denoted by @

For instance, if A = (5,3,1;4,3) and Q = (5,4,0;5,4,2) the cells of the vertical 4-strip /A are

represented as:

1@

O

A row in the diagram of /A that contains a [Jj will be called a Jfrow (and similarly for (),
@ and ). A row that both contains a @ and a [ will be called a [JJ@-row. For instance, in our
previous example, the set of [frows is {2, 4}, the set of @-rows is {3,6}, the set of [Jrows is {3,5}
while the set of [J]@-rows is {3}.

DEFINITION 210. We will say that Q/A is a vertical r-strip of type I if

(1) Q/A is a vertical r-strip
(2) there are no [J@-rows in the diagram of /A

For instance, if A = (3,1;5,4,3) and Q = (4,0;6,4, 3,2) then Q/A is a vertical 3-strip of type L.

1l
®

- (5.1)

O

We first show that the (2’s that can appear in the Pieri rules of Theorem are such that Q/A is
a vertical r-strip of type L.

LEMMA 211. Let o and J be such as in Theorem[209, that is, such that

(1) o(2+(1™)) = 75(A+(1™))

(2) o(Im)NL=0 con L=[m+1,N]—J

(3) (Q,wo) is a superevaluation if (A, w) is a superevaluation.
(4) J C[m+1,N] with |J| =r.

Then Q/A is a vertical r-strip of type I
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PROOF. Applying w on both sides of (1) gives wo(Q + (1™)) = 7(nw(A + (1™)). From (3)
we then get that Q% = 7,,;)A®, which immediately implies that Q® /A® is a vertical r-strip.

Subtracting (1) on both sides of (1) gives o(Q + (1™)) — (1) = 75(A + (1™)) — (1™) = 75A.
Applying again w on both sides of the equation then yields wo () +wo(1™) —w(1™) = 7,y (wA),
which from (&) amounts to Q* + wo (1) — w(1™) = 7,5y A*, or equivalently, to

O =1y nA" +w(1™) —wo(1™)
Note that by the action of the symmetric group on vectors, w(1™) adds a 1 in the positions w([m])
(and similarly for wo(1™)). From (4), we have that w(J) Nw([m]) = 0, which gives Qf — AF < 1.

Moreover, from (2), we have that o([m]) C [m] U J, which implies that wo([m]) C w([m]) U wJ.
Hence 0 < QF — Af <1 and we have that Q*/A* is a vertical r-strip as well.

Finally, suppose that row ¢ in /A is a [JJ@-row. We have in this case that i € Q% /A® as well
as 7 € w([m]) since A has a circle in row i. But, as we have seen, Q% = 7,,(;)A®. We thus have that
i € w(J)Nw([m]), which contradicts (4). O

REMARK 212. Observe that in a vertical r-strip, the rows of Q0*/A* correspond to the [J-rows
together with the [Jf-rows. Similarly, the rows of Q® /A® correspond in a vertical strip to the @-
rows together with the |-rows. By this observation, if Q/A is a vertical r-strip, then the number of
[O-rows is equal to the number of @-rows.

We now show that all 2’s such that /A is a vertical r-strip of type I do in fact appear in the
Pieri rules of Theorem 209

LEMMA 213. Given Q/A a vertical r-strip of type I, let & be any permutation that interchanges
the -rows and the @-rows while leaving the remaining rows invariant (such a permutation can be
defined by Remark|219). Let also J be the set of [@-rows and [J§-rows. If

c=wltow and J=w'5(J)
then there exists a permutation s € G,y X Spyy1. N such that o' = os obeys the following relations:

(1) o'+ (1)) = 7,(A + (1))

(2) o' (Im))NL=0 con L=[m+1,N|—J

(3) (Q,wo’) is a superevaluation if (A, w) is a superevaluation.
(4) J C[m+1,N].

As such, the superpartition Q satisfies the conditions of Theorem ?? (with Cy . (x) = Cjo(x)).

PROOF. We first show that (2, wc’) is a superevaluation. By definition, we have to show
that wo’Q = Q* and that wo’(ﬂ + (lm)) = Q® for a certain s € &,, X S,,41, 5. We will show,
equivalently, that (wo’)~1Q* = Q and that (wo’)1Q® = Q + (1™). Observe that

wo' = wos = ww Fws = Fws

It thus suffices to show that s~ 1w ™1671Q* = Q and s 1w 16 1Q® = Q+(1™). From the definition
of 5, it is immediate that 6! also interchanges the @-rows and the [Jrows. Hence 57 'Q® /571Q* =
A®/A*. Since by definition w1 sends A®/A* to [m], we have that w™'65~! sends the rows in the
diagram of Q ending with a circle to [m], that is, w™'671Q* = v and w67 1Q® = v + (1™)
for a certain v € Z]>VO. Using any s~! € &,, x Sy41,n such that s~y = Q, we obtain that
sTlw a7 = Q and s w16 7I0® = Q + (1™) as wanted. We will take this as the definition of

s in the rest of the proof.
Observe that 1) is equivalent to
wo'(Q+ (1)) = Tpnw(A+ (1)) = T&(j)A®
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by definition of w and J. Since we have shown that 3) holds, we only have left to show that
0® = Ta () (A®). But by definition of J and &, the set ¢(J) corresponds to the @-rows and JJjrows
in the diagram of Q/A, that is, to the rows of Q®/A®. We have thus shown that Q¥ = 7, 7 (A®).

Asfor 2), let x € o/([m])NL = o([m])NL. Therefore, w(z) € wo([m])Nw(L) = dw([m])Nw(L).
Now, w([m]) corresponds to the [Jrows and the (Orrows in the diagram of /A, which implies that
Gw([m]) corresponds to the (Crrows and @-rows in that diagram. Since w([m]) Nw(L) = 0, w(L)
cannot correspond to any [JJrow or any (Oyrow. Therefore, w(z) € cw([m]) N w(L) needs to
correspond to a @-row. But this is impossible because w(J) Nw(L) = @ and the @-rows belong to
w(J) =6(J).

Finally, we have to show 4). By definition of a vertical strip of type I, the @, [} O and [ rows
are all distinct. Now, &.J corresponds to the @-rows and the B rows, while w([m]) corresponds
to the (Orrows and the [Jrows. Hence, 5J C w([m + 1, N]), which implies that J = w='¢J C
[m+ 1, N]. O

EXAMPLE 214. Consider the following vertical strip of type I:

I
o

O

(5.2)

O

[ ]
We have in this case that J = {1,3,5}. Taking 6 = [1,3,2,4,6,5], and w = [3,5,1,2,4,6] (in
one-line notation), we get that J = {3,4,6} and o = [4,6,3,1,5,2].
Using Lemma [211] and Lemma [213] we can rewrite Theorem [209] in a more precise fashion.

COROLLARY 215. Forr € {1,...,N —m}, the bisymmetric Macdonald polynomial Py (x;q,t)
obeys the following Pieri rules

. B ul(Cre) Uy (Pa)
er(Tmity .-, xn)Palx;q,t) = g ( u?{(Afn) ins (PQ)) Pal(x,q,t)

where the sum is over all superpartitions Q0 such that Q/A is a vertical r-strip of type I. Note that
Co(x) was defined in Proposition where o and J can be obtained in the following manner
from the diagram of Q1/A: let & be any permutation that interchanges the [JJ-rows and the @-rows

while leaving the remaining rows tnvariant, and let J be the set of @-rows and |J§-rows. Then
c=wlow and J=w"'5(J)

where w is such that (A, w) is a superevaluation.

EXAMPLE 216. The superpartitions that appear in the expansion of the multiplication of ea(x3, x4, . . .

and P2,0.1)(T1, ..., TN; g, ) in terms of bisymmetric Macdonald polynomials are:
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To be more precise, we have that

q(1 -1 (1-q)(1—qt?)
1= gt P1053,1) + (1 —qi)? P(2,052,1)

_ DA -H1 -9 -t L (A=a)(d =)
(IT—@) (1 —qt)(1 — qt2) ~EED T 1291 = ¢83)

We now give more details on how the coefficient of Py ¢;3,1) for instance was obtained. The diagram

Q/A is in this case
Hl =
e
O]

o
Choosing instance & = (12)(34), J = {1,3} and w = (23), we then obtain from Corollary [215| that

o =1(23)(12)(34)(23) = [3,4,1,2] and J = (23)(12)(34){1,3} = {3,4}
Lemma [205] gives

62(.%'3, L4y 7xN)P(2,O;1) =

P(2,0:1,1,1)

(z1 — 32)(23 — 24)
($1 - I3)(£E1 - ZE4)($2 - xs)(xz - 934)
while Theorem with m = 2 and r = 2 yields

3_2N t.’[?l — X2 t$3 — X4 tl‘4 — X3
C]’o— =t T3T4 @(U)K13K24(1‘1 — 1‘2)
Ty — T2 T3 — T4 T4 — T3

<I>(U) = —(t — 1)23331}4

Taking
UX(CJ,O') uAg’ (PA)
uX(At ) UAU+ (PQ)

m

we finally get the desired coeflicient.

6. The e,(z1,...,Ty)case

In Theorem and Corollary we obtained Pieri rules for the action of e, (%m+1,-.-,TN)
on bisymmetric Macdonald polynomials. In this section, we will present Pieri rules for the the

action of e.(x1,...,&,). Although the proof in the e,.(z1,...,z,,) case is quite similar to that in
the e, (zm+1,...,2N) case, it was more challenging to explicitly find the coefficients of the operator
er(Y1,...,Yn) viewed as a sum over the set 77, as we couldn’t use Lemma universally. To address

this, we defined the operator S™ as e,.(Y1,...,Y,,)A! S”, found the coefficients for the expansion of
S”, and antisymmetrized. First, we will define an analogue of A'F,, in this context:

In the notation of section 5, we define
RB (J?, t_ly)
RB’ (CE, y)

where B is the set of integer points in the triangle with vertices (2, 1), (m,m — 1) and (m, 1), while
B’ is the set of integer points in the triangle with vertices (1,1), (m,m) and (m, 1).

Ngm('r7 y) =

EXAMPLE 217. The product NGs(x,y) can be seen at the quotient of the factors stemming from
the two following regions
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Hence NGs(x,y) is equal to

(1=t agyn) (1 — ¢~ taoys) (1 — t~a3ys3)
(1= 23y1)(1 — 2292)(1 — 23y2)(1 — 21y3) (1 — 22y3)(1 — 23y3)

The following corollary is an analogue of Corollary
COROLLARY 218. We have the following equality
AN G = (=0~ A (1) o

PROOF. The identity can be deduced from Lemma [200] after completing the square in the
triangle B’ corresponding to the denominator of N'G,,(x,y). a

The following lemma concerns the function

NgT N = RPT',N (mi7t_1yj)RQ7~,N ($i7qt_1yj)
" RP:,YN (@i, yj)Rgme (i, qyy)

(6.1)

where Py, is the set of integer points in the trapezoid with vertices {(1,m), (1,m—r+1),(m—
r,2),(m —r,m)} and Oy, is the set of integer points in the trapezoid with vertices {(m — r +
2,m),(m+1,m—r+1),(N,m),(N,m —r+1)}. That is, P;’N is the union of Py, with the line
segment from (1, m—r) to (m—r,1) of slope —1 and Q}Vm is the union of Qy , with the line segment
from (m —r 4+ 1,m) to (m,m —r + 1) of slope —1.

LEMMA 219. For k > 1, we have

Tonririh - TNt NGy, y) = VNG (2,y)
Consequently, forr > 1,
(T Tn—1) -+ (D1 - TN JORN G, y) = " TINGY () (6.2)

PROOF. The lemma follows from Lemma Diagrammatically, acting with T,,w} on NG,
amounts to adding a dot to the triangles associated to the numerator and the denominator in the
diagram of N'G,,. For instance, if N = 6, m = 3 and r = 2 the diagram associated to N'G3 is:

3 L] L]
2 L]
1

3 L] L] L]
) . .
1 .
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and when we apply wg we obtain

3 . X
2 L[]
1

12 3 45 6

3 . X X
2 .
1 .

1 23 45 6

where x correspond to change x; — gx; in the respective factors. After that, we have to apply
the Hecke operators; T4wg/\/ Gy is:

1 2 3 45 6

12 3 45 6

The product Ty,_,41---Tn_, complete the horizontal line in the m row of N'F,,. For example,
T2T3T4w§/\/'93 is

3 o X X X X
2.
1

Finally, as r increases, extra rows are added. We get for instance, in the case N = 6, r = 2 and
m = 3, that acting with (T3T4T5)(T2T3T4) on waNG3 adds the following two diagonals:
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3 - X X
21 o X X X
1

O
DEFINITION 220. We define
Sr == ( TN 1) . (Tm—r+1 ce TN—T)W}A\[
This operator has good propeties
LEMMA 221. S” over a bisymmetric funciotn is t-symmetric in Tpy41,-.., TN, t-antisymmetric
N Tty - - -5 Ty, and doesn’t have variables x1, ..., Tym—y.
PROOF. Let f bisymmetric function, if ¢ € [m + 1, N — 1] we have that
TiSTA f(z) = TiTowy A, (2)f(2)
=T,T;_ WAL (z)f(x)
= T,wyTiA;, (2) f(x)
— T,wi AL (2)f(2)
= STAL () f(x)
Moreover, the word ¢ can be rewrite as
g = (Sm e Sm—r—i-l) te (SN—l e SN—r)
So, if ¢ € [1,r — 1] we have
T iSTAL (z)f(z) =T iTrwly m(x) (z)
= ToTN—iwyA ( )f(x)
= Towi TN —itr A, () ()
= —T,wy AL, (x) f(x)
= —S"AL () f(x)
because N — i+ r € [r — 1] seeing as element module N. O
LEMMA 222. Let O = ZU,I Cr,0T10 an operator t-antisymmetric in 1, ..., Ty, and t-symmetric
M Tmal,--., TN over a super symmetric function. We have the follow symmetries relations for its

coefficients

(1) If 1 <i < m then

(txi - xi-‘,—l) i) (ta:l — $i+1)

(2) and if m <i < N —1
Cs,;(]).,sia' = CLU
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Proor. For simplicity of notation, write o1, it = K; ;4 100K; i41, J = K; ;411 and
7o Tt =)t - xin
S N

Then, if 1 < i < m then we know that
T,0A7,(x) f(x) = —OA, (z) f ()

Taking the coefficient of 770 we have the relation

JJ+1

T; t—1 t],‘i — Ty
+1( )CI,U + 1 K;i1(Crp) =—Cro
Ti — Ti41 Tj — Ti41
which implies
CS'(I) sio CI o
k2 19 — K . ) .
(t.fi — xi—Q—l) ii+1) (tl‘i — $i+1)
Case m < i < N follows in the same way. O

PROPOSITION 223. Let f(x) be any bisymmetric function. For N,r,m we have

STAL @) f(x) = > Cro(2)71 Ky f(2)
JC[m—r+1,N] [0]€6(mm_ri1,N]/(EmXEmi1,N)
|J|=r o(J)C[m—r+1,m]

where the coefficient Cj () is given by
Cio= (_1)(gL)_r(m_T)_‘—#%zA[m—r]A[m—r+1,m]AJ,[m+17N]¢(O')TJAJ7[m—T]UAm-

PROOF. The main idea of this proof is the same that used in Proposition By Lemma [221
and [222]is sufficient to prove the claim for a particular J and o, let J = [m—r+1, m—7|U[m+1, m+7]
with 7 € {0,...,r} and o the permutation that send the set [m — 7+ 1,m] into [m+1,...,m + 7]
via the permutation a — a + 7. Let G(x,y) = S"Fon(z,y)g(x).

By Corollary 218] we have

(—t)(%)
Am(y)
and because g(x) commute with T;’s and w};, we can use the Lemma [219] obtaining

_)(3)pr(N=m) i
Glzy) = ()A(@,)Agg)/\/gm,w(x,y)g(x)
_ (7t) (Tg)tr(Nim) (y) RPT»,N (377;7 t_lyj>RQr,N (.’L‘i, qt—lyj) g(x) (63)
Ap(y) " Rpr (i, yj)RQ;.’N (i, qy;)

where 9, n,Pr N, Q; N and 73;.7 N are the regions defined in The problem now is AS{) this

expression, because when we apply 53{) this expression does not factorize making heavy to control it.

We know that we will follow the same idea gives in the proof of then afterwards we will multiply
G(z,y) by 77K, (Rim)xm) (%, y)) and will take the specialization y; = zj;(li) fori =1,...,m, doing
this, we can notice that the permutations that send elements in [m — r] to [m —r 4+ 1, m] are zero
over 0,G(x,y). We wont give a proof of this claim, but it easy to see geometrically. Then we rewrite
the regions O, v, Pr N, Q%N and P;,N as

t(?)tr(Nim) (v) Rp, (wi’ tilyj)RP‘z (wi’ tilyj)RQl (xia qtilyj)RQ2 (xiv qtilyj)
Am(y) — ™ Ry (@i, y5) Bp, (i, y;5) Rgr (i, qy;) Ro, (w3, qy;)

’
1

G(z,y) = g()

where the regions are P; is the triangle {(2,m—r),(m—r,m—r),(m—r,2)}, Q; is the triangle
{(m =7+ 2,m),(m,m),(m,m —r+2)}, Py is the rectangle [m — r] X [m —r + 1,m] y Qs is the
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rectangle [m+1, N] X [m—r-+1,m], while P{ is the union of P; with the line segment from (1,m —r)
to (m —r,1) of slope —1 and Q) is the union of Q; with the line segment from (m —r + 1,m) to
(m,m —r 4+ 1) of slope —1.

Now, we going to multiply the numerator and denominator by the triangles R(z,y) and
Rpr(z, qy) where M is the triangle {(1,1),(1,m—r—1),(m—r—1,1)}, N is the triangle {(m —r+
1,m—1),(m—1,m—r+1),(m—r+1,m—r+1)}. Because afterwards AY does not change the
elements in [m — r] with the elements in [m — r + 1,m], we can use the Lemma [200] (with ¢ — ¢~
and z; — qx;) over the triangles P; and M, and the triangles Q; and A/, which gives us

Gloy) =p- Rp, (wi,t ;) Ro, (i, at~"y;) g

’ R, (i, y;) B (i, yi ) Ro, (i, qys ) B (i, qy;)
. sz(xht_ yj)Rgz(xivqt_ yj) (3;‘)
Rim—v)xm] (@i, Y5) Rim—r1,m) x m—r+1,8) (i, qy5) 7

Tn)_,’_('rn;r)_,’_(;) q(g)t(ZL)tT(N_m) Afm,r] (x)A[m—r] (y)Afm,rH’m] (x)A[m—r—o—l,m] (y)
#("27)4() A (y) ’

L N YA SNII €) VA VAN (x)
— (=) B+ (")+(E) g (5)(3) = ("2 ") = (5) Zlmzr T T im ot m]
( 1) ¢t A[m—r}x[m—r—i—l,m](y) .

If we take the expansion of G(z,y) we have

Gy = 3 ) Cro (@)1 K, <g<w>>

Jg[n‘l—‘r—&-l,N] [0)€GN/(Gm XS mi1 N) )< o) (i, 5)
J|=r

for some coefficients C ().
The coefficient C',,(z) that we want, can be obtained multiplying by 77K, (Rjm)x[m] (¢,¥)) and

then taking the specialization y; = 752

. for i =1,...,m. Hence,
(i)

R'P2 (xiv tilyj)RQQ (xia qtilyj)
R[mfr] X [m] (xiv yj)R[mfrJrl,m] X[m—r+1,N] (xia qyj)

Crpulz)=p- 7K (Rpm)xm) (2, 9))

V=TI
from this equation we obtain that J C p([m —r + 1,m]) (and the J = pu([m —r + 1,m])), all other

options becomes 0. Then the expression is

Ry, (w4,t'y;) Ro, (w4, gt~ y;) Re (24, qy;)
Rop (w4, qy;)

CJ,N<33) =D

_ -1
Yi=TIT ()

where D = ([m—7+1, m|U[m+7+1, N])x[m—r+1,m]y € = ([m—r+1, m—7F]U[m+1, m~+7]) x [m—r].
Let G2 = {(i,7j) € Qa2 | i # 750(j)} thus we have

R it_l i) Re(x; iR iatl*RG Ti, qY;
CJ,H(J?) =p- P, (i, yi) Be (@i, ay;) Ro, (v, 4t~ ;) Ra, (vi: 9y;) (6.4)
Rp(xi,qyj)li@(%,qyj) S |
Yi=TIT,, ;)
it is easy to see
R x,qt_ly t—1)" ~
M = QAJX[m 1,N] (65)

RG2 (l‘i, qyj) yi:T,;x;(li) tr(N—m)
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and

_ TJ(AJX[mfr]AJX[mfr])
ety O (g

Re (x4, qy)

= ()" "¢, Rpy(x,ty)
A[m—r]x[m—r+1,m] (y) ’

_ -1
yi—‘liwwm

which imply

R5 (xia qy)sz (x7 tily)

:t*r(mfr)f;—‘] AJ s tmer AT im—r :tfr(mfr),r‘] At AT o
A[mfr]x[mfrnLl,m](y) ( I 12X ]) ( Ix| =] ])

yi:'f’.]m;(li)

(6.6)
then we just have to know how much is

Re, (xi,qy;)

X =
Rp(zi, qy;)

—1
Yi=TIT (1)
but Gy and D are the same in the rectangle [m + 7 + 1, N] x [m — r + 1,m], this gives us

_ R, (@i, qy5)
1 RE (xi7 qy])

YiTTIT )

RG2 (xiv qy])
Rp(xi,qy;)

-1
YiTTIT ()

where Gy = {(i,§) € [m+1,m+7 x[m—r+1,m] | i # 7;0(j)} y D = [m—7+1,m] x [m—r+1,m].

~ A[m+1 m+7]Xo[m—r+1,m]
= (=1)"Z{mg1,m4) : :
’ A

_ -1
YITTIE )

_ Rg, (4, qy;)

X

[m—7+1,m]xo[m—r+1,m]

but for the equation [3.4] from Lemma for BE =[m+1,m+7 and AS = [m — 7+ 1,m| we
know that
Apmt 1t xo(m)) _ Am ()
4[nz—7’+1,m]><a([m]) F{(U(Am(x))
A[m+1,m+7’]X[mf'r]A[m+17m+F]Xo([mfr+1,m]) A[mfr]><[m77‘+1,m]A[mfr+1,m]

¢(U) = (t - 1)Fx[m+1,m+f“] :

= (t = 1) Tt mer] -
A[mfqul,m]X[mfr]A[mfqul,m]Xa([m77’+1,m]) A[mfr]><a([mfrJrl,m])Aa([m7r+1,m])

A[m—&-l,m—i—?]x[m—r] A[m—r]><[m—r+1,m]A[m—r+1,m] X

= (t - 1)F .
A[mfi@#l,m]x[mfr] A[mfr]><o'([m7r+1,m])Ao’([mfrJrl,m])

but

A[m-{-l,m-&-ﬂx[m—r] A[m—r]x[m—r—i—Lm] - A[m—r]x[m—r-&-Lm-i—F] -1

A[mferl,m]x[mfr] A[mfr]xa([mfrJrl,m]) B A[mfr]><[m7F+1,m]A[mfr]X[m7r+1,m+F]

therefore

X(t—1)"=(-1)"®(0) Ko (Bpn—r+1,m))

(6.7)
A[’rn—r-i—l,m]

Finally using and the fact
(71)T(mir)q(g)A[m—T]KG(A[m—T+1,m])TJ(AJX[m—T]) = TJ(KUAm)

()3~ ()-rmn-n
in[6.4] we obtain

OJ,J = (_1)7-(m_7.)+%A[m—r]A[m—r+l,m]AJ,[m—&-l,N]@(O—)TJAJX [m—r] KaAm (il?)

and
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Finally, by Lemmas 221] and 222] we conclude that
Cro= (=1 AL A it m) A i1, N PO TI A i K Ay

The analogous to the Proposition [207]is the following.

PROPOSITION 224. Let f(x) be any bisymmetric function. For any 1 <r < m, we have that

er(Yi,. . V)AL (2) f(z) = > Do (x)T1Kq f ()
JC[N] [0]€6N/(GmXSmi1,N)
[J|=r o([m))NL=0,o(J)C[m]

where the coefficient D, (x) is given by
Dj,(z) = (—1)#%3t(r"'l_QN)T/zAm(x)AJX[mH,N] (z,2)P(0)Ty (AJXQ[U_J(.T7x)KgAm(x))

Proor. Notice that by Lemma [198] we have:
er(Y1,..., Ym)AL (2)f(2) =

and by Lemma [T96] we have:

m«‘l;ﬁﬁ L YRAL () f(2)

AfnY1 LY, = (_1)r(m—r)tr(r+1—2N)/2A£n(Tm o Ty_q)--- (Tmf('rfl) T )w”
_ (_1)7‘(m—7’)t7“(7“—}-1—2N)/Q.AESmST7

From these two equations, we have:
(71)r(mfr)tr(r+1f2N)/2

er(Y, .., Y )AL (2)f(x) = i — Al STAL (2) f(z). (a)

However, from Theorem we can see that:
STAt(x)f(x) = (_1)r(m_T)B[m7T]B[mfr+1,m] Z (_1)FAJ,[m+1,N]q)(o-)TJAJ,[mfr]KUAm(m)
7E[r]
where B = Ay (x)Ax. Using the relation AL Al f(x) = [m]t—11AL, f(x) and applying AL, to both
sides of the previous equation, we obtain:
AL STAL (z)f(z) = (—1)7'(7”_") [m — r]t![r]t! AL, Z (—l)fAJ’[mHW]@(U)TJAJ)[m,T]KJAm(m)
Fe(r]
Using this in equation [ we get:
er(Yi, .., Yo) AL () f(z) = "0 2N 2 A, () Ay > (=17 Ay g1 M ®(0)Ts A ) Ko A ()
Fe(r]

O

LEMMA 225. Suppose that o € G and J C [N] are such that o(fm]) N L =0 and o(J) C [m],
where we recall that L = [N]\ J. Let (A,w) generate a superevaluation, and suppose that the
composition Q = o~ 17 (A + (1™)) — (1™) is biordered. The following holds:

(1) If (2, wo) does not generate a superevaluation then u}(Dyy) = 0, where Dy () is such
as defined in Proposition 224

(2) Suppose that (Q,wo) generates a superevaluation. If § € Sy is also such that (2, wd)
generates a superevaluation then o(S, X G n) = 0(6hm X Sppin) in 6N /(G X

6m+1,N)'
(3) If I C [N] is such that Q = o177 (A + (1™)) — (1™), then I = J.
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PROOF. We first show that (1) holds. This is similar to the proof of Lemma Suppose first
that 2 is not a superpartition. Given that €2 is biordered, this can only happen if 0, = Q4,4 for a
given a € [m — 1], which can be visualized as

‘Z 8 (6.8)

with b =a + 1. Now, Q = o~ 177(A + (1™)) — (1) translates in coordinates to

(Q+@mm), = A+ (™)) oa) +el) (6.9)
where ¢/ = 1 if i € J and 0 otherwise. Hence there are three possible cases: (i) o(a),o(b) €
[m +1, N}, (ii) o(a) € [m],o(b) € [m+ 1, N] or (iii) o(a),o(b) € [m]. The cases (i) and (ii) follow

in the same way that Lemma ?7 using the term A ;[ 41,57, and for the case o(a),o(b) € [m] we
have the situation

a
: - (6.10)

We have that o(b) € J since o([m])NL = @ by hypothesis. We thus deduce from that Q, =
Ag(a) and 2 = Ay (p, which implies that Ag(,) = Ag(p)- This in turn implies that the permutation
w can be chosen such that wo(b) = wo(a) + 1, in which case we will have A® (@) = Mo(a) + 1 and
A%U(b) = A, + 1. Hence the term Ajya_y(z,x) in Djs(x) contains a factor Ay () »(a)(®) such
that

thCU b ola qA”(b)+2t2*wa(b) _ qAa(G,)+2t17wo’(a)
uj\_(TJAU(b),U(a) (I)) = UA < qmg((b)) — qxg((a))> _

and thus Dj,(z) vanishes in that case. The rest of the proof of (1) is similar to Lemma m
considering that the case

- q/\g(b)+2tl—wo(b) _ qAa(a)-l-Qtl—wo(a) -

S

{
a H

does not happen because o(J) C [m].
Part (2) and (3) follows in the same way that Lemma O

Using a version of Lemmam (where C () is replaced by D) and (1.5, which can be used
since e,(x1,...,%Ty) is symmetric in the variables x1, ..., x,, and of homogeneous degree r, we get
the desired Pieri rules.

THEOREM 226. For any 1 < r < m, the bisymmetric Macdonald polynomial Pa(x;q,t) is such
that

ux(Dys) UA+(7)A)
er(@1, ... xm)Pal@;q,t) = q Z(ut\ AL) wy: (Po) Pa(x,q,t)

where the coefficients D j ,(x) were obtained explicitly in Proposition and where the sum is over
all superpartitions Q such that there exists a 0 € S and a J C [N] of size r such that

(1) o(Q+ (1) =7,(A+(1™))

(2) o(lm])NL=0 con L=[N]—J
(3) (Q,wo) is a superevaluation if (A, w) is a superevaluation.
(4) J C[N] with |J| =r and o(J) C [m].

The Qs that appear in the Pieri rules of Theorem [226] are also special vertical r-strips.

PROOF. It is the same proof of Theorem [209 O
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DEFINITION 227. We will say that Q/A is a vertical r-strip of type II if

(1) Q/A is a vertical r-strip
(2) there are no |Jf-rows in the diagram of /A

For instance, if A = (5,3,1;4,3) and Q = (5,2,0;4,4,3) then Q/A is a vertical 2-strip of type

@)

II.

(6.11)

@

As was the case in Corollary ??, we can rewrite Theorem ?7? in a more precise way using vertical
r-strips of type II.

LEMMA 228. Let o and J be such as in Theorem[226}, that is, such that

(1) o(Q@+ (1) =7,(A+(1™))

(2) o(Im])NL =10 con L=[N]—J

(3) (Q,wo) is a superevaluation if (A, w) is a superevaluation.
(4) J C[N] with |J| =r and o(J) C [m].

Then Q/A is a vertical r-strip of type II.

PRrROOF. The proof of /A is a vertical r-strip is the same in Lemma so we have to prove
that there are no Jfrows in the diagram of /A. Suppose that the row i in Q/A is a [Jfrows, then
exist i € wJ with i € w(o~![m]) since A does not have a circle in row 4, which contradicts (4). O

We now show that all 2’s such that Q/A is a vertical r-strip of type II do in fact appear in the
Pieri rules of Theorem 2261

LEMMA 229. Given Q/A a vertical r-strip of type II, let & be any permutation that interchanges
the [-rows and the @-rows while leaving the remaining rows invariant (such a permutation can be

defined by Remark . Let also J be the set of @-rows and |J§-rows. If
c=wltow and J=w"'5(J)
then there exists a permutation s € G,y X Spyy1. N such that o' = os obeys the following relations:
(1) o'+ (™)) = 7,(A + (1))
(2) o'(Im])NL =0 con L =[N]—J

(3) (Q,wa’) is a superevaluation if (A, w) is a superevaluation.

(4) J C[N] with |J| =r and o(J) C [m)].

As such, the superpartition ) satisfies the conditions of Theorem [22¢] (with D g (x) = Dy q(x)).

PRrROOF. By Lemma we have Q/A is a r-strip imply (1), (2) and (&). Thus, we only have
to show 4).

Let J C [N] with |.J| = r, note that woJ = J that correspond to [Frows and [l rows, but by
definition of a vertical strip of type II, there is not [Jfrows in Q/A, so woJ are [J}rows that live in
w([m]). Thus oJ C [m]. O
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COROLLARY 230. Forr € {1,...,N —m}, the bisymmetric Macdonald polynomial Py (x;q,t)
obeys the following Pieri rules

ux (Do) A;(PA)
67'<x17 ey X )PA oy q7 =4q Z < u/; Ai ’LLA+ (PQ) Pﬂ(xaQ7t)

where the sum is over all superpartitions such that Q/A is a vertical r-strip of type II. Note that
D ,(x) was defined in Proposition where o and J can be obtained in the following manner
from the diagram of Q/A: let ¢ be any permutation that interchanges the [-rows and the @-rows,

while leaving the remaining rows invariant (including the [JJ@ rows), and let J be the set of @-rows.
Then

c=wtow and J=w"'5(J)
where w is such that (A, w) is a superevaluation.
PROOF. It is a immediate consequence of Theorem Lemma and Lemma [229 O

EXAMPLE 231. The superpartitions that appear in the expansion of the multiplication of es(x1, x2)
and P3,0,1y(7;q,1) are given by:

el

To be more precise, we have that

g1+ 1)1 —1t) ¢(1—t)(1—¢**)(1 - qt)

ea(w1,22) P01y = Prsn) — 1= g P3,051,1) + (1= a1 — @#P) (1 — g2) P(1,0:3,1)
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